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Abstract 

The Graduate Student Advisor (GSA) is an experimental expert system 
that advises graduate students in systems analysis. It simulates a 
faculty advisor in suggesting the schedule of courses a student 
should take based on the student's background and interests. It is 
implemented in NEXPERT Object. This report first describes the 
task, knowledge engineering and solution approach of the GSA. The 
report then gives a sample session to illustrate how to run a 
consultation. It also includes some maintenance notes about how to 
modify the knowledge about courses and related rules if necessary. 
Finally, it discusses some lessons learned. 

1. Introduction 

The Systems Analysis Master's Degree Program at Miami offers a 

blend of computer science, information systems and operations 

research. The program curriculum consists of four elements: 

Foundation Courses, Core Courses, Elective Courses and Graduate 

Research Courses. A graduate student must complete at least 4 

courses(l2 credit hours) from each of Core and Elective elements 

and at least 2 graduate research courses (6 credit hours). 

Successful completion of a minimum of 30 credit hours is required 

for the degree. Additional foundation courses may be necessary 



depending on the student's different interests and background. 

Currently, there are approximately 40 graduate students enrolled in 

the Systems Analysis Graduate Program. The number is expected to 

be increasing in the coming academic year. Due to the conversion 

nature of the program, the students come from a variety of 

backgrounds. Some may have backgrounds in a systems-related field 

such as systems analysis or computer science. Some may have 

backgrounds in a non-systems field such as geology or geography. 

There are many other different possibilities in between these two 

extreme cases. According to the program, students must have had: 

1 communication course, 2 calculus courses, 2 probability and 

statistics courses, and 1 computer programming course. Some 

students may have to make up some of the undergraduate deficiency 

courses before they take any core and/or elective courses. Also, 

most students pursue their graduate study on a full-time basis 

though there are some part-time students. Students are supported 

through various financial means (e.g. graduate assistantship, 

grant-in-aid or scholarship from an organization). The minimum 

number of credit hours for which a full-time student must register 

and the maximum number of credit hours for which the student may 

register in a regular term vary depending on the financial support 

means. All of these make advising students even more complicated. 

Advising students is a complex and time consuming task. However, 

a large percentage of an adviser's time is spent with fairly 

repetitive activities. For example, the process for determining 

course prerequisites and planning programs of study may seem 

confusing to the individual student. The Graduate Student Adviser 

(GSA) is an experimental expert system that simulates a faculty 

adviser in suggesting the schedule of study a student should take 

for obtaining the degree. Its purpose is to provide students with 

the curricular knowledge and information on a uniform and 

consistent basis, thus making more efficient use of the graduate 

adviser's time. 



2. Knowledge Structure and Components 

GSAts approach is largely data driven; it begins with a set of 

"best" courses and tries to produce a schedule within the 

constraints imposed by the properties of the courses, relationships 

between them, and restrictions on the schedule. 

The knowledge for GSA has been elicited from several experts 

including SAN graduate faculty members, professors of Mathematics 

and Statistics Department, and the Associate Dean of the Graduate 

School. GSA contains two kinds of knowledge: 

* knowledge about courses -- course number, title, credit 
hours, prerequisites, offering time and so on; 

* knowledge about constraints -- rules for determining course 
prerequisites, the "bestw courses and rules for determining 

the schedule length and forming the schedule of study. 

It is implemented in NEXPERT Object. The program currently has 

about 550 rules and 50 objects (and classes). Knowledge about 

courses is stored as objects (and/or classes) . An object is the 

fundamental unit of knowledge representation in NEXPERT Object. A 

given object may be defined to belong to one or more classes, which 

determine the names and types of its properties. It may include 

subobjects which are in turn full-fledged objects with properties 

and subobjects of their own. A class is merely a grouping of a set 

of objects. The class definition may include any number of 

properties to be inherited by the objects belonging to the class 

(referred to as its instances or members). The class may have any 

number of subclasses, which will likewise inherit its properties 

and pass them on in turn on to their own instances, A given class 

may be a subclass of more than one other class (called 

superclasses), just as a given object may be an instance of more 

than one class or a subobject of more than one other object. 

Consider the following example, which describes the course SAN572. 

Name SAN572 
Classes Core - Courses 



San - Grad Courses - 
. . .  

subobjects . . . 
Properties credi t -hours  : 3 

p r e r e q u i s i t e s :  Unknown 
d e s c l  : Systems life cycle; problem definition; gathering information; 

desc2 : creative problem-solving; project management; feasibility study; 

desc3 : alternative technology selection; system requirements; structured systems 

desc4 : analysis tools; data flow diagrams and dictionary, algorithms 

desc5:  specification; logical design; user procedures; review of translation of 

desc6:  logical design into systems design. Normally students work on systems 

desc7 : development project. 

no - of - descs :  7 
t i t l e :  Analysis of Information Systems 
weight : Unknown 
when - o f f e r e d :  fall, spring 

Below is another example, which describes the category of Core 

Courses. 

