

Evaluating the Digital Design Process:

Bottom-up vs. Top-down

A Thesis

Submitted to the

Faculty of Miami University

In partial fulfillment of

The requirements for the degree of

Master of Architecture

Department of Architecture

By

ALEX HOGREFE

Miami University

Oxford, Ohio

2010

Advisor_________________________
John Humphries

Reader__________________________

Mary-Ben Bonham

ABSTRACT: EVALUATING THE DIGITAL DESIGN PROCESS: BOTTOM-UP VS. TOP-DOWN

Digital technologies have the ability to reverse, rearrange, and modify common analog design

processes. Today’s practicing architects still generally maintain a linear design process, limiting

flexibility and freedom in intermediate design steps. The introduction of parametric and generative

design through scripting alters the design process into a nonlinear path that extends idea manipulation

and exploration late into the project development. A look at both the bottom-up approach and the

top-down approach reveal a deeper understanding of common digital typologies. Foster and Parnters’

City Hall project provides an interesting example of the advantages of parametric models in a top-

down process, where as Haresh Lalvani’s AlgoRhthms looks at the application of generative design in

a bottom-up approach to the project. Both case studies are examples of cleanly executed solutions,

made possible by digital design processes. Looking at software commonly used in architecture today,

an in-depth study exposes a gap between NURBS based modeling programs such as Rhinoceros and

parametrically based programs such as Revit. The introduction of scripting software aids in filling this

gap, as well as becoming a powerful means to introducing more powerful generative and parametric

capabilities. The scripting software, Grasshopper, was used to conduct empirical research where real

problems were solved using digital design methods. The experiments provided a firsthand look at the

playful, yet rich exploration that generative and parametric design fosters.

Evaluating the Digital Design Process 1

Evaluating the Digital

Design Process:

Bottom-up vs.

Top-down

 With the increasing use of digital

technology in the architectural design process,

how can we better implement computational

use to generate articulate, rational, cohesive

designs that are responsive to their

surroundings? Most architectural practices are

content with using proprietary software for

strictly representational purposes while others

are employing software that does not

complement or benefit the design process.

The introduction of parametric and generative

design methods through scripting alters the

design process into a nonlinear path that

extends idea manipulation and exploration late

into the project development. As a result, it is

essential for designers and specifically

architects to better understand algorithmic

processes and its implementation within

scripting software. It is with this knowledge

that architects can gain an unprecedented

freedom in design, and create customized

utilities suited for their specific needs

If architects become more involved

with scripting, ideas can be extrapolated where

new and innovative digital typologies can be

formed. Emergence, morphogenetics, mass

customization, and responsiveness, can now be

seriously considered and incorporated in design

processes. However, certain questions arise

from the integration of these digital typologies.

Of the methodologies presented, which

methods are the most beneficial in terms of

design flexibility and exploration. What

software is best suited to handle these new

methodologies? An exploration of applications

currently being used in the architectural field

such as Revit, Rhinoceros, and Ecotect will give

a better understanding of what software today

allows us to do in architecture, and what it

could do if combined with scripting software

such as Grasshopper. Case studies of projects

by Haresh Lalvani and Foster and Partners

provide examples of clean integration of

computational methods into their design
processes.

Opposing arguments against a deeper

integration of computational design into

architecture quickly arise that have negatively

influenced the advance of computer

engagement in early design processes. It is

argued that it would be more realistic and time

saving for architects to collaborate with

software engineers instead of learning the

skills themselves. Also, as computers are

weaved deeper into the design process,

architects will lose control and abstractness of

their designs compared to traditional analog

methods involving freehand sketching. And

finally, the computer’s involvement with the

design process removes authorship from the

architect. This paper will examine these

arguments more closely, and reveal that it is

worthwhile to look deeper into the new

methodologies that are only possible with the

advent of the computer.

Most users of CAD (computer aided

design) software use algorithms built into the

application without knowledge of how the

algorithm actually works. With proprietary

software, the user can only do what the

program allows them to do. Much of the

software on the market today offer quite a bit

in terms of representational modeling.

However, parametric and generative

capabilities are severely limited in much of this

software. An understanding of how code

operates within the software gives the user the

capability to explore, alter, and manipulate

functions to better suit their needs through

scripting applications.1 A more in-depth look at

digital design typologies exposes an underlying

design methodology consisting of the bottom-

up approach, the top down approach, or a

combination of the two.

