
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year 

Experiments on Incremental Clustering

Fazli Can
Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/61

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1991-002

Experiments on Incremental Clustering
Fazli Can

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

EXPERIMENTS
ON

INCREMENTAL CLUSTERING
by

Fazli Can
Systems Analysis Department

Miami University
Oxford, Ohio 45056

Working Paper #91-002 0819 1

EXPERIMENTS
ON

INCREMENTAL CLUSTERING

Fazli CAN
Department of Systems Analysis

Miami University
Oxford; OH 45056

Abstract

Clustering of very large document databases is essential to reduce the spacehime
complexity of information retrieval. The periodic updating of clusters is required
due to the dynamic nature of databases. An algorithm for incremental clustering at
discrete times is introduced, Its complexity and cost analysis and an investigation
of the expected behavior of the algorithm are provided. Through empirical testing,
it is shown that the algorithm is achieving its purpose in terms of being cost effec-
tive, generating statistically valid clusters that are compatible with those of reclus-
tering, and providing effective information retrieval.

Categories and Subject Descriptors: H.2.2. [Database Management]: Physical Design -
access methods; H.3.2. [Information Storage and Retrieval]: lnformation Storage - file organi-
zation; H.3.3. [lnformation Storage and Retrieval]: lnformation Search and Retrieval - cluster-
ing, retrieval models, search process

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: cover coefficient, information retrieval, information re-
trieval effectiveness, dynamic information retrieval environment, cluster validity

1. INTRODUCTION
An information retrieval system (IRS) locates and retrieves documents that

are relevant to user queries. In the literature IR is also known as text or docu-

ment retrieval. In general, 1R is done by using document representatives. Two
common approaches for document representative generation are document

signatures and vector space model [23]. The former uses a bit map array for
each document whose entries are set by a hash function using the words of
documents as its input [12]. In the vector space model, which is also the ap-
proach used in this study, each document is represented by a document vector
describing the words, or terms, which appear in the associated document. A

document database then simply becomes a matrix. We call this the D, docu-
ment, matrix. For a database of m dacurnents defined by n terms, an element in
the D matrix in row i (document i) at column j (term j), dij (1 a i i m, 1 s j I n), rep-

resents the importance, for example number of occurrences, of term j (ti) to doc-
ument i (di). Sometimes the matrix merely contains 1's and O's, a binary matrix,

to indicate the presence or the absence of terms in documents. Storing the D
matrix requires much less space than storing all documents in their entirety.
More importantly, it makes the information retrieval easier. The D matrix can be
generated manually or by automatic indexing. The set of terms {tl, t2, . . . tn), V,
used for the description of documents is called the indexing vocabulary.

After storing the document representatives, a method for searching and re-
trieving must be provided. One of them is the fuN search (FS) method using in-
verted indexes [26]. In this method. associated with each term of V there is a list

of <document no., weight> pairs for each document in which that term appears.
Regardless of how the actual query (user's information request) is produced it is

possible to generate a query vector. All that is required then is to traverse only

query term lists using a matching function , looking for documents containing
those terms. The matching function is used to decide which documents are

potentially relevant (i.e., match the query) and should be returned to the user

121, 241. It is up to the user to deterrn~ne which of those retrieved documents are

actually relevant. Various retrieval techniques use this generic approach to re-

trieve documents. An overview of retr~eval techniques and citations for the re-

lated literature can be found in [2]

Like any other information system, two concepts, efficiency and effective-
ness, are the main concerns of an IRS. Efficiency and effectiveness are, re-

spectively, associated with the trme ~t takes the system to perform the search

and with the quality of retrieval. In IR, clustering is introduced to improve both
efficiency and effectiveness of retrieval. Within the context of IR, a cluster is a
homogeneous group of documents that are more strongly associated with each

other than with those in other groups. Forming these groups is called clustering

[I]. The reason behind clustering is that documents that are strongly associated

tend to be relevant to the same query (which is known as "clustering hypothe-
sis" in the IR literature) [23, 241. A typical implementation of cluster-based re-
trieval (CBR) first matches queries with cluster representatives, called centroids,
then matches the queries with documents in the selected clusters to find those
that actually match the query [7, 261.

The importance of CBR comes from browsing capability, i.e., the facility to
see the documents which are similar to the relevant documents [23, p. 3451.
During browsing efficient access to document information can be achieved by
storing the documents of a cluster in closer proximity in the disk environment
[19, pp. 309-3141. The clustering concept is also valuable in application of hy-
pertext technology to IR. Hyperlinks between nodes (documents) can automati-
cally be generated using clusters.

Document databases are dynamic in nature. In 1986 it was estimated that

about 100 million unique documents were searchable online with an update

rate of 10 million unique documents during the year. From 1976 to 1986 there

was an eight-fold increase in the number of documents available online [14,
p.451. In a document database the change in the composition of documents
also changes V, since new documents may introduce new terms which do not
exist in the old documents and deleted documents may be the only users of
some terms. This implies that an IRS must be congenial with this dynamic envi-
ronment. In this study our concern is update of clustered files in such environ-

ments.

For cluster file update there are basically three approaches.

(1) Reclustering creating clustering structure from the very beginning.

(2) Instant maintenance: maintaining clustering structure at the time of the
addition/deletion of documents

(3) Incremental (delayed) maintenance: modifying the given clustering struc-
ture at discrete times.

The first approach is inefficient. The second approach is desirable if documents

are addedldeleted one by one and if the immediate updating is necessary;

therefore, it is appropriate for environments such as office automation systems,

"accident and incident" systems used by police to build up files of current re-

ports as they become available. The examination of commercial document
databases shows that the third approach, incremental maintenance, is suitable
for document databases since they are updated periodically. (The file size and
the update characteristics of some DIALOG databases are provided in Table I.)

In this paper we introduce a cluster maintenance algorithm. Since we have

a series of consecutive updates at discrete times it is referred to as incremental
clustering. The algorithm of this study draws its roots from the Cover-
Coefficient-based Clustering Methodology (C3M) [7] and, therefore, is called
Cover-Coefficient-based Incremental Clustering Methodology (C21CM).

Different from our previous research [3, 41 on cluster maintenance, this work
studies multiple maintenance steps with dynamic indexing vocabulary.

Furthermore, the algorithm is based on a new data structure yielding very low
computational complexity with negligible storage overhead. This makes C2ICM
suitable for very large dynamic document databases. In this study we also ex-

amine the effect of database dynamics on maintained clustering structure and

introduce a new Monte Cario approach to test and validate the similarity of dif-

ferent clustering structures for a given database. The validation of the obtained

clustering structures is done by another set of Monte Carlo experiments. The IF?
performance assessment of the algor~thm is also provided by using the most

promising matching functions ava~lable in the IR literature [22].
The structure of the paper IS as follows. In Section 2 a brief review of the

clustering and cluster maintenance problem is provided. In Section 3 the base

concept of the incremental clustering algor~thm, the cover-coefficient (CC) con-

cept, and its relation to clustering are described for the reader who is not famil-

iar with it. Section 4 introduces the incremental clustering methodology, C'ICM,

Table I. File Size and Update Characteristics of
Some Commercial Document Databases [I 01

Database

Computer Database

Confer. Papers Index

ERIC

McGraw-Hill News

Medline

File Size

330,091

1,309,711

660,868

79.640

6,200,000

Updates

Every two weeks

Six times per year -
Monthly

Every 15 minutes

Approx 25,00O/mon.

its complexity and cost analysis, and analytical analysis of its expected behavior

in dynamic document database environments. Section 5 covers our

experimental design and evaluation. In this section it is shown through

empirical testing that C21CM is achieving its purpose, i.e., generating statistically

valid clusters that are compatible with those of reclustering while attaining lower
cost than that of reclustering. The retrieval experiments showed that IR
effectiveness of C2ICM is as effective as C3M which is known to have superior
performance with respect to other algorithms of the literature 171. The
experiments have been carried out using two document databases: the
TODS322 database of 322 documents and 58 queries, and the INSPEC
database of 12684 documents and 77 queries. The conclusion is given in
Section 6. The appendix provides an example application of the algorithm
C21CM to clarify the concepts and the data structures used in the development
of the algorithm.

2. CLUSTERING AND CLUSTER MAINTENANCE
Clustering algorithms can be classified into various groups using various crite-
ria. One such criterion is clustering methodology. According to this criterion, we

have three basic categories: Graph theoretical, single pass, and iterative algo-
rithms. A typical graph theoretical algorithm prepares a similarity matrix repre-
senting the similarity between individual documents then applies a similarity
threshold to determine the clusters represented by closely related documents.

Each cluster forms a connected graph. Depending on connectivity of docu-

ments, the structures known as "single link," "group average," and "complete
linkage" are formed.

An example for the single-pass algorithm is the seed oriented clustering. In

this approach, a cluster initiator (e.g., a document), called cluster seed, is de-
termined for each cluster to be formed. Documents are then assigned to the
clusters of the seeds to which they are most similar. For implementation the
number of clusters must be known. This is usually provided as an input pa-

rameter. The nearest-neighbor (NN) algorithm uses each document as a seed;

each cluster contains the "seed" and the document most similar to the seed, i.e.,
its nearest neighbor. Note that th~s approach may end up having the same

number of clusters as the number of documents.