Name Core - Courses 
Subclasses . . . 
properties c r e d i t  - hours  : Unknown 

p r e r e q u i s i t e s :  Unknown 
d e s c l :  Unknown 
desc2: Unknown 
desc3:  Unknown 
desc4:  Unknown 
desc5: Unknown 
desc6:  Unknown 
desc7:  Unknown 
desc8:  Unknown 
desc9:  Unknown 
no of descs :  Unknown - - 
t i t l e :  Unknown 
we i g h t  : Unknown 
when - o f f e r e d :  Unknown 

Knowledge about constraints is represented by rules. A rule is the 

basic unit of inference and reasoning in NEXPERT Object. Every 

rule has three basic parts: 

*One or more conditions; 



*Exactly one hypothesis; 

*Zero or more actions. 

The following shows an English translation of a sample GSA rule: 

IF the student is a full time student 
and 

the student is supported through a graduate assistantship 
THEN setting the rnax and min numbers of total term credit hours 
ACTIONS set the max number of total term credit hours to 16; 

set the min number of total term grad credit hours to 10. 

Objects (and classes) in NEXPERT Object are essentially the same as 

frames suggested in an A 1  setting by Minsky [ 5 ] .  Frames are 

formalized structures for representing knowledge. They are often 

linked together in a network, thus effectively handling the major 

inadequacy of production rules for defining terms and for 

describing domain objects and relationships among objects [I, 3 1 .  

A frame commonly consists of two parts: a name and a set of 

attribute-value pairs. It provides a structured representation of 

an object, or a class of objects. The use of frames increases the 

efficiency of the stored information processing by attaching 

procedures to nodes which know how to compute values of variables 

in response to queries and how to update values of variables in 

response to assertions [ 3 ] .  However, the procedures attached to 

some slots of individual frames are insufficient to organize the 

whole computation. The rule representations play the major role in 

organizing the whole computation. 

Objects represent the knowledge being reasoned on by the rules. 

Hierarchical relationships can be defined between objects to give 

rules greater reasoning flexibility over objects. The rules, 

objects (and classes) and relationships between them form the whole 

knowledge base. The rule and object (and class) relations in 

NEXPERT Object are illustrated in Figure 1. Note that the 

relations can be static or dynamic. For example, the relations 

between courses and their prerequisites are established according 

to the student's background and exist only for the duration of the 



advising session in which they are created. 

A Rule A Class An Object A Slot 

Figure 1. Rule and Object Relations in NEXPERT Object 

3. Constructive Problem Solving 

The distinguishing feature of constructive problem solving is that 

solutions have to be constructed rather than selected [ 3 ] .  Typical 

6 



tasks that require constructive problem solving are planning, 

design and certain kinds of diagnoses [ 3 3 .  In each of the cases, 

it is infeasible to fix the solution set in advance, There are 

many different ways in which actions can be ordered, components can 

be assembled, and faults can co-occur. 

Our student advising problem is essentially a constructive problem. 

Students come from different backgrounds and have different 

interests. There are too many possible programs of study in which 

courses can be planned. 

Advising a graduate student can be considered as a multi-phase 

process [7, 8 3 : 
(a) determine how many courses the student should take; 

(b) determine which courses the student may take, based on 

prerequisite requirements and the student's academic history; 

(c) determine the ''bestw courses based on the student's 

interests; 

(d) generate a program of study from the best courses. 

The first three phases determine the needs of the student, and are 

thus of a diagnostic character, while the last phase plans the 

student's schedule. 

The determination of the "best1' courses is based on the course 

weights. One course is said to be the "bestw if it has the highest 

weight. Each course has a preassigned individual weight to each 

interest area. The weight of a course is computed by summing up 
the preassigned individual weights of the course to the interest 

areas of the student (See the Appendix A for the course individual 

weights). 

The last phase is the main task: construction of the program of 

study. It can be divided into three subtasks: 

(1) determine the schedule length; 

(2) plan SAN790 courses; 



(3) generate each semester's schedule from the best courses. 
In the context of the last subtask, there are several constraints 

used to form each semester's schedule. Here are some examples: 

* Each course must be offered in the current semester. 
* The prerequisites of each course must be taken or planned 
prior to the current semester. 

* The total number of credit hours planned'in the current 

semester must not exceed the maximum number of credit hours a 

full time student may register in a regular semester. 