TOP-DOWN APPROACH

Looking first at the top-down approach,

this method is described as the breaking down

of a system to gain insight. It is typically a

linear, hierarchically driven method that is

used most commonly among practicing

architects. The top-down approach begins with

an initial parti or big idea, where it is

successively rationalized and refined through

progressive steps. As Andrzeh Zarzycki

explains, the number of design paths a design

Evaluating the Digital Design Process 2

can follow is severely limited with this linear

approach. This is due to the difficulty to escape

the momentum of predictable moves from step

to step. 2 To alter initial ideas means altering

all sequential steps. The introduction of

parametrics into the top-down approach begins

to disrupt the linearity of the process.

Parametrics extends idea manipulation and

exploration late into the project maturity

therefore reordering the conventional process

into a nonlinear path. This is possible because

parametric modeling can establish associative

links between large and small scale elements

of the model. If an element is modified, all

other geometry associated with it is updated as

well. Where conventional processes move from

design, to rationalization, and finally

representation in a very linear fashion,

parametric methods allow the designer to

move backwards from rationalization to design,

or from representation to rationalization. This

allows for more fitting alternatives to be tested

with little to no effort.

The introduction of parametrics into

the top-down process can be observed through

a case study of City Hall in London described

by Hugh Whitehead in Architecture in the

Digital Age: Design and Manufacturing. The

Building was developed using Microstation. The

form was created using a torus patch which is

essentially a slice from a donut-like shape.

From there, the architects (Foster and

partners) created a parametric control system

which allowed the team to precisely record

dimensions. Whitehead explains that spending

a day developing a custom-built parametric

model produces a base for testing hundreds of

alternatives saving time and energy in the long

run. The ability to program in this manner was

indispensible. By utilizing the script, the

architects were able to play with proportions

and still maintain precise control of the project.

The digital model was then linked to a CNC

machine to test geometries for windows where

final solutions were resolved. This dialogue

from the digital model to the fabrication

machines at a small scale gave the team

confidence to build at full scale. The final

shape of the building was based off an axis

which leaned toward the sun. This allowed for

the building to present minimal surface area to

the sun while still allowing for maximum views

of the city. When summing up the design

process of City Hall, Whitehead explained that

“These examples illustrate that the synthesis of

form is considered from many different

viewpoints – functional, spatial, sculptural,

structural, and environmental. In trying to

combine all these aspects in an optimal

solution, we have to build tools that cannot be

found in off-the-shelf software.” 3

BOTTOM-UP APPROACH

The bottom-up approach represents

the inverse way of thinking compared to the

top-down approach. The bottom-up approach

is described as the combination and piecing

together of smaller components to create a

grander, more elaborate system. This method

often results in unpredictable, unexpected

outcomes, averting most designers from using

this method. However, it is unpredictability and

chance that the design process needs to avoid

scripted, tunnel-vision-like thinking. Andrzeh

Zarzycki explains that generative methods

allow designers to develop new ideas from past

experiences, without replaying them. He states

that the bottom-up approach allows designers

to think latterly, transcending the inertia of

past ideas, and allowing for design leaps.4

While this generative method can be used to

explore forms for aesthetic purposes, the

bottom-up approach can provide an

opportunity to yield quicker and more precise

results when applied to non-aesthetic purposes

such as environmental performances. In such

cases, generative techniques rearrange the

process by which the built form is developed.

Instead of developing a form and testing its

performance whereby changes will be made to

the form, and then tested again, the

generative approach looks at what

performances need to be achieved, and

generates a form around those requirements.

The result is an unexpected form, but one that

realizes the optimal performance criteria.

Ecotect is a building analysis program that has

recently become readily available to architects.

Figure 1. City Hall, London. Parametric models
developed to study glazing patterns and heat gain.
Source: Architecture in the Digital Age

Evaluating the Digital Design Process 3

The program directly brings into cyberspace,

real world conditions such as rain, wind, solar

heat gains, and sun paths allowing architects

to analyze their designs. Taking data that

software such as Ecotect can provide, and

applying it to generative models, means that

forms can be developed based on performative

needs. As the levels of complexity from this

type of generative modeling increase, and

decision making is based off of other generated

information, arguments of authorship quickly

surface. However, the designers control is not

being erased, it is simply being shifted. The

computer is being used as a tool, in which the

designer is establishing the rules, by which it

follows. The complexity and density of

information using generative processes is

increased. While the designer is not calculating

the intricate mathematical algorithms, they are

still setting up the system organization,

adjusting variables, and altering a range of

starting conditions in an iterative process to

achieve the desired outcome.