Iterative algorithms try to optimize a clustering structure according to an op-

timization function. The generation of the initial clusters can be done, for ex-
ample, by using seed oriented clustering.

Clustering algorithms can also be classified according to the manner in

which documents are distributed to clusters. Some classifications are partition-
ing: where clusters cannot have common members; overlapping: where cluster
can have common members, and hierarchical: a tree structured organization of
clusters and documents where leaves of the tree represent documents and up-
per levels of the tree represent clusters of clusters or documents (or both); the
root being the super cluster containing all of the document database.

The Cluster Maintenance Problem: A Critical Overview
The problem of cluster maintenance deals with the modification of clustering
structures due to addition of new documents or deletion of old documents (or
both). The addition and deletion of documents, respectively, may also imply
addition and deletion of terms. That is, the environment is dynamic both in
terms of documents and indexing vocabulary, V, used for database description.

A close examination of clustering algorithms reveals that most of them are

not suitable for clusters maintenance [24, p.581. In the literature there are very
few maintenance algorithms. A brief critical overview of cluster maintenance

approaches is provided in this section. In general, these algorithms are devel-
oped for growing databases; however, most of them can also be used in case of
deleted documents.

The algorithm of Crouch has three processes [8]. The categorization pro-
cess, generates groups of terms (category vectors) which represent a subdivi-
sion of the document database. In the clustering process, the category vectors
are used like cluster seeds and the documents are assigned to the "categories"

they have resemblance with. Later, during the update process, the category

vectors that have common terms with the new documents are modified or new

category vectors are generated. The new and modified category vectors are

then used as queries and compared with the documents. The matching docu-
ments of the "queries" and the new documents are assigned to their respective

categories (i.e., clusters). The major problems of this algorithm are the follow-
ing. (1) The generated clustering structure depends on the order of processing

of the documents and particularly on the initial set of documents. (2) Each doc-
ument is processed at least twice (once for categorization and once for cluster-

ing). (3) New documents may modify many of the previous category vectors,
and as a result, the maintenance can be as expensive as reclustering.

Another approach for maintenance,cluster splifting, treats a new document
as a query and compares it with the existing clusters and assigns it to the cluster

that yields the best match [20]. The major problems of this algorithm are the

following [19, p. 4941. (1) The generated clustering structure depends on the

order of processing of the documents. (2) The generated clustering structure

starts to degenerate with relatively small increases (such as 25 percent to 50

percent), i.e., frequent reclustering may be needed in fast growing database
environments. (3) The clustering structure obtained can' be lopsided (few fat
and many thin clusters) which in turn results in inefficient searches.

Adaptive clustering is based on user queries. The method introduced in [29]
assigns a random position on the real line (the hypothetical line from negative
infinity to positive infinity) to each document. For each query, the positions of
relevant k documents are shifted closer to each other. To ensure that all docu-

ments are not bunched up together the k documents are selected randomly and
pulled away from their centroids. This approach has some disadvantages: (1)
The clusters generated by such an approach depend on the order of query pro-

cessing; (2) The definition of clusters (separation between the members of dif-
ferent clusters) requires an input parameter and the appropriate value for this
parameter is database dependent; and (3) The speed of convergence can be
slow. The applicability of such algorithms in dynamic environment is not yet
known.

For the maintenance of clusters generated by graph theoretical methods

(single link, group average, complete link) similarity values need to be used.
First, similarity calculations among the m2 number of new documents imply a

complexity of O(m$). Then the sim~larity among the existing ml documents

and the new documents needs to be calculated yielding an overall complexity

of O(ml x rnn + m22) which can be approximated as O(ml x m2) since m1 >> mz.
For the single link case, the s~m~larity values among old documents are not
needed. The group average and the complete linkage methods require the
complete knowledge of similarities among old documents [25, pp. 29-30]. This

means a running time of O(m12) or a storage requirement of the same order.
This is followed by the clustering process, which is an additional cost. That is,

the time and space requirements of the group average and the complete link
approaches are prohibitive. Furthermore, they have an inherent problem: They

do not necessarily define a unique clustering structure for a given set of similar-

ity values among individual documents of a database [25, p. 271. The efficient
implementation of complete-linkage method makes it dependent upon the order

in which documents in the database are processed [9]. The update cost of the
single-link method is reasonable, O(ml x m2); however, its IR effectiveness is

known to be unsatisfactory [l 1 , 25, 271.

The maintenance of "clusters" generated by the NN algorithm is relatively
easy and the order of computations is O(ml x m2) [I 31. In addition to this com-
putational requirement, for each old document its nearest neighbor and the
similarity value between them are needed. This is a storage requirement in the
order of ml which can be regarded as reasonable. However, it should be no-
ticed that the structure due to the NN algorithm is hardly a clustering structure

since the average cluster size is two. That is, maintenance of NN structure is an
easy update of a "so called" clustering structure.

Another possibility for handling database growth is using a cheap clustering

algorithm of rnlogrn complexity to recluster the entire database consisting of old
and new documents. However, even this approach would be prohibitive,
especially when considering consecutive maintenance. Furthermore, the as-
sumptions which make the complexity of the cheap algorithm mlogm may not
be valid for cluster maintenance. Another point is the following: even though
some algorithms have theoretical complexity of mlogm the experimental eval-
uations of these have shown that due to large proportionality constant the actual

time taken for clustering is greater than that of for an m2 algorithm [24, p. 591.
These points imply that we would be better off by using an efficient maintenance

algorithm instead of reclustering the documents.

3. PRELIMINARY CONCEPTS
In this section we describe the preliminary concepts of the C21CM algorithm very
briefly. The details can be found in 171. The base of the algorithm, the CC con-
cept, provides a measure of similar~ties among documents. The concept is first

used to determine the number of clusters and cluster seeds, then to assign non-
seed documents to the clusters inlt~ated by the seed documents.

The CC concept determines document relationships in a multidimensional
term space by a two-stage probab~lrty exper~ment. The experiment randomly

selects terms from documents in two stages: the first stage randomly chooses a

term tk from document di, then the second stage tries to choose the selected

term tk from dj. For di the above experiment is repeated for all terms and for all
documents and we obtain Cii (1 i, j 5 m), the probability of success. Intuitively
this is a measure of similarity, since the documents that have many common

terms will have a high probability of being selected because they appear to-

gether in most term lists. The experiment is also affected by the distribution of

terms in the whole database: If di and dj share rare terms this increases Cij.
Formally, for a D matrix of size m by n, cij is defined as follows.

n

" = T X z (dikx&xdjk) where 1 5 i, j 5 m

where ai and f3k are the reciprocals of the ith row sum and kth column sum. To

apply the above formula each document must have at least one term and each
term must appear at least in one document.

Based on this, we construct a mxm C (cover-coeficienf) matrix of cij values
for a given D matrix. Some characteristics of the C matrix are the following f71.
(I) o < C i i ~ I , O ~ ~ i j < I ;

(2) Cii 2 Cij and min(cii)= 1 / m for a binary D matrix;

(3) (cil + Ci2 + . . . + cim)= I ;

(4) Cij = O <--> Cji = 0, Cij > 0 <--> Cii > 0, and in general Cii z Cji;

(5) Cii = cjj = Cij = Cji <--> di and dj are identical;

(6) di is distinct <--> Cii = 1.

Thereby from (4) it is seen that cij measures an asymmetric similarity between
di and dj.

In the C matrix, a document having terms in common with several docu-
ments will have Cii value considerably less than 1. Conversely, if a document
has terms in common with very few documents, then its Cii value will be close to
1. The Cij entry indicates the extent to which di is "covered" by dj. (The reason

for the phrase choice "cover-coefficient" is given in r].) Identical documents are

covered equally by all other documents; if the document vector of di is a subset

of the document vector of d,, then dl will cover itself equally as well as d, covers

di. It is also true that if documents have no terms in common, then they will not
cover each other at all, and the corresponding Cii and Cji values will be zero.

Because higher values of c,, result from document di having terms found in
very few of other documents, we let c,, = o, and call 6, the decoupling coefficient

of di. It is a measure of how different d, IS from all other documents. Conversely
we call vi = 1 - 6, the coupling coeffic:ent of d , .

Similar to documents, the relationship between terms can be defined via the
C' matrix of size n x n whose entries are defined as follows.

m

(d k i x a k x d) k~ where 1 s i, j s n

Using c'i, the same concepts of decoupling, coupling, and number of clusters
(see below) can be defined for the terms.

In a database with similar documents, the diagonal entries (6,s) of the C ma-

trix will be low; however, if the database contains dissimilar documents, the di-

agonal entries will be high. So the number of clusters is defined as follows.

n,= 2 9 where (1 r nc s min(m, n))

It is shown that for a given D matrix, the number of clusters indicated by docu-
ments (i.e.. by his) and terms (i.e., by bIrs) is the same and then max(nc)= min(m,

n). Hence, the average document cluster size, dc, is in the range of rnax(1, mln)
to m. We can see that nc in CC is directly related to (a function of) the D matrix,

and is not just some arbitrary value or an input parameter. This provides flexi-
bility and adds robustness to the methodology.