Although GSA may have several attempts at planning a course, it 
never backtracks. In other words, it never makes a decision which 

it later has to go back and undo. At any point in the problem- 

solving process, it has enough knowledge to recognize what to do; 

this cuts down on trial-and-error scheduling. Backtracking is 

computationally expensive, especially in terms of run-time [ 3 ] .  

4. Running An Advisory Session 

As described above, the main task of GSA is advising the student 

and drawing up a program of study based on the student's background 

and interests. Before the system begins to make any inferences for 

the case at hand, the student will be asked a series of questions. 

There are about 25 questions which may be put to the student. 

Which of these questions will be posed vary from case to case, In 
other words, a fixed set of questions is not asked in each case; 

rather the questions asked depend on answers to previous questions. 

All the questions are posed in its natural way. If a question 

requires an answer other than a simple "yes/noW answer, a pop-up 

list, choice list or selection table is attached to the question. 

For some questions, there will be a help information pop-up 

available. 

As a result of the dialogue, GSA starts planning the student's 



schedule. When construction of the student's schedule is 

completed, the schedule will be presented to the student, The 

student could print out the schedule or look at the course 

descriptions. After the student looks over the schedule, he/she 

could decide to accept the suggestion or make any change under 

course constraints and restrictions on the schedule. The whole 

process is very straightforward. 

The following is a self-explanatory example of a session with GSA 

(See the Appendix B for running the GSA). What would actually 

appear on the screen uses pop-up windows. It is very difficult to 

draw those pop-up windows here. Therefore, the format has been 

changed for the purpose of illustration. 

--GSA: On what basis do you intend to pursue your graduate study? 

Full-time or part-time? 

USER: full-time 

--GSA: How are you going to be supported financially in your graduate study? 

Graduate assistantship; 

Modified graduate assistantship; 

Graduate grant-in-aid; 

other support means. 

USER: graduate assistantship 

--GSA: Please indicate the first semester of the study schedule you would like 

to let GSA create for you. 

USER: fall, 1992 

--GSA: Is this going to be your first semester in the SAN graduate program at 

Miami? 

USER: y 

--GSA: Have you ever taken any systems analysis classes (at the 500 or higher 

level) and/or statistics classes (sta563, sta663) at Miami before? 

USER: n 

--GSA: The following is a list of current SAN graduate faculty research 

interests. Please indicate which areas you would be interested in: 

Research Areas Graduate Faculty 



Artificial Intelligence 

Database Systems 

Software Engineering 

M. Ozden, A. Sanders 

Y. Uckan 

J. Kiper 

. . . 
Undecided 

USER: Database Systems, Software Engineering 

--GSA: What is your undergraduate major? 

Computer Science; 

Decision Science; 

Management Information System; 

Mathematics; 

Operations Research; 

Statistics; 

Systems Analysis; 

Other. 

USER: Mathematics 

--GSA: Have you ever taken any communication class before? 

USER: n 

--GSA: Please choose one of the following suggested communication classes: 

com135 Essentials of Public Speaking; 

com138 Technical Communication; 

com231 Small Group Communication. 

USER: com135 

--GSA: How many probability and statistics classes have you taken before? 

USER: 2 

--GSA: Have you ever taken any class(es) in Engineering Economics, Linear 

Programming, and/or Stochastic Process? 

USER: y 

-GSA: Are you familiar with any programming language? 

USER: y 

--GSA: Do you have any background in Data and File Structures? 

USER: n 

--GSA: Do you have any background in Computer Architecture and Assembly Language 

Programming? 

USER: n 



--GSA: Based on the information you have provided about your background and 

interests, GSA suggests to you the following schedule: 

Fall. 1992 Total Credit Hours: 13 

coml35 3 Essentials of Public Speaking 

san586 3 Artificial Intelligence 

san603 3 Program, Data and File Structures 

san604 3 Computer Organization and Operating Systems 

Spring. 1993 Total Credit Hours: 12 

san571 3 Simulation 

san572 3 Analysis of Information Systems 

san623 3 Data Communication, Networks and Distributed Processing 

san624 3 Expert Systems 

Fall. 1993 Total Credit Hours: 12  

san573 3 Automata, Formal Languages, and Computabiliy 

san575 3 Structured Design and Implementation 

san612 3 Data Structures and Database Systems 

san790 3 Graduate Research 

Spring, 1994 Total Credit Hours: 12 

san574 3 Language, Interface, and Their Processors 

san622 3 Advanced Database Systems 

sta663 3 Introduction to Applied Probability 

san790 3 Graduate Research 

Would you like to make any changes ? (Y/N) 

USER: y 

--GSA: To which semester would you like to make changes? 