 The bottom-up approach can best be

seen through Haresh Lalvani’s project,

AlgoRhthms. Here, Lalvani uses

morphologenesis (defined as the development

or evolution of form over time) as a way to

explore an efficient and economic way to

produce compound curves in collaboration with

Milgo/Bufkin, a leading metal fabrication

company. Looking at the way most compound

curves (a curve where a straight line cannot be

found in any direction) are produced today,

which is by the use of dies, the process is only

economical if the same curve is mass produced

thousands of times, as seen in the car

industry. But to produce customized compound

curves in this matter is far too expensive.

Lalvani began looking to computation

algorithms for an answer. He looked at

inexpensive uses of digital fabrication, such as

water-jet cutting, laser cutting, and press

braking to produce developable curves

(Developable curves are curves produced

without deformation, but instead by bending or

folding a flat sheet of material). Combing the

idea of developable curves with digital

fabrication allowed him to bring down the cost

substantially, as well as create the opportunity

for mass customization. To bring these ideas to

life, Lalvani derived an algorithm that defines a

group of interrelated, transforming shapes

connected to a digital fabrication process. Tied

to the first algorithm, a second algorithm

formed a library of developable surfaces. By

linking the algorithms to the fabrication

process, an infinite number of shapes made up

of developable curves can be extracted from a

family, and immediately fabricated, allowing

for mass customization. The bottom-up

approach used for this project provided control

of intricate operations required to develop the

forms, although the final outcome was not

necessarily known.5

WORKING DIRECTLY WITH ALGORITHMIC

PROCESSES

Architects seem to have an increasing

amount of responsibility and an overwhelming

knowledge of many diverse areas of the field.

Is it necessary for architects to understand

algorithmic processes and scripting? In many

cases, it would seem more practical for an

architect to collaborate with an expert

proficient in computer science to produce

algorithmic architecture. This would allow both

professionals to do what they do best: the

architect to design, and the programmer to

write software that achieves the architect’s

needs. CEB Reas refutes this idea by stating

similar cases between artist and computer

programmers in the 1960’s. Most of the

computer generated art at this time was done

in collaborations between the scientists and

artist. However, it was difficult for the artist to

verbalize or describe what it was that they

wanted the technologist to do. Reas says that

“every artist must decide whether he or she

will work collaboratively or directly with

software….. working directly with code leads to

Figure 2. Haresh Lalvani’s ‘AlgoRhthms’. Source:
Architectural Design

Evaluating the Digital Design Process 4

a deeper understanding of the conceptual

potential of the medium.”6 Similarly, it is just

as important for the architect to understand

programming and write their own code to fully

take advantage of the benefits and precisely

express what it is they want, instead of

translating their ideas to a computer

programmer.

SOFTWARE ANALYSIS

With the advantages of different digital

design processes, software used today in the

architecture field must be examined in order to

understand how to benefit from computer

software as a design tool. Revit is an example

of a relatively new software developed by

Autodesk that is meant to be very intuitive

using parametric 3-D modeling. Door

schedules, elevations, floor plans, ceiling plans,

sections, and many other aspects of

construction documentation are all linked

together so that a change anywhere updates

drawing information everywhere else. The

capabilities of Revit have led to the integration

of the software into a high percentage of

architectural firms. The program combines

multiple design stages so that the architect can

spend less time on construction documentation

and more time designing. Although Revit can

deliver efficient documentation of a project

through parametric modeling, it is also

marketed on their website as a tool to “design

freely.”7The problem lies in the fact that the

software requires the architect to recognize

details about the building before they even

start modeling. This removes a great deal of

abstractness very early in the design process.

For example, to add a wall in a Revit model,

one must decide what kind of wall they will

use, the thickness of the wall, and materials

and components the wall is made up of.