In forming the initial clusters we employ the C3M. Our incremental clustering
algorithm, C*ICM, is an extension of C3M. In C3M clusters "grow" from seed
documents. For the selection of seed documents we compute the cluster seed
power of each document. The cluster seed power, pi, of di is defined as follows

n

pi = bi x vi x 8 di, and pi = 6, x y., x $ (di x O x ly;).

corresponding to the binary and weighted version of the D matrix, respectively.
In the second formula 6'j = c'o and ~+t'j = (1 - nl,) Here, bi provides separation of

clusters through document dissimilarities and tpi provides intra-cluster cohesion

through document similarities. The third term, the summation, provides normal-

ization. Thereafter the documents corresponding to the documents with the nc

highest seed powers are selected as the clusters seeds. In a document

database it is possible to have ident~cal or almost identical documents; only one

of the "identical" documents can be used as a seed. If the seed powers of two
documents significantly differ (using a threshold) then this means that the doc-

uments are distinct, This test works almost one hundred percent of the time.
For further details of the false seed el~m~natlon process refer to m. For an ex-

ample see the Appendix.

After determining nc seed documents, for all remaining (m - nc) nonseed
documents we determine the cluster seed which maximally covers them. If
there is more than one cluster seed that meets this condition, the nonseed doc-

ument is assigned to the cluster whose seed power is the greatest among the

candidates. That is, each document can be a member of only one cluster. To

calculate the extent to which a nonseed document, di, is covered by a seed
document, d,, implies the calculation of c,,. This computation involves summing
many zero terms, since the D matrix is very sparse. The elimination of those
zero entries is done by considering only nonzero dik and djk entries. This is ac-
complished by traversing a term list for each term of di. A term list contains
<document seed number, term weight, pairs for each seed in which that term
appears. This data structure is referred to as Inverted term Index for Seed
Documents (IISD). Using llSD we calculate the extent to which di is covered by
seed documents not seed by seed, but together for all seed documents in an in-
cremental manner. During the traversal of the list, Cii values for the correspond-

ing seed documents are updated. This approach is like the implementation of
FS using inverted term indexes [7, 261. The appendix provides an example to
help understanding the concepts of the algorithm.

4. THE INCREMENTAL CLUSTERING ALGORITHM
In this section we first introduce the C*ICM algorithm, then its complexity and
cost analysis. An analysis of the effects of the database dynamism on the gen-
erated clustering structures is also included.

4.1 The C21CM Algorithm
Incremental clustering starts with ml documents. These documents are clus-

tered using the C3M algorithm. After this, clusters are updated due to newcom-
ers (additions) and obsolete documents (deletions) using the C21CM algorithm.
In the rest of the paper the symbols m' and m", respectively, indicate the number

of added and number of deleted documents; similarly Dml and Dmll, respectively,
indicate the set of added and deleted documents. Dm indicates the current

document database.

A brief description of C~ICM IS given ~n the fo1lowing;the symbols "U" and "-",
respectively, indicate the set operat~ons un~on and difference.

C21CM :
[a] Compute the cluster seed powers of the documents in the

updated document database, Dm= Dm U Dm# - Dm{' and

pick the cluster seeds. (In general m' >> mi'.)

[b] Determine D, , the set of documents to be clustered.
Cluster these documents assigning them to the cluster of
the seed that covers them most.

[c] If there were documents not covered by any seed, then
group those together into a rag-bag cluster.

[dl Apply the above steps for each document database up-
date.

The set Dr consists of the newcomers, the members of the ragbag cluster of the
previous step, and the members of the falsified old clusters. An old cluster is
defined to be false if

(1) Its seed is not a seed anymore (deleted seeds would have their clusters
falsified also);

(2) One or more of its nonseed documents becomes a seed after a database
update.

The reader should refer to the appendix for an example application of the algo-
rithm.

The C*lCM algorithm is order independent (i.e., the clustering structure is

independent of the order in which documents are processed) for the members

of Dr only. Order independence is a desirable feature for a clustering algorithm.

This somewhat less desirable order-dependence situation is offset by the cost

savings (see Section 4.3) and good IR performance of the algorithm.

4.2. Complexity Analysis of the Algorithm

In this section the complexity analys~s is given for a weighted D matrix since it
represents the more general case. Like C3M, the implementation of C21CM

does not require the construction of the complete C matrix: the data structure

llSD is used to obtain the necessary c , ~ values. It should be stated that the stor-

age overhead of the llSD is very low. For example, for the INSPEC database

the whole data structure contains 23049 entries with a storage overhead of just

5.6 percent of the D matrix. (The D matr~x of the INSPEC database contains

41 2255 nonzero entries, see Table Ill)

To cluster the initial set of ml documents (before increment) we use C3M. Its
computational requirement is as follows [?I.

3 x ~ d x r - n ~ + m l xlogml + m l xxdxtgs
where Q and tgs, respectively, indicate average number of distinct terms per
document and average number of seeds per term. In the above formula, (3 x xd
x ml) indicates the order of the computations needed to calculate the number of
clusters (6i values for all documents) and seed powers (which also requires bii

values for all terms) of individual documents. The second term, (ml x logmi), is
needed for seed selection (sorting). The third term, (ml x xd x tgs), is for cluster-
ing, i.e., assigning nonseed documents to clusters initiated by seed documents.
Actually the number of documents to be clustered is (ml - nc), since mi >> nc
(mi - n,) is taken as ml a

The cost of generating the llSD is ignored since it is very low, (nc x Xd). The
term (m1 x logmi) can be ignored with respect to the others. In general, for very
large databases we expect to observe 3 cc tgs << tg, where tg is the average
number of documents per term. Accordingly the complexity of C3M is (mi x xd x
bs). This complexity is considerably less than those of the most other clustering
algorithms whose complexity range is O(m2) or O(m3) [25, 271.

During incremental clustering we can assume equal sized additions. To

make analysis simpler we ignore document deletions. However, this does not
invalidate the analysis since mi >> mu in a typical environment.

The computational cost of the first incremental step is the following.
3 x xd x (m1 + m') + (ml + m') x log (ml + mi) + r x m' x xd x tgs

where r is the ratio of documents to be clustered to mi. In the experiments we
observed that the maximum r is equal to two (r 2 1). In the above expression the
first term determines the complexity since it is larger than the other two terms.

For example, for a very large database, such as Medline, it is expected that the

following equality would be true (ml / m' >> r x tgS) Accordingly, the complexity

of one incremental clustering step is O(xd x (ml + mi)).

Now let us consider the complexity of incremental clustering for k incre-
ments. We can assume that xd is almost the same during increments. Notice

that it is very hard, if not impossible, to determine the optimum level of the depth
of indexing for a given database [I 7] However, we may assume that the aver-

age depth of indexing, w , remains more or less the same throughout different
stages of a database. This is because, the documents of the database usually

have comparable sizes and we expect to observe similar indexing criteria

(automatic or manual) applied to all documents. Hence, xd would be almost the
same for a group of documents. This is a reasonable assumption and is ob-
served in the experiments (see Table Ill). Then overall complexity for k incre-
ments becomes the following.

Q X [(ml + mi) + (ml + 2 x m') +. . .+ (m1 + k x m')] =

Q x [k x ml + (1 + 2 +. . .+ k) x m']
Accordingly the complexity of the algorithm becomes O(k x ml x xd + k2 x m' x

xd). If (k* x m') >> (k x ml) --> (k x m') >> ml. Then the complexity of the algo-
rithm becomes O(k2 x mi x xd). However, if ml is very large with respect to mi,
then the complexity of the algorithm for k incremental steps becomes O(k x ml x
xd). For example, for the Medline database (refer to Table I) ml = 6,200,000
and m'= 25,000 (ml 1 m'= 248). For (k x m') >> ml to hold we need more than
twenty years since in Medline updates are done monthly! This may be hard to
obsewe. Therefore for very large databases the complexity of the algorithm for

k incremental steps depends on the ~nitial size of the database, and is equal to

O(kxm1 XQ).

Reduction of Complexity
Before continuing let us consider the following question: "Can we reduce the
complexity of C21CM by saving the previous values of 6i and pi for all docu-
ments, and 6', for all terms?" The answer is "No," since the magnitude of re-

computations to update these data structures would be as large the calculation
of their values from the very beginning.

TO illustrate this let us consider bi values. If 6, for all di is saved (call this
value biIold) after a database increment, h,,old must be updated if the terms of di

also appear in Dm$ or Dm*. The new hi value, 6itneW, can be calculated as fol-

lows:

Where BjIold and f3j,newt respectively, Indicate the Pj value of term j before and

after the database increment. If all terms of di were used by the database in-
crement, then the cost of the above update would be the same as the calcula-
tion of 6i from the very beginning (1 00 percent recalculation). Figure 1 shows

the usage of the terms for the INSPEC database with the increase of the

database size. In this experiment ml = mi= 1,000 documents (the last incre-

ment contains 684 documents) and the V is allowed to grow with the addition of
new documents. That is, new documents of each step use terms of the already
existing documents and new terms which have not been used so far. As would
be expected, as we increase the size of the database and the V, the percentage
of the old terms used by the new documents decreases (shown by PI in the fig-
ure). However, the reused terms always count more than 90 percent of all term
occurrences in old documents (shown by P2 in the figure) and this incurs the
same amount (more than 90 percent) recalculations. This is valid even for very
small database increments (shown by P3). For example, the last increment of
the experiment increases the database size by 6 percent (684/12000) and the
percentage of the recalcuiations is 92!