USER: Spring, 1994 

--GSA: You may check any courses you would not want to take in Spring, 1994: 

CRHR - COURSE TITLE 

san574 3 Language, Interface and Their Processors 

san622 3 Advanced Database Systems 

*sta663 3 Introduction to Applied Probability 



san790 3 Graduate Research 

You may choose the courses you would like to take in Spring, 1994: 

CRHR SEMESTER PREREOUISITES COURSE TITLE - 
san582 3 Fall none Analysis of Inventory Systems 

*san584 3 Spring none Analysis of Manufacturing Systems 

. . . 
--GSA: On the basis of the information you have provided about your background 

and interests, GSA suggests to you the following schedule: 

Fall. 1992 Total Credit Hours: 13 

com135 3 Essentials of Public Speaking 

san586 3 Artificial Intelligence 

san603 3 Program, Data and File Structures 

san604 3 Computer Organization and Operating Systems 

Spring. - 1993 Total Credit Hours: 12 

san571 3 Simulation 

san572 3 Analysis of Information Systems 

san623 3 Data Communication, Networks and Distributed Processing 

san624 3 Expert Systems 

Fall. 1993 Total Credit Hours: 12 

san573 3 Automata, Formal Languages, and Computabiliy 

san575 3 Structured Design and Implementation 

san612 3 Data Structures and Database Systems 

san790 3 Graduate Research 

Spring. 1994 Total Credit Hours: 12 

san574 3 Language, Interface, and Their Processors 

san622 3 Advanced Database Systems 

san584 3 Analysis of Manufacturing Systems 

san790 3 Graduate Research 

Would you like to make any changes ? (Y/N) 

USER: n 



5. Maintainerws Manual 

This section describes how to modify the knowledge about courses 

and the related rules if necessary. It is assumed that you know 

NEXPERT Obj ect . 

5.1 Update Offering Time of a Course 

First, use Object Editor to find the object with the course number 

as object name. Then activate Meta-slot Editor to update the value 

of the property when-offered. 

5.2 Update the Description of a Course 

Updating the course description is similar to updating the course 

offering time. First, use Object Editor to find the object with 

the course number as object name. Note that there are 9 properties 

descl, . . . , desc9, which can be used to define up to 9 lines of 
course description. Each line can hold about 70 characters. 

Activate Meta-slot Editor to modify the values of properties descl, 

. . . , desc9. Then, use Meta-slot Editor to update the value of 

property no-of-descs, which hold the actual number of lines of the 

course description. 

5.3 Add A New Course 

Currently, GSA has the knowledge about all SAN graduate courses. 

In the case that a new course should be offered in the future time, 

you can add it to the knowledge base in NEXPERT Object. First, use 

Object Editor to create an object with the course number (e.g. 

san626) as the object name. Fill in the class field of the Object 

Editor window one of the class names (Foundations, Cores, 

Electives) to indicate that the course is a foundation course, core 

course, or elective course. The object created will have the same 

properties as other SAN courses belonging to the same class have. 



Then use Meta-slot Editor to define the values of the properties: 

course number, course title, credit hours, offering time, course 

description, prerequisites. There are nine properties: descl, .,., 
desc9, which can be used to define the course description. Thus, 

you can define up to 9 lines of course description. Put the actual 

number of lines in property no-of-descs. If the course does not 

have any prerequisites, assign "nonew to property prerequisites. 

When it has prerequisites or is prerequisite of other courses, you 
need to update those rules dealing with course prerequisites. Here 

is what needs to be done. If the course has foundation course(s) 

as its prerequisites, use Rule Editor or Rule Notebook to find 

those rules with hypothesis "set - grad - course~rereq'~ . Then use 

Rule Editor to modify the action part of those rules. For example, 

say, san603 is a prerequisite of the new course san626. Add to the 

action part of those rules with condition "1s student,san603-ok 

Ilnflw the following three actions : 

Do 11san6031@ san626 .prerequisites 

createobject san603 san626 

Do MAX(san603.wgt, san626,wgt+l) san603,wgt 

If the new course is a prerequisite of other SAN course(s), use 

Rule Editor or Rule Notebook to find the rule with hypothesis 

t8setgrereq_wgttt. Then use Rule Editor to modify it. For example, 

say, the new course san567 is a prerequisite of san654. Add the 

statement: 

CreateObj ect san567 san654 

to the condition part and the following two actions: 

Do 1gsan567e1 san654 ,prerequisites 

Do MAX(san567.wgt, san654.wgt+l) san567,wgt 

to the action part of the rule. If the new course has as its 

prerequisites some course(s) other than foundation courses, similar 

modifications should be made to the rule with hypothesis 

wset-prereq-wgt". Finally, you have to update the weight list of 

each interest area. First, determine the weight of the new course 

to each interest area. Then, Add the weight of the new course to 

the end of the wgt-list property value of the corresponding 



interest area. Find the rule with hypothesis I t in i t  - dialogue88. 
Then, add the new course number (e.g, san567) to the end of the 

String Value in the second condition. 