Understandably, these components are

parametrically based so that the properties can

be changed later if need be, but the vocabulary

is already planted in the designers head. The

applications use of architectural vocabulary

such as walls, doors, and windows, encourage

the user to avoid use of more creative and

inventive components and forms. All default

walls are designed to be vertical, 90 degrees

from the ground. All default floor slabs are

horizontal with no slope. This encourages the

architect to design within even tighter limits. A

design that has odd angles or irregular forms

exponentially increases the difficulty to use the

program. Custom walls and floors must be

created, as well as custom doors and windows

to fit these walls. An advantage that can be

extracted from Revit is its in-depth

employment of parametrics. Parametrics allow

for the change of dimensional information,

while still maintaining relationships defined by

the user. In the case of Revit, parametrics are

used to continuously update drawing

information in real-time whenever a change is

made to the model. As a result, constant

updating and manipulation of form can be

achieved right up to the construction phase.

The program has redefined efficiency in

architecture, by combining all components of a

building (structure, mechanical, electrical,

plumbing systems) into one, complete model.

However, the architectural vocabulary and

decision making forced upon the designer

render the program a representational

software, not a design software, making its use

only appropriate in late project phases.

3-dimension modeling Applications

such as Rhinoceros and FormZ allow the user

to create controlled surfaces quickly and easily.

These applications offer accurate modeling of a

preconceived form, but to adjust a form, the

model must be rebuilt or reworked. This may

not be a daunting task for basic forms or of a

small quantity, but to manipulate complex

forms of a large quantity would be an

overwhelming, complicated, and impractical

task. This inability to adjust complicated or

mass quantities of forms pushes designers to

be more hesitant to continue exploration and

testing of new ideas. Designers inexperienced

with these programs find it difficult to

rationalize or generate tectonics from the

forms they create with these applications. It is

easy to get lost in the form, without being able

to trace where the geometry came from, or

how to accurately reproduce it. An important

missing part of these applications is the use of

parametrics. Neither Rhinoceros nor FormZ

maintain a high level of parametric features.

The polar opposite characteristics of

representational and 3-dimension modeling

programs reveal a large gap in popular

architecture software. An understanding of

scripting can aid in linking the advantages of

parametric modeling found in Revit with the

easy to use NURBS based modeling

applications. Here, scripting becomes the

means by which digital design methods enter

into and influence the design process. To

better illustrate this, Selected examples of

empirical research will be given to explain both

top-down and bottom-up design methods using

the scripting software, Grasshopper. Simply

stated, Grasshopper is graphical algorithm

Evaluating the Digital Design Process 5

editor. The program operates within the

program Rhinoceros, bringing to Rhinoceros

parameter control, programming functions,

generative and randomness capabilities. While

most scripting programs require architects to

switch mindsets leaving visual modeling for a

harsher coding interface, Grasshopper

maintains a graphical approach lessening the

difficult transition as well as the learning curve.

EMPIRICAL RESEARCH

 Experiment 1 is an example of the top-down

approach taking advantage of parametric

capabilities. This grasshopper definition takes a

large number of objects, in this case louvers,

and orients them towards a single point.

Parameters are set up to control the amount of

louvers along a given distance, their size, and

spacing. The louver locations are also

controlled by a curve. Changes to the curve

automatically update the placement of the

louvers, not affecting the parametric

properties. The attractor point can be moved

anywhere in space, adjusting the louvers

accordingly. Possible applications for this script

could be applied to controlling sun light

entering the space. Using environmental

performance software such as Ecotect, sun

path data could be entered into the

grasshopper definition, and optimal orientation

of the louvers could be achieved. With this

parametric set up, the partnership with the

computer can really be appreciated. Working

with a high number of objects such as louvers

would make adjustments without parameters

not only time consuming, but also difficult

when calculating angles of orientation.

Parameters in this case allows for a more

playful exploration.

Experiment 2 looks at the generative,

bottom-up approach to designing by

establishing rules that guide the design to a

final, unexpected form. This experiment began

with hand carved boxes that I have been

designing and building for the past two years.

A rule set up initially was that no box design

could be duplicated. As the boxes evolved,

they took on characteristics of previous boxes,

but maintained their originality through

transformations. I was interested to see if

generative modeling techniques could be used

to foster new formal ideas for the box designs.

I began studying the boxes already physically

produced to determine the behavior and

manipulations performed on them. The way

the boxes are constructed, which is by

subtractive means through sanding, limits the

types of behaviors and manipulations that can

be used. In fact, there were only three

behaviors used: move, rotate, and scale.

However, it was the combination of these

behaviors that created the many different

forms. From this understanding, I was able to

set up parametric controls replicating these

behaviors in the Grasshopper model.