100

80

60

40

20

0 , . , . . , r , T 1 - 7 - 7 - - - 7

0 2000 4000 6000 8000 10000 12000 14000
m

Figure 1. The percentage of the old terms reused IR new documents (PI), the percentage of all
term occurrences of the reused terms In the old documents (Pz), and the percentage of the

database size increase (P3) for m l =mi= 1,000, INSPEC database.

This discussion shows that the complexity figure xd x (ml + m') will remain
the same (at least) due to recalculations of the bi values. Therefore, we cannot

reduce the complexrty by saving the previous values of the basic data structures
of the algorithm. However, for databases with very small increments (e.g. for
Medline the size of increase is 0.49'0) the saving approach has the potential of
validrty. In such environments, if we save the previous values of the data struc-
tures, the complexity of the algorithm would be O(r x m' x xd x tgS), or more cor-
rectly O(m' x xd x tgs), since r is usually very small (in our experiments r (2).

4.3. Cost Analysis
Our complexity analysis assumes that the proportion of the reclustered docu-
ments is very low with respect to the previous size of the database. For the
analysis to hold this assumption must be true. In the worst case, i.e., if all seeds
are falsified, C21CM degenerates to a reclustering process. If the number of
documents to be reclustered is zero, this indicates that incremental clustering
does not incur any extra cost. That is, it clusters only the newcomers.
Therefore, the cost of the incremental clustering algorithm is proportional to the
number of reclustered documents, R. (At this point we must state that we do not
want to have a "costless" maintenance algorithm, since if the cost is zero we
would not be able to reflect the effect of the additionsldeletion~ O n the old
database. In other words, we want some "reclustering" to happen during incre-
mental handling, but not that much.)

Similarly, the cost of the reclustering algorithm can be taken as the number
of reclustered documents. For k incremental steps the number of reclustered
documents is equal to

[(m1)+(ml+m1)+ . . . + (ml+(k- l)xm')]=[kxml + (kx (k -1) / 2) xm i]=
[kx m1 + (kx (k - 1) 12) x m']

Then the proportional cost of incremental clustering with resped to recluster-
ing becomes 2 x R / [2 x k x ml + k x (k - 1) x mi] which, together with the obser-
vations from our experiments, shows that incremental clustering is much more
efficient than reclustering. This is because 2 x R << [2 x k x mi + k x (k - 1) x ml.
We know that the reclustering algorithm, C3M, generates valid clustering struc-
tures and it provides an effective CBR environment [5, 7. The analysis of
C21CM from these points of views is provided in Section 5.

4.4.The Effect of Database Dynamics on the Output of the Algorithm
The CC concept reveals the relationships between indexing and clustering.
The analytical derivation and experimental validation of these relationships are
provided in m. In this section we use these relationships to foresee the effect of
database dynamics (i.e., the change In m and n) on clustering structure.

The CC-based indexing-cluster~ng relationships are formulated as follows.
nc= t / (xdx tg)= (mxn) i t =m, ! tg=n/xd ,anddc=mInc=tg

The meaning of m, n, xd, tg, n,, and dc is as before, and t indicates the total
number of nonzero entries in the D matrix. As explained before, we assume
that the average depth of indexing, xd, IS the same throughout different stages of

a database. Notice that individual documents may show considerable diver-
gence from the average and our assumption does not a s m e anything for the
variance.

Number of Clusters
Let nc,k-1, nc,k and nk-1, nk, respectively, indicate the number of clusters and
number of terms at k-1 'st and kith database increments (k= 0 indicates the initial
database). By using the relationship nc= n / xd the entity nc,k can be rewritten as
follows.

nc,k / nc,k-I= (nk 1 xd) / (nk-1 / xd)= nk I nk-1 ' or

nc,k = (nk %-I) x n ~ ~ k - 1 (for k > 0)
Accordingly, the estimated number of clusters at step (increment) k, nc,k, is a
function of the number of clusters in the previous step (nc,k-l)l the previous size
of the V, nk-1, and the current size of the V, nk. The formula also indicates that
as we increase the size of V, nc increases. Normally we expect that the
database documents would eventually include ail possible terms, hence V and
nc would cease growing. However, in practice, many of the vocabularies ap-
pear to grow indefinitely, although their rate of growth decreases with increase
in size of the database [15, p. 2061. Therefore, the number of clusters grow in-
definitely, but its rate of growth decreases with increase in database size.

Average Cluster Size
The discussion above also indicates a steady increase in average cluster size
(dc), since normally we expect a steady increase in database size and slower
rate of increase for n,. The same is also implied by dc = tg. Recall that tg is de-
fined as (t / n) and we expect to observe a higher rate of increase in t with re-
spect to the size of V, n, due to steady increase in database size.

The relationship between dc and the other variables of the system can also
be expressed as follows.

dc = m / nc = m / (n 1 xd) = (m / n) x xd
The above equation indicates that if xd remains the same, m and n can be used
to estimate the average cluster size, dc, as follows.

5. THE EXPERIMENTS
Our experiments were designed to

(1) observe the effect of dynamic environment on the clustering structure in
terms of number of clusters and average cluster size,

(2) show that C2lCM is cost effective,
(3) test the similarity between the clusters generated by C21CM and those

generated by CsM,
(4) test the validity of the clustering structure generated by C21CM in the statis-

tical sense,

(5) test the compatibility of CBR effect~veness of C21CM and C3M using sev-
eral matching functions to show that the former is as effective as the latter,
which is known to be very effective for CBR.

In this section we first describe the databases used and present the experimen-
tal resutts.

5.1. The Document Databases
In this study we use two document databases: TODS322 and INSPEC. The
TODS322 database is from the papers published by the Association for
Computing Machinery in the journal Transactions on Database Systems. The
database contains 322 documents from March 1976 through September 1989.
Each document contains the title, keywords given by the author(s), and the ab-
stract. The indexing vocabulary is generated from the stems found in the docu-
ments of the database. A stop word list is used to avoid the common words of
the English language. A smaller version of TODS322 (TODS214) was used in
our earlier studies [3, 4, T] . The details of indexing software can be found in

[I 81. The second database, INSPEC, contains 1 2684 documents covering
topics in computer science and electrical engineering. The D matrix (and the
queries) of the INSPEC database is common with other studies 17, 11, 22, 25,
261. This database is one of the largest test databases of the IR literature.

5.2. The Clustering Experiments
We created six experiment cases for each database choosing different values
for m1, but always keeping the same size of increments. No deletions were
done. For each database we used cases where m1= 32 percent, then 45 per-
cent, 59 percent, 73 percent and 86 percent of the database. We added docu-
ments to the initial ml in steps of about 14 percent of the full size of the

databases (44 and 1734 documents, respectively, for TODS322 and INSPEC
databases). The actual numbers of documents are shown in Table II.

For example, if we begin with matrix number 1, this provides us five increments
(steps). For INSPEC it grows from 401 4 documents with increments of size
1734 and matrix number 6 contams all documents available in the database.

Throughout the experiments we used dynamic indexing, i.e., the documents
of each increment are allowed to use new terms which have not been used by
the old documents. That is matrices 1 through 5 are subsets of the complete D
matrix (matrix number 6) . The tests were done both on weighted and binary D
matrices. (In a weighted D matrix d,, indicates the number of occurrences of
term j in document i.) The results of both cases are similar; however, the
weighted version always outperforms the corresponding binary version. In this

paper we only report the results of the weighted cases since a weighted D ma-
trix is more general than binary one. The experimental results for the binary
version of the TODS322 database are available in [6].

Table II. The Size of the D Matrices Used in the Experiments

The characteristics of the D matrices of the experiments are shown in Table
Ill. As we defined previously, n IS the number of terms; t is the number of

nonzero entries in the D matrix, tg is (t / n), and xd is (t / m). Table Ill shows that
for a given D matrix, xd, depth of index~ng, remains almost the same throughout

the steps of incremental clustering Th~s was our assumption in the complexrty

analysis and in the analysis to foresee the output behavior of the algorithm. (As
a sidelight we must state that xd of indrvrdual documents show considerable

Matrk No,
0. B. size (% of full size)

m i I TODS
mi / INSPEC . 4014 , 5748 , 7482 , 9216 , 10950 . 12684

6
100
322

5
8 6

278

1
32
102

4
73

234

2
4 5
146

3
5 9
190

variations. For example, the variance of depth of indexing for all INSPEC docu-

ments (matrix number 6) is 203.55. Our assumption is even valid for such an
environment.)