6 .  Lessons Learned 

(1) One of the major pitfalls to be avoided in developing an expert 
system is choosing an inappropriate problem [2, 3, 4, 93 . Here are 
some important criteria relevant to the selection of an appropriate 

problem for expert system development [2, 3, 4, 9, 101: 

*The application task must have a well-defined domain; 

*One or more experts must have the knowledge required; 

*Those experts must be able to verbalize desired task 

performance; 

*The task does not depend heavily on common sense; 

*The task is of managementable size. 

Not picking the "rightw problem can lead to complications, even 

failure in the subsequent development of the system. 

(2) There is a fundamental difference between an expert system 

shell and a conventional programming language: shells are object 

oriented and knowledge intensive, while conventional programming 

languages are procedure oriented and code intensive [63. However, 

it is not necessary that programming in shells should be any easier 

to debug and result in less effort. In conventional programming, 

there exist notions of what constitutes good programming practice 

[ 3 ] .  Such is less the case in knowledge engineering [3]. My own 

experience of programming in NEXPERT Object suggests that the level 

of programming skill required by a shell should not be 

underestimated. 

(3) Every aspect of the advising process has to be mapped out in 
detail, and every alternative has to be explored to the point of a 

conclusion. The expert system can start with only the intelligence 



that is put into it. If that information is confusing or 

incomplete, then your "expertw will be also. A large part of the 

total effort in creating an expert system must take place before 

you even touch the keys of a computer. 

(4) The process of building an expert system is inherently 

experimental [3]. It is reported that simple expert systems have 

been built in as little as 3 man-months [2]. The time for expert 

system development with present techniques appears to be around 5 

man-years per system [2]. If you see a demonstration of a really 

good expert system that took three scientists years to develop 

using Prolog, Lisp or some expert language on a mainframe, do not 

expect to create a similar system in weeks on a microcomputer by 

using an expert system shell. 

7 ,  Conclusion 

The process of building the Graduate Student Advisor was very 

educational and insightful. The GSA program performs well. The 

decomposition of student advising process into phases has been of 

help in the following ways: (1) it simplifies interactions with the 

domain experts; (2) it reduces the complexity; (3) it provides 

effective modularization. The GSA approach is not necessarily 

limited to advising graduate students. It could be applied in 

solving some other problems such as personal financial planning 

[71 
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Appendix: Survey Results on the Course Weights 

Note: I n  t h e  survey, SAN graduate f acu l t y  members w e r e  asked t o  
eva lua te  the  individual  weight of each SAN graduate course  t o  each 
research  i n t e r e s t  a rea  using a s c a l e  from 0 t o  5. Eight  of them 
responded t o  t h e  survey. 
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Appendix B: Running the GSA 

The GSA system consists of the following files (total 77 files): 
GSA . RTD 
GSA. TKB 
FRM1. FRM . 0 .  

FRM69. FRM 
COURSE.TXT 
CRSEDESCOTXT 
SCHEDULE. TXT 
SEMESTER. TXT 
WAIT. TXT 
HLP2 0 HLP 

The file GSA.RTD is the Runtime Definition File which is used to 
start the GSA. The file GSA.TKB is the knowledge base developed 
under NEXPERT Object. The files with .FRM extension are the 
NEXPERT forms which are used to create customized interfaces. 
COURSE.TXT, CRSEDEC.TXT, SCHEDULE.TXT and SEMESTER.TXT are NEXPERT 
report files used to display course descriptions and schedules. 
WAIT.TXT and HLP2O.HLP are just DOS text files used to display some 
information to the users. 

Suppose that the directory \GSA contains all the files of GSA. In 
order to start NEXPERT Forms with GSA automatically, NXPFORMS.EXE 
should also be under the same directory \GSA. To start GSA on your 
system from the directory \GSA, type 

NXPFORHS /FGSA.RTD 
at the prompt. This command automatically starts PJEXPERT Forms 
with GSA. 

If NXPFORMS.EXE is not under the directory, you have to start 
NEXPERT Forms environment by typing the command 

NXPFORMS 
at the prompt. Then use the System menu to read the runtime 
definition file of GSA and start GSA. 