Once the parameters were in place, I

began manipulating the digital model in search

of new forms. Initially, I adjusted the

parameters manually, but quickly realized that

I was restricting the possibilities of the script

by trying to find patterns and similarities with

the already fabricated boxes. To truly utilize

the power of Grasshopper, I applied random

number generators to the parametric controls

to produce forms completely unexpected, but

still preserving the same language of behaviors

setup with the original boxes. The result was a

seemingly infinite amount of configurations

Figure 3: Screen shots of Experiment 2 Grasshopper
definition. Source: Author

Figure 4: Sample of box forms generated by the
Grasshopper definition. Source: Author

Evaluating the Digital Design Process 6

that stemmed from the complex, to basic

formal gestures. An exponential increase in

new ideas were spawned that would not have

been realized from an analog process. The idea

of this Grasshopper definition was not to

generate final box designs that could be milled

precisely by a CNC router, but instead, to

generate new ideas that fit within an already

established family of handmade boxes.

Experiment 3 looks at merging ideas

from all previous experiments into the

development of a high-rise design. I began

building a Grasshopper model that could do

two things: utilize the bottom-up approach to

generate random sloping surfaces and make

use of top-down processes that would allow for

flexibility in design development. The final

definition solved both issues simultaneously.

The Grasshopper definition generated sloping

vertical landscapes by inserting a range of

heights that could be altered to provide steep

slopes, or very little sloping. The script

randomly created variable slopes within the

inputted range of heights. This gave the

vertical landscape elements a very natural,

wandering look and avoided me as a designer

subconsciously creating patterns or repetition,

which would ultimately ruin the affect.

Formally, the tower was to take on

characteristics of two elements of the

surrounding context; a bridge pier and a

circular highway ramp. The two forms were to

be combined, but it wasn’t understood how this

would be accomplished. Parameters were set

up in the Grasshopper definition to allow a

wide range of manipulation of the complex

forms as shown in figure 5. Floor heights,

number of floors, floor slab thickness, location

of towers, and footprint geometry were also

parameterized which was crucial to the

development of the towers as we began

looking at program, as square footage. The

combination of ideas from previous

experiments into this grasshopper definition

ultimately permitted a more expansive look at

possible solutions for the design, formally and

programmatically, using the computers

advantages of organizing data and complex

geometrical relationships.

Figure 5: Skyscraper formal studies generated from
Grasshopper. Source: Author

Through this empirical research, it was

determined that both generative (bottom-up)

and parametric (top-down) processes each

have an important role in architectural design,

and exemplify the importance for scripting,

essentially altering the fluidity and relationship

of traditional design development. A key

reason why I, as a designer, averted digital

technology’s integration into my design

processes early on in my education was

because of its tendency to force detail too

quickly, as well as hinder a sense of freedom

and playfulness due to my lack of

understanding of the software. Hand sketching

seemed to offer an unmatched ability to

connect mental ideas to physical visualization.

However, the experiments above provide

insight into how digital design processes can

become abstract and playful as well as be

advantageous to traditional analog design. It is

not being said that sketching should be

removed completely from the design process.

However, it should not serve as the only

means of design. By incorporating generative

and parametric techniques, one can escape the

nonflexible linear design process, and enter

into a much richer exploration of design

possibilities.

Evaluating the Digital Design Process 7

1 Kostas Terzidis, Algorithmic Architecture
(Burlington, MA: Elsevier Ltd 2006): 41.
2 Andrzje Zarzycki, “Giving Our Ideas a Playground,
Not a Contained Shoebox,” FormZ Joint Study
Journal (2007): 65
3 Hugh Whitehead, Architecture in the Digital Age:
Design and Manufacturing, Ed. Branko Kolarevic
(New York: Spon Press):85.
4 Andrzje Zarzycki, “Giving Our Ideas a Playground,
Not a Contained Shoebox,” 63
5 Haresh Lalvani, “The Milgo Experiment: An
Interview with Haresh Lalvani.” Architectural Design
(2006): 52.
6 CEB Reas: “Process/ Drawing: Programming
Cultures,” Architectural Design (2006): 33.
CEB Reas also collaborated with Ben Fry in the
development of the programming language,
Processing. This language has been very influential
in getting non-experienced programmers to enter
algorithmic thinking. The Processing language syncs
well with many other applications, and can even be
integrated into Grasshopper.
7 Revit Architecture Product Trials.
http://resources.autodesk.com/architecture/Revit
(accessed March 3, 2009)

COMMENTARY
ALEX HOGREFE

The written portion of this thesis explored

parametric and generative design processes

and there incorporation into traditional analog

processes. Through the experiments

performed, I reached the conclusion that these

techniques could play a pivotal role by

enriching design possibilities and offering a

means of escaping design patterns for ideas

that the designer may not have come up

without these digital tools.