If we begin with matrix number 1 there are five incremental steps. The num-
ber of clusters for each step (k) is shown in Table IV. (In this table, the row for k=

0 displays the initial conditions just before incremental clustering, which are
obtained by C3M using matrix number 1 .) The same table also shows that the

estimated nc values for steps k (1 5 k 5), nc,k = (nk / nk-1) x nc,k-1, are very
close to the corresponding actual nc values. Similarly, the estimated dc, (m I n)
x xd, values are very close to the corresponding actual dc values. These results
demonstrate that we can estimate the values of nc and dc by the main variables
of the document database, namely, database size, m, and size of V, n. This in-
formation is valuable to predict the future requirements of an IRS in terms of
secondary storage size and retrieval time.

Table IV. The Values of nc, Est. nc dc, Est. dc for Initial Clustering (k = 0) and

(7 Est. (nc) can be calculated for k > 0

The incremental clustering behavror of the algorithm for the INSPEC
database is given in Table V. In this table the abbreviations NFC and NFD, re-

spectively, indicate the number of fals~fied clusters and the number of falsified

documents. The table shows that with ml = 401 4, the first incremental step (43
percent increase in database srze, m' / ml = 1734 1 4014 = 0.43) falsifies 22

percent (60 out of 269) of the old clusters containing 989 documents. The next
step falsifies 72 clusters and the number of falsrfied documents is 1460. For ml

= 5748 the first increment fals~fies the same number of clusters as the second

increment of ml = 4014. Thls is because, both steps of the algorithm use the

same previous D matrix with 5748 documents and the same set of documents
as the increment. Accordingly, they both fals~fy the same number of clusters,

actually the same seeds, but not recessartly the clusters contarning exactly the

same documents. This can be seen from the total number of falsified docu-
ments, for m1 = 5748 the first increment falsifies 1381 documents, for ml = 401 4
the second increment falsifies 1460 documents. The same discussion is also

valid for the rest of the table. For example, in the last row of Table V, for all

cases of ml, the number of falsified clusters is 52; however, the number of falsi-

fied documents are not the same but close to each other (all observations are

within the range of 1204 to 1289). This is an indication of the close similarity of
the falsified clusters.

Table V. Incremental Clustering Behavior of the Algorithm for the INSPEC Database
d

1

- -e %Db inc.
t %Fls. CI.
4 ?'OFIS. DOC. -

-

-

1 . 1 ' I 8 I ' I

m 1

Figure 2. The behavior of the algorithm for the INSPEC database
(ml = 401 4, m' = 1734, for five increments).

m
5748
7482
9216

10950
12684

For the INSPEC database the case ml = 4014 provides the maximum num-

ber of incremental steps in the experiments and reflects the behavior of the al-

gorithm for other values of ml; therefore, it deserves more attention. With m1 =

4014 we have five incremental steps and the total number of falsified docu-

401 4
NFC
60
72
76
48
52

NFD
989
1460
1550
992
1281

5748 10950

NFC

72
--

76
48
52

NFC

52

NFD

1381
1534
1008
1289

NFD I

-

-
1248

7482
NFC

76
48
52

921 6
NFD

1543
1062
1257

NFC

48
52

NFD

1084
1204

ments for all Steps is 6272 (= 989 + 1460 + 1550 + 992 + 1281) documents.

Without incremental clustering, each step requires reclustering of ail old docu-

ments available at that step and we have to recluster 3741 0 (= 401 4 + 5748 +
7482 + 921 6 + 10950) documents. Therefore, the cost of incremental mainte-

nance is just 1 7% (6272 1 3741 0) of reclustering, i.e., it is cost effective. Figure 2
shows that as we increase the size of the database (or decrease the propor-
tional size of the increments) the percentage of the falsified clusters and the
falsified documents decrease and the cost effectiveness of the algorithm in-
creases. This is an expected behavior, since smaller increments should not
considerably affect an already existing clustering structu're. The experimental
results for the TODS322 database are similar and can be seen in [6].

5.3. The Similarity Experiments

The purpose of the similarity experiments is to check how well the maintenance
approach is achieving its purpose, i.e., generating clusters that are compatible
with those of reclustering while attaining lower cost than that of reclustering. For
this purpose we measure the similarity between the clusters generated by in-
cremental clustering (CZICM) and the clusters generated by reclustering (C3M).

These measures are then compared against the case where the incremental

clusters are filled with documents randomly. Monte Carlo experiments are per-
formed to obtain the distribution of the similarity measures when the documents

are randomly distributed in the clusters generated by C21CM . In the experi-
ments, 1000 random cases were produced. This helps to show that the clusters
generated by C21CM are significantly effective in placing the documents of
clusters generated by C3M into fewer clusters than that of the random case.
This establishes that the clusters generated by incremental clustering and their
corresponding similarity to the clusters of reclustering did not happen by chance

in a statistical sense.

To perform similarrty tests, three d~fferent types of similarity measure were

used. Similar results were obtained from all of them. The first measure is

Corrected Rand (CR) [16]. It has a maximum value of one when the clusters

(partitioning structures) are ident~cal. and a value of zero when the clusters are

generated by chance, i.e., CR IS corrected for chance. The second measure is

the Goodman-Kiuskal (GK) metric [16] wh~ch is similar to the chi-square based
association measures. It has a maxmum value of one for identical clusters, and

a minimum value of zero. The third similarity measure is an intuitive metric (IM)

which we introduce in this study. In IM, for each cluster, C, of C3M we find the

number of C*ICM clusters, x, which contain at least one member of C. For a
given C, x can assume a value between 1 and min(nc, ICI), where Iq indicates

the size of C. In the experiments n, >> d, (average cluster size) for both
databases; therefore, the IM results are unbiased by the values of nc. After
considering all clusters of C3MI an average value is obtained for x. The aver-

age has a value of one for identical clustering structures of C3M and C21CM.
For GK and IM there is no correction for chance.

In this paper we report our findings for CR and IM statistics. The results of
GK are in agreement with the observations of CR; however, observed similarity
values are higher than those of CR since the GK measure does not have any
correction for chance. The results of the CR similarity measures for both
databases are shown in Figure 3. The matrix number 1 indicates the case when
mi = 102, m1 = 4014 for TODS322 and INSPEC, respectively. For this case we
have five incremental steps to reach a full database containing all documents.
For both databases, this means 31 6 percent increase in the collection size. The
case with matrix number 2 provides US four incremental steps. (Refer to Table II
for matrix sizes of the other cases.) As expected, increase in ml (or decrease in
the number of incremental steps) implies higher similarity.

The experimental results in terms of the number of clusters to be opened
(IM) are given in Table VI. In this table, the average values for Monte Carlo
(random) experiments are given in row R1000 (Random 1000). The average
values for the Monte Carlo experiments were also obtained for theoretical

"perfect random" using a modified version [7] of Yao's theorem [28] for estimat-
ing number of block accesses. These values are shown in the row PR (Perfect
Random) of Table VI. The PR and RlOOO values are almost identical for the

TODS322 database. We can also say the same for the INSPEC database. This

is an indication that the average of 1000 random cases is sufficient to give us a
good sense of "perfect random." The closer values of PR and RlOOO for the

TODS322 case (with respect to the INSPEC case) can be explained by the
smaller size of the database. Since TODS322 is smaller we are more success-
ful in sensing perfect randomness using 1000 random experiments. In this

table, the last row (A) indicates the 'actual" IM observations using the output of

C21CM. The A values are always better (lower) than that of the random case.

Matrix No.

Figure 3. Similarity between C*ICM and C ~ M using CR measure.

For final decision on similarity we must show that the observed similarity
values (IM, CR, GK) are significantly better than the corresponding random simi-
larity values. (Notice that the random similarity values are not randomly gener-
ated, but that the documents are assigned "randomly" to the clusters of the
clustering structure generated by C21CM.) For the similarity measure IM, and for
a given D matrix, the observed A must be significantly lower than the corre-
sponding random similarity values whose average is indicated by R1000. For

the similarity measures CR and GK the observed values must be significantly
greater than the corresponding random cases. For this purpose we constructed
a histogram of the individual random values of GK and 1M similarity measures.
This is done for all D matrices. No htstogram construction is needed for CR.
Since all of the random simllar~ty values ~n terms of CR measure are almost
zero (recall that CR is corrected for chance); and therefore, they are significantly
different from the observed values (see F~gure 3).

All of the histograms are very similar, only one is reported here for the

INSPEC database. Additional experimental results for the TODS322 database
(including binary indexing) can be found in [6]. The 1000 random IM values,
A(r), for matrix number 1 of the INSPEC database were grouped into ten bins,
and Figure 5 shows the percentage counts for each bin. That is, the histogram

shows the approximate baseline distribution (probability density function) of the
A(r) values. The plot shows that the A value of 6.758 is significantly different
from the random case, since all of the random observations have a value
greater than A. This is significant evidence that the incremental clustering
methodology provides clusters that are similar to the clusters generated by
reclustering and that they do not happen by chance in a statistical sense. The
observations made using weighted indexing are slightly better than those of bi-
nary indexing [6].

Figure 5. Histogram of the relative frequency of A(r) values for Matrix No. 1 of INSPEC
(min= 24.869, max= 25.272, avg.= 25.069, std. dew= 0.230, bin length= 0.038).

5.4. Validation of Clustering Structures
Before using a clustering structure for any purpose (in our case IR) one must
show the clustering structure is good representative of the intrinsic character of
the data set being clustered. In other words the clustering structure must be

significantly "different" from (better than) random clustering. Such a structure is

called valid. The two other cluster valid~ty issues, i.e., clustering tendency and

validity of individual clusters are beyond the scope of this study. An in-depth

study and an overview of the cluster validity problem from the viewpoint of 1R
are, respectively, provided in [I 63 and [5, 271.

The cluster validation methodology of this study is based on the users'

judgement on the relevance of documents to queries. Given a query, let a tar-
get cluster be defined as a cluster which contains at least one relevant docu-
ment for the query. Let nt indicate the average number of target clusters for a
set of queries based on a given clustering structure. Random clustering is ob-
tained by preserving the same clustering structure and assigning documents
randomly to the clusters as we have done in the similarity experiments. Let ntr
indicate the average number of target clusters under random clustering. The
number of target clusters, for a given query, in the case of random clustering is
obtained by using the modified version of Yao's theorem that we use in our
similar'i experiments in calculating the similarity measure IM.

The case nt 2 ntr suggests that the tested clustering structure is invalid, since
it is U ~ S U C C ~ S S ~ ~ ~ in placing the documents relevant to the same query into a
fewer number of clusters than that of the average random case. The case, nt <
nt, is an indication of the validity of the clustering structure; however, to decide
validity one must show that nt is significantly less than nt,

Table VII. Comparison of C~ICM and Random Clusterina in Terms of Averaae Number of

Table Vli gives the nt and ntr values for all incremental clustering experi-
ments for the INSPEC database. The characteristics of the queries for both of
the databases are given in Section 5.5.3. According to our validity criterion, we
must know the probability density function of nt,. For this purpose we generated

1000 random structures for each clustering structure produced by C21CM and

obtained the average number of target clusters for each random case, nt(r).
Later, these nt(r) values were used to construct a histogram of nt(r) values (i.e.,

approximate probability density function). For example, for matrix number 1 of
the INSPEC database, the minimum and maximum nt(r) values, respectively,
are 29.623 and 30.792 (standard deviation is 0.175). This shows that the nt
value of 23.558 for this experiment is significantly different from the random
case, since all of the nt(r) observations have a value greater than nt. The same

Target Clusters for All Queries (INSPEE Database)
-

Matrix No.
nt

Ihr

1
23.558
30.436

2
23.597
30.41 8

3
23.639
30.41 3

4
23.831
30.506

5
24.1 43
30.630

is observed for all of the incremental clustering experiments including
TODS322. This shows that the clusters are not an artifact of the C21CM algo-
rithm; on the contrary, they are valid.

5.5. Information Retrieval Experiments
In this section we assess the effectiveness of C21CM by comparing its CBR per-
formance with that of C3M. In [7] it is shown that C3M is 15.1 to 63.5 (with an

average of 47.5) percent better than four other clustering algorithms in CBR us-
ing the INSPEC database. These methods are single link, complete linkage,
average link, and Ward method (1 I]. It is also shown that CBR performance of
C3M is compatible with a very demanding (in terms of storage and CPU time)
implementation of a complete linkage method [26]. (This algorithm of the com-
plete linkage method is order independent and also very expensive to use in
real IR environment. For example El-Hamdouchi and Willett were unable to use
the algorithm for the INSPEC database in the IBM 3083 mainframe environment

[I I].) In this section we want to show that the CBR behavior of C*lCM is as ef-
fective as C3M and therefore better than other clustering methods.

In the experiments, m l is 401 4 and 102 documents, respectively, for

INSPEC and TODS322 databases. As we indicated previously this provided us
five incremental steps and 316 percent growth in database size with respect to
ml (see Table 11). This is a considerable enlargement. The clustering structure
obtained after the fifth increment IS used in the retrieval experiments. Notice
that these clustering structures are the outcome of the most stringent conditions
of our experimental environment.

5.5.1. Evaluation Approach
In CBR, clusters are first ranked according to their centroids' similarity with the

user query. Then, ns number of clusters are selected. Then, ds documents of

the selected clusters are chosen accord~ng to their similarity with the query. The

selected clusters and documents must have nonzero similarity with the query.

Typically a user evaluates the first ten to twenty documents returned by the
system and after that he(she) is ellher satisfied or the query is reformulated. In

this study ds values ten and twenty are used for both databases.

The effectiveness measures used in th~s study are the average precision for

all queries, and total number of queries with no relevant documents, Q.
Precision is defined as the ratio of :he number of retrieved relevant documents

to the number of retrieved documents. Another evaluation measure, which is
used in the current studies [7, 11, 13, 261 is the total number of relevant docu-

ments retrieved for all queries, T. In this work T is not used. This is because, the

effectiveness measures, precision and T, result in relatively identical effective-

ness.
The relationship between precision and T can be shown as follows. Let ri

indicate the number of relevant documents for query i after examining ds num-
ber of documents. Assuming that for each query the system is able to find ds
documents with nonzero similarity, then for nq queries the average precision
can be expressed as

[I I (nq x ds)] x (rl + 12 + . . . + rnq)= [l 1 (nq x d,)] x T
where T is equal to (rl + Q + . . . + rnq), i.e., the total number of relevant docu-
ments retrieved for all queries. Therefore, average precision for nq queries is
nothing but T divided by (nq x d,). The interested readers can easily obtain the
T values of our experiments from the given precision values.

5.5.2. Query Matching
For query matching there are several matching functions depending on term

weighting components of document and query terms. Term weighting basically
has three components: The term frequency component (TFC), the collection fre-
quency component (CFC), and the normalization component (NC) [22]. The
weights of the terms of a document and a query (denoted by wdi and w*, 1s j I
n) are obtained by multiplying the respective weights of these three weighting

components. After obtaining the term weights, the matching function for a doc-
ument and a query is defined as the following vector product.

n

similarity (D, Q)=

Salton and Buckley [22] obtained 1800 different combinations of docu-
mentJquery term-weight assignments, of which 287 were found to be distinct. In

the same study, six of these combinat~ons are recommended due to their supe-
rior IR performance. In this study, we used these six matching functions in addi-
tional to the cosine matching function Each of these matching functions en-

ables us to test the performance of C21CM under a different condition.
'

Due to limited space the definition of matching functions is skipped. In this

study, the cosine similarity funct~on IS referred to as TW1 (term weighting 1) and

the other six are referred to as TW2 through TW7. In [A they are again referred
to as NV1 through TW7; in 1221 they are, respectively, defined as (txc.txx),
(tfc.nfx), (tfc.tfI0, (ffc.bfx), (nfc.nfx), (nfc.tfx), and (nfc. bfx). In a given experiment
the same matching function is used both for cluster and document selection.

5.5.3. Retrieval Environment: Queries and Centroids
The query characteristics for both databases are presented in Table VIII. The
query vectors are generated in the same manner as the D matrices are created.
The query vectors of TODS322 and INSPEC databases are binary and
weighted, respectively. In the lNSPEC case, the query weight information is
used whenever needed. The queries of the INSPEC database were collected
at Cornell University and Syracuse University.

The cluster centroids are constructed by using the terms with the highest to-
tal number of occurrences within the documents of a clusters. The maximum
length (i.e., number of distinct terms) of centroids is a parameter. The maximum
centroid lengths for TODS322 and INSPEC databases, respectively, are set as
150 and 250. These values are just 5.77 and 1.72 percent of the total number
of distinct terms used for the description of the respective databases. In our
previous experiments we showed that after some point the increase in centroid
length does not increase the effectiveness of IR and the centroid lengths just
mentioned are suitable for these databases [7]. Similar results are also ob-
tained for hierarchical clustering of various document databases [26].

The characteristics of the centroids produced for C3M and C*ICM are very
similar to each other. The characteristics of the centroids for both databases
and algorithms are provided in Table IX. In this table, xc indicates the average
number of distinct terms per "centroid," %n indicates the percentage of terms
which appear in at least one centroid, tgc indicates the average number of cen-
troids per term for the terms which appear in at least one centroid, %xc is 100 x

(x, I average number of distinct terms per "cluster"), and %D indicates the total
size of the centroid vectors as a percentage of t in the corresponding D matrix.
The last entry (%D) indicates that the storage cost of the centroids is about one
third of that of the D matrix, which is good in terms of search and storage effi-
ciency. Actually, if we had used all the terms of each cluster, the value of %D
would have been around 50. For INSPEC with C*ICM: the average number of
distinct terms per cluster is 450.24 hence %D is 52 (nc x 450.24 1 t, where nc=
475, t= 412255). However, as stated earlier, we know that longer centroids do

not result in superior retrieval effectiveness. For example, the retrieval experi-
ments with the maimurn centroid length of 500 gives almost the same results
as the experiments reported in this study.

Table VIII. Characteristics of the Queries

5.5.4. Retrieval Effectiveness
In CBR the first step is to determ~ne the number of clusters, ns to be selected.
The increase in effectiveness would be expected to go up to a certain ns. After

this "saturation" point the retrieval effectiveness remains the same m. In our
experiments the saturation point for TODS322 and INSPEC are observed for ns
equal to twelve and fifty, respect~vely. In other words, for TODS322 (nc = 46)
and INSPEC (nc = 475) 26 percent and 1 1 percent of the clusters are selected.