I hoped to gain from the design portion of this

thesis a better understanding of how to and

where to use these digital techniques.

Initially, I chose to design an arena primarily

because of its many well defined variables

which work well with parametric design. For

example, seating in an arena requires proper

site lines. Therefore, certain variables are used

such as pitch, row spacing, seat width, egress,

etc. There was also an underlying issue I

wanted to address involving how university

arenas are placed and used on campuses.

Bowling Green State University has begun

construction on their new arena at a location

near interstate 75 acting as a billboard for the

university as well as a gateway into the

campus. The problem is that this location is

very disconnected from the main campus.

While the arena may be attracting students to

the university, it is not enhancing the academic

environment to the degree that it could be.

This project studies how the campus could

benefit from moving the arena to the core of

the academic environment, and engaging the

arena with everyday student life.

Generative techniques were first used to

determine site planning. A script was set up

that used site forces (views, pedestrian paths,

edge conditions, buildings) to manipulate

geometry laid across the proposed new site.

Ultimately, I did not use the forms generated

from this script. However, the process of going

through these steps and evaluating the

outcomes led me to the final location and

orientation of the arena. This script allowed me

to think about the location of the building in a

different way than I was accustomed to. I feel

this way of thinking led to a provocative, yet

well functioning site plan.

Pedestrian paths became a site force that was

a leading factor in site decisions as well as

formal decisions. A second script was created

to explore how pedestrian paths through the

site could become more streamlined and

efficient. I was interested in where these paths

would converge as well as how the arena mass

could fit within these paths influencing how the

users move through the site. The result was a

nontraditional arena massing that concealed its

large volume through a series of topographical

and formal moves. The ground was slanted up

to form roofs, theater seating, and circulation

in and out of the building.

Much of the arena has double functions to

allow for more flexibility and create a stronger

connection to the academic campus. One

important issue was to have the building open

up to students during non-athletic events. A

food court was placed on the ground floor of

the arena with clear views to the basketball

court. While students are eating, they can

watch teams practice or other events going on

in the arena. During game day, the space can

be used as the main lobby. During conventions

or concerts, the court floor can be expanded

into the food court space nearly doubling the

floor size.

On the third floor, box seating and club

lounges overlook the court. By directly

connecting these spaces to the nearby library,

the box seating provided ideal environments

for group study rooms and private study

lounges during non-athletic events. These

spaces flowed conveniently into the classroom

wing of the arena.

The biggest issue I came across with campus

arenas was how to utilize the seating. A large

portion of the square footage was seating, but

was only being used a small percentage of the

time. The solution was designing a structural

system that converted arena seating into

lecture hall seating while also being sound

insulated and conducive to learning. Here,

Grasshopper played an important role in

controlling the complex movements of the

structures allowing me to analyze site lines,

slope, chair folding mechanisms, and

clearances between moving parts. I was able

to test and tweak many different setups before

deciding on the final solution. The invertible

seating works on the same principle as a

teeter-totter. Through one simple move, the

arena seating can be inverted to sound isolated

lecture hall seating facing the opposite

direction. The lecture hall seating also provides

proper site lines to the outdoor theater

providing conditioned seating for shows

outside. The lecture hall seating connects

directly to the classroom bridge, which extends

into Olscamp Hall, a multi-classroom /lecture

hall building. The many double functions of the

arena encourage users to interact more

dynamically with each other, as well as with

the building.

Finally, the concept of shifting pedestrian paths

was continued to the façade, in the articulation

of the south facing louver system. The problem

consisted of designing a shading system that

offered different levels of openness or privacy

based on functional needs. Grasshopper

provided the tools needed to 1) control the

complexity of the geometry, 2) test out the

environmental issues of solar heat gains, and

3) meet the functional requirements of privacy.

A script was created to change the density of

the louver system based on the placement of

attractor points at precise locations on the

façade. Classrooms required the louvers to be

dense to avoid visual distractions inside the

space looking out. However, in lounge spaces,

views to the outside were desired. Therefore,

the louver system is less dense providing clear

views out. Since the louvers were changing

densities throughout the façade, it was

required to have individual louvers change

width according to their proximity to one

another in order to provide consistent shading.