For the INSPEC database, for all queries and for all matching functions TW1
through TW7, the average percentage of the matched documents is 12.5 per-
cent (1588 documents) and 14.5 percent (1849 documents), respectively, for
C3M and C21CM. The same values for the TODS322 case are 34 percent (1 10
documents) and 35 percent (1 14 documents). The number of selected docu-

ments slightly varies depending on the matching function, but all of them are
very close to the average. For INSPEC the minimum and maximum are ob-
served using TW1 and TW6, respect~vely. For C21CM these values are 1706
and 1897 documents and for C3M they are 1458 and 1639 documents. These
observations indicate that CBR behavior of the algorithms are similar. The
comparability of the percentage of selected clusters and percentage of selected
documents also indicate that documents are evenly distributed among clusters.
The skewed distribution of documents among clusters, i.e., many large and
small clusters, is a classical problem of cluster~ng [I 9, p. 4961.

DEdabaee

TODS322 _ INSPEC

%D
36

38

26

27 A

Table IX. Characteristics of the Centro~ds (the last row is taken from [f)

No. of
Queries

58

Database
TODS322

INSPEC

Avg. No. of
Terms per

Query
25.31

Algorithm
C ~ I C M

C 3 M

C ~ ~ C M
C 3 M

77 1 15.82

Xc
132.70

138.96

227.73

237.09

No. of Dist.
Terms for

Query Dsf. ,

572

Avg. No. of
Re I . Docs .
per Query

5.26
577 33.03

%n
6 3

65

5 8

60

Total No. of
Relevant

Documents
305

No. of
Distinct Docs.

Retrieved
126

2543

t ~ c
3.72

3.76

12.74

12.96

1940

%XC
56

56

51

5 1

The results of the IR experiments are shown in Table X and XI. The first and
second rows of each effectiveness measure (precision, 0) are for ds values of
10 and 20, respectively. In the case of TODS322, due to the binary nature of
query vectors, the matching functions (TW2, lW3) and (TWS, TW6), respec-
tively, are reduced to lW4 and TW7 [7, 221.

Table X. Effectiveness of the Reciusterina (R) and incremental Clustering (I)

Table XI. Effectiveness of Reclustering (R) and Incremental Clustering (I)

- . .
for the INSPEC Database (the fig&esrfor R are taken from [n

Effective.
Measure
Precision

(2

for the TODS~%? database

For both databases the Q values of reclustering (C3M) and incremental
ciustering (C21CM) are comparable. For the TODS322 case, C*ICM outper-
forms C3M in terms of precision based on the matching function lW7. For the
INSPEC database again the Q values for both algorithms are comparable. The
precision obsewations for both algorithms are very close to each other. The

maximum difference is observed for TW1: The CBR precision of C*ICM is 3.5
percent lower than that of C3M (with ds= 10). On the other hand for TW2 and
lW3 with ds = 10, the precision of our incremental clustering is slightly better
than that of reclustering. All the differences are less than ten percent; therefore,
can be considered insignificant [2].

In m we showed that C3M outperforms various clustering methods (i.e., sin-
gle link, complete linkage, average link, Ward method), which are currently
used in the IR literature, by 47.5 percent on the average. The results of this
study indicate that the incremental clustering algorithm C21CM provides a re-
trieval quality comparable with that of reclustering using C3M and therefore out-
performs the other algorithms.

1 3 1 4 3 2 3 4 3 3 4 2 4 3 4 2 -

TW1
Effective.

, Measure
Precision

Q

TW7
R I

,352 ,343
,288 ,283.

TW1
R I

.287 .277
,230 ,226

TW4 TW7
W2.TW31 llW5,TW6)

R I
,188 181
,125 123
19 22

TW2
R I

,418 .419
336 ,329

,

R I
,216 ,212
. I36 ,133
14 15

\

R I
,207 ,216
,137 ,142
16 17

NV6
R I

,382 ,379
,313 ,311

TW3
R I

,396 .40 1
,323 31 4

TW4
R I

,401 ,397
329 ,320

1 7 1 7 6 6 8 7 6 6 5 4 9 8 7 6

TW5
R I

,388 ,383
,310 ,310

6. CONCLUSION
Clustering of very large document databases is a necessity to reduce the
spacehime complexity of information retrieval and to provide the capability of
browsing documents which are similar to the relevant documents. The periodic
updating of clusters is required due to the dynamic nature of document
databases. An algorithm for incremental clustering, CZICM, has been intro-
duced. Its complexity analysis, the cost comparison with reclustering, and an
analytical analysis of the expected clustering behavior in dynamic IR environ-
ments are provided. To judge the effectiveness of the approach, experiments
were designed to test the similarity between the clusters generated by C2CM
and those clusters generated by reclustering the entire document database. In
the experiments two different databases were used, one of which is a common
database, INSPEC, containing 1 2684 documents.

Using various measures we showed that the clusters generated by C21CM
held significant similarrty with the ones generated by the reclustering using C3M
algorithm. It is also shown that this similarity is not by chance and the algorithm
is cost effective with respect to reclustering. The experimental observations
show that the algorithm can be used for large increments or for several steps. It
is also demonstrated that the generated clustering structures are valid. For the
validation process user judgements are used. It is shown that the average
number of clusters accessed to retrieve all documents relevant to user queries
is significantly smaller than that of random clustering. The experiments also
showed that C2ICM provides an effective retrieval environment. It is demon-
strated that IR performance of the algorithm compares favorably with the per-
formance of C3M, which outperforms various clustering methods currently used
in the IR literature. The results of this study indicate that the incremental cluster-
ing algorithm provides retrieval quality equal to that of reclustering.

This study shows that the C*ICM algorithm is an efficient and effective clus-
ter maintenance algorithm for dynamic document databases. The remaining
points to be covered are the implementation and testing of an extension of the
algorithm for instant clustering wh~ch would be appropriate for office automation
environments. Another related problem is the efficient and effective combina-
tion of CBR and inverted index-based FS using various matching functions.
Currently, we are working on these problems. Two other research problems
that we will undertake in near future IS the use of clustering with hypertext tech-

nology and to develop some performance measurement methods for hypertext-
CBR as an IR techniques.

APPENDIX: An Incremental Clustering Example
Preliminary Concepts and Initial Clustering: Let us apply the preliminary con-
cepts of the algorithm on an example D matrix. Consider the D matrix of Figure
A1 .

For example, from the formula of cii,

tl t2 t3 t4 t5 t 6

n

q j = a x z (d i kx~kxd i k / where 1 s i, j s m

the probability of selecting and term of dl from da is

013 =1Rx(lx1/4x1 +Ox1 xO +Ox 1RxO +1 x1/2x0 +Ox1/2x1 +I ~113x1)
=1/3~(114+ 1 1 s 7136-0.194

Repeating the process for all other Cii values the C matrix of Figure A.2 is
obtained. Notice that the entire C matrix IS given for the sake of illustration.

However, the implementation of the algorithm and the CC-based concepts do
not require complete construction of the C matrix.

d3 D = 1

Figure A l . The example D matrix.

- -
1 0 0 1 0 1 d r

1 1 1 1 0 0 d 2

0 0 0 1 1

0 0 0 0 1 1 d 4

1 0 1 0 0 0 d s - d

C =

- -
0.361 0.250 0.194 0.1 11 0.083

0.188 0.563 0.063 0.000 0.188

0.194 0.083 0.361 0.277 0.083

0.167 0 000 0.41 7 0.417 0.000

0.125 0.375 0.1 25 0.000 0.375 - -

Figure A2. The C matr~x correspond~ng to the D matrix of Figure A1 .

Then nc = 61 + 62 + Sg + 64 + 6s + b6 (ai = cii), nc = 0.361 + 0.563 + 0.361 + 0.417

+ 0.375 = 2.077 2. Next find the seed powers, pi 1 I i 5 (refer to Section 3
for the definition).

p i = 0.361 X (1 - 0.361) x 3 = 0.692 p4 = 0.41 7 x (1 - 0.41 7) x 2 = 0.486
= 0.563 X (1 - 0.563) x 4 = 0.984 ps = 0.375 x (1 - 0.375) x 2 = 0.469
= 0.361 x (1 - 0.361) x 3 = 0.692

We select d2 and dl as the cluster seeds, since they have the highest seed
powers and are not identical. Only the seed powers have to be checked in this

case since their difference is greater than the threshold (in the experiments the
threshold used is 0.001). Notice that dl and ds have the same seed power. But

they are not identical documents/seeds (cl = c33, cl3 = c31, but cl1 i. c13, c s #

Cad, see the 5th property of the C matrix, Section 3); hence, both of them are
eligible as a seed and the choice between them is arbitrary. Before continuing,
we must state that, this arbitrary choice is possible for only the last seed; and
therefore, it is unimportant for large document databases.

The llSD (Inverted term Index for Seed Documents) of the example D matrix
is shown in Figure A.3. Notice that for a binary D matrix the weight information
is redundant.

t i --> [<dl, 1 >, cd2, 1 >] t4 --> [<dl, 1 >, cd2, 1 >]
t2 --> [<d2, 1 >] ts --> [nil]
t3 --> [<d2, 1 >] t6 --> [<dl, 1 >]

Figure A.3. The llSD for the example D matrix (the seeds are d l and d2).

NOW we have to determine which of the nonseed documents (dg, d4, ds} will
be assigned to which of the seeds, {dl, d2). So we need to calculate the Cij val-

ues for i= 3, 4, 5; and j= 1, 2. To do this we only have to sum terms that are

common to di and dj. This is achieved using the data structure IISD. To cluster

d3, we first set C31 = 0 and ~ 3 2 = 0, then consider each nonzero term of d3 doc-

ument vector to traverse the IISD. During the traversal of t l list c31 and C32 are
incrementally updated as follows.

C31 = C31 + a3x (d31 x f31 x dl,) = 0 + 113 x (1 x 114 x 1)- 1/12

~32=~32+a=jx(d31 xf31 xd21) = 0 + 1/3x(1 ~1 /4x1)=1 /12

The term lists for t2, t3, and t4 are bypassed since these terms do not appear in

d3. Similarly ts does not appear in the seed documents. The last term of d3 is ts
and its effect on ~ 3 1 and ~ 3 2 IS computed as follows.

C31 =C31 + a 3 x (d 3 6 ~ ~ 6 ~ d 1 6) = 1/12+ 1 / 3 ~ (1 ~ 1 / 3 ~ 1) = 1/12+ 1/9=0.194

Document 2 does not contain tt; and c32 remains the same and c 3 ~ = 1/12 =

0.083. Since C13 > c32, the document d3 will be clustered with dl . Continuing

in this manner we find that the two clusters are C1 = {dl, d3, d4) and C2 = (d2,

d51.

Incremental Maintenance: Now assume we want to delete documents d2 and

ds. Notice this removes all the documents containing term t3. Also, we want to
add documents d6, d7, and d8, as shown in Figure A4. Notice also that the new
documents have introduced the new terms t7 and ta to the database.

1 1 0 1 0 1

0 1 1 0 1 0 0 d ~

Figure A4. The D matrix for the updated database.

Then Figure A5 is the resulting C matrix. In this matrix the document num-

bers are explicitly specified since there is no correspondence between
row/coiumn positions and document numbers.

Figure AS, The C matrix for the updated database.

Next we find the number of clusters for this database:
nc = 0.298 + 0.289 + 0.267 + 0.342 + 0.500 + 0.289

= 1.994 2.
Then the seed powers are (in decreasing order): p7 = 1.250, P6 = 0.91 5, p3 =

0.666, p8 = 0.616, p l = 0.563, p4 = 0.469. Since nc = 2 we examine the top two
seed powers and discover that they are not equivalent, so we choose the doc-
uments d7 and d6 to be the seeds.

Continuing with the algorithm, we notice that since d2 was a seed and was
deleted, the cluster associated with d2, C2, from the previous step must be falsi-
fied; the documents in that cluster (excluding any deleted documents) must be
reclustered. Also, since we see that dl, which was a seed in the first step, is no
longer a seed, we must falsify C1 and recluster all nondeleted documents in CI.
As can be seen, all the remaining documents have to be clustered again. w i
larger databases the number of falsified clusters is much smaller in COmparison
to the number of nonfalsified clusters (see Figure 2 in Section 5.2).

NOW we have to determine which of the nonseed documents {dl, dg, ds, da)
will be assigned to which of the seeds, (d7, d6). SO we need to calculate the Cij

values for i= 1, 3, 4, 8; and j= 7, 6. (For brevity the llSD is not shown.) For dl,
Cl6= 0.1 78 and C17 = 0.1 1 1 since cle > cl7, the document d l will be clustered
with d?. Continuing in this manner the resulting clusters are C1 = {d3, d4, 673
and C:! = {dl, d6, d8).

REFERENCES

1. Anderberg, M, R. Cluster Analysis for Applications. Academic Press, New York, 1973.

2. Belkin, N. J., Croft, W. B. "Retrieval Techniques." In Annual Review of Information Science and
Technology, ARIST: Vol. 22, M. E. Williams, Ed. Elsevier Science, Amsterdam, The
NethdMdS, 1987, 109-145.

3. Can, F., Ozkarahan, E. A. "A Dynamic Cluster Maintenance System for Information Retrieval." In
Proceedings of the 10th Annual International ACM-SIGIR Conference (New Orleans, LA, June
1987). ACM, New York, 1987, 123-1 31.

4. Can, F., Ozkarahan, E. A. "Dynam~c Cluster Maintenance." Information Processing and
Management. 25, 3 (I 989), 275-291 ,

5. Can, F. "Validation of Clustenng Structures in lnformation Retrieval." In Proceedings of the
Canadian Conference on Electrtcal and Computer Engineering (Montreal, Quebec, September
1989). EIC, Montreal, Quebec, 1989, 572-575.

6. Can, F., Drochak II, N. D. "Incremental Clustering for Dynamic Document Databases.' In
Pt'OCt9din~s of 1990 Symposium on Applied Computing (Fayetteville, AR, April 1990).
IEEE, L a -tos, CAI 1990, 61 -67.

7 . Can, El Ozkarahan, E. A. "Concepts and Effectiveness of the Cover-Coefficient-Based
Clustering Methodology for Text Databases." ACM Transactions on Database Systems. 15, 4
(December 1 990), (to appear).

8. Crouch, D. B. "A File Organization and Maintenance Procedure for Dynamic Document
Cot lect i . ' I~formatiOn Processing and Management. 1 1 (1 975), 1 1-21.

9. Defays, D. "An Efficient Algorithm for Complete Link Method." m e Computer Journal. 20
(1 977), 364-366.

10. Dialog. Dialog Database Catalog. Dialog lnformation Services lnc.,1989.

11 . El-Hamdouchi, A., Willett, F! "Comparison of Hierarchical Agglomerative Clustering Methods for
Document Retrieval.' The Computer Journal. 32, 3 (June 1989), 220-227.

1 2. Fakwtsos, C. "Access Methods for Text." ACM Computing Surveys. 1 7, 1, (March 1985), 4%
74.

13. Griffiths, A,, Luckhurst, C., Willett, P "Using Interdocument Similarrty Information in DoctlM
Retrieval Systems.' Journal of the American Society for lnformation Science. 37, 1 (1 986), 3-
11.

1 4. Hall, J. L. Online Bibliographic Databases: A Directory and Sourcebook, 4th ed. Aslib, Great
Britain, 1986.

15. Heaps, H. S. lnformation Retrieval Computational and Theoretical Aspects. Academic Press,
New Ywk, 1978.

16. Jain A. K., Dubes, R. C. Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs, NJ,
1 988.

1 7. Maron, M. E. "Depth of Indexing." Journal of the American Society for lnformation Science. 30
(1 979), 224-228.

18. Ozkarahan, E. A., Can, F. "An Automatic and Tunable Indexing System." In Proceedings of the
9th Annual International ACM-SIGIR Conference (Pisa, Italy, September 1 986), ACM, New YO&,
234-243.

19. Salton, a. D)mamr'c Information and bbrary Processing. Prentice Hall, Englewood Cliffs NJ,
1975.

20. Salton, G., Wong, A. "Generat~on and Search of Clustered Files." ACM TIansactions on
Oatatwe Sysfems. 3, 4 (Dec. 1 978). 32 1 -346.

21. Satton, G., McGill, M. J. lntroducrron to Modern lnformation Retrieval. McGraw Hill, New Yofk,
1983.

22. Salon, G., Buckley, C. "Term-We~ght~ng Approaches in Automatic Text Retrieval." Information
Pftxessing and Management. 24 5 (1 988), 51 3-523.

23. Salton, G. Automatic Text Process~ng: The Transformation, Analysis, and Retrieval of
lnlbrmation by Computer. Add~son Wesley, Reading, Massachusetts, 1989.

2 4. Van Rijsbergen, C. J. Information Retrieval, 2nd ed. Butterworths, London, 1 979.

25. Voodwe8, E. M. The EWiveness and Efficiency of Agglomerative Hiefar~hiC~il Clustering in
DocumcWrt aebiW. PhD Dissertation. Dept. of Computer Science, Cornell Universrty, lthaca,
W, 1986.

26, V~OrheeS, E. M. 'The Efficiency of Inverted Index and Cluster Searches." In Proceedings of
the 9th Annual International ACM-SIGIR Conference (Pisa, Italy, September 1986), ACM, New
YO&, 1 64- 1 74.

27. Willett, F! "Recent Trends in Hierarchical Document Clustering: A Critical Review.' Information
Pmessing and Management. 24, 5 (1 988), 577-597.

28. Yao, S. B. "Approximating Block Accesses in Database Organizations." Corr?mUni~ation~ of the
ACM. 20, 4 (April 1977), 260-261.

29. Yu, C. T., Chen, C. H. "Adaptive Document Clustering." In Proceedings of the 8th Annual
International ACM-SIGIR Conference (Montreal, Quebec, June 1 985). ACM, New YO& 1985,
197-203.