Therefore, the grasshopper definition

accounted for this adjustment as well. Many

iterations were generated and then tested in

Ecotect to determine their legitimacy in

environmental performance. Through this

analysis, a final louver system was determined

and applied to the south arena façade.

The integration of generative and parametric

design into my design process was difficult and

uncomfortable in the beginning. After 6 years

of architecture school, I had grown accustomed

to my own unique process of designing.

Implementing generative design techniques

brings with it a sense of uncertainty and loss of

control. However, I learned this was due to me

forcing these techniques where they were not

needed. For example, early in the design

portion of the project, I wanted to generate a

building form from site forces by a single

Grasshopper definition. But, I did not know

exactly how I wanted to go about doing this,

nor did I have any rules that would guide me

to a successful solution. While the script

ultimately gave me a better understanding of

how I wanted to place the building on the site

and led me in a direction I probably would not

have gone without it, it was a failure in the

sense that it was too vague and abstract, and

did not offer any formal solutions.

The following script (the pedestrian paths

definition) had a much clearer and more

defined problem to be solved. I knew I wanted

to test out more efficient pedestrian paths. I

knew that where these paths converged, I

wanted the building to open up through

transparency and entry. And finally, the

building form could be defined by the areas

between the generated pedestrian paths.

These rules allowed me to create a script that

performed better, while extracting much more

useful information.

An important idea that took me a while to grip

was the idea that one script was not going to

design the entire building. What I mean by this

is that there are too many variables or

decisions to be made during a project of this

magnitude. It is unrealistic and irresponsible to

expect a single script to do too much. From my

experience with this project, understanding the

questions is essential opposed to hoping that a

generative script will just create something

that is interesting and could work. And as

obvious as that sounds, I set out at the

beginning of the project having exactly that

mindset that generative design would produce

unexpected forms that would work better than

what I as a designer could come up with. What

I realized is that generative and parametric

processes took questions I had, and allowed

me to quickly test out many solutions, no

matter the complexity of the procedures being

performed. In other words, they were

abstracting the problem allowing me to be

more playful with the design. In the case of

the louver system and invertible seating, I was

able to test out 20 or 30 possibilities each,

while still maintaining full control of the

complex geometry over a very short time

span. Without these tools, both the louver

system and invertible seating could not have

been developed to the degree that they were.

My understanding of my own design process

and where I want to take it, from the end of

the written portion of this project to this point,

has changed dramatically. I am much more

comfortable with the integration of generative

and parametric design into my previous design

process. I am much more willing to step

outside my comfort zone knowing now,

appropriate times to do so, and the infinite

results that can be achieved. It is this

understanding and connection with one’s own

design process that I feel allows a designer to

design with more originality and sensitivity to

the project needs.

	a title page
	aa cover
	b table of contents
	c adendum cover
	d abstract
	e paper body
	f images combined new
	aa page transition template
	ab site macro analysis copy
	b site plan close analysis
	c site_forces
	d pedestrian_forces
	e screen shot
	f script site interations
	g pedestrian paths
	h generative site
	i program newest
	j entry studies all
	ji page transition template
	k architecture_rendering_thesis_arena_siteplan_photoshop9
	l 36x36 close up2
	m architecture_rendering_thesis_arena_outdoor_photoshop10
	n architecture_rendering_thesis_arena_outdoor_photoshop11
	o architecture_rendering_arena_photoshop
	p architecture_arena_floor_plans9
	q architecture_arena_floor_plans22
	r architecture_arena_floor_plans3
	s architecture_rendering_arena_photoshop_diagram12
	t architecture_arena_section1
	u architecture_arena_structure3
	y architecture_rendering_arena_photoshop3
	z architecture_rendering_arena_photoshop_diagram3
	za architecture_rendering_arena_photoshop_diagram2
	zaa architecture_rendering_thesis_arena_outdoor_photoshop8
	zabarchitecture_rendering_thesis_arena_photoshop7
	zac architecture_rendering_arena_photoshop4
	zb architecture_rendering_arena_photoshop2
	zc architecture_rendering_arena_photoshop5
	zd architecture_rendering_thesis_arena_photoshop6
	ze ed102_4772 copy
	zf model pics 1

	g commentary
	h adendum

