
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year 

The Graduate Student Advisor (GSA):

An Expert System for SAN Graduate

Student Advising

Jiazhu Zhang
Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/43

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1992-016

The Graduate Student Advisor (GSA): An Expert
System for SAN Graduate Student Advising

Jiazhu Zhang

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

The Graduate Student Advisor (GSA):
An Expert System for SAN
Graduate Student Advising

Jiazhu Zhang
Systems Analysis Department

Miami University
Oxford, Ohio 45056

Working Paper #92-016 December, 1 992

T h e G r a d u a t e S t u d e n t A d v i s o r (GSA):

An E x p e r t System for SAN G r a d u a t e Student A d v i s i n g

Jiazhu Zhang

Department of Systems Analysis

Miami University

Abstract

The Graduate Student Advisor (GSA) is an experimental expert system
that advises graduate students in systems analysis. It simulates a
faculty advisor in suggesting the schedule of courses a student
should take based on the student's background and interests. It is
implemented in NEXPERT Object. This report first describes the
task, knowledge engineering and solution approach of the GSA. The
report then gives a sample session to illustrate how to run a
consultation. It also includes some maintenance notes about how to
modify the knowledge about courses and related rules if necessary.
Finally, it discusses some lessons learned.

1. Introduction

The Systems Analysis Master's Degree Program at Miami offers a

blend of computer science, information systems and operations

research. The program curriculum consists of four elements:

Foundation Courses, Core Courses, Elective Courses and Graduate

Research Courses. A graduate student must complete at least 4

courses(l2 credit hours) from each of Core and Elective elements

and at least 2 graduate research courses (6 credit hours).

Successful completion of a minimum of 30 credit hours is required

for the degree. Additional foundation courses may be necessary

depending on the student's different interests and background.

Currently, there are approximately 40 graduate students enrolled in

the Systems Analysis Graduate Program. The number is expected to

be increasing in the coming academic year. Due to the conversion

nature of the program, the students come from a variety of

backgrounds. Some may have backgrounds in a systems-related field

such as systems analysis or computer science. Some may have

backgrounds in a non-systems field such as geology or geography.

There are many other different possibilities in between these two

extreme cases. According to the program, students must have had:

1 communication course, 2 calculus courses, 2 probability and

statistics courses, and 1 computer programming course. Some

students may have to make up some of the undergraduate deficiency

courses before they take any core and/or elective courses. Also,

most students pursue their graduate study on a full-time basis

though there are some part-time students. Students are supported

through various financial means (e.g. graduate assistantship,

grant-in-aid or scholarship from an organization). The minimum

number of credit hours for which a full-time student must register

and the maximum number of credit hours for which the student may

register in a regular term vary depending on the financial support

means. All of these make advising students even more complicated.

Advising students is a complex and time consuming task. However,

a large percentage of an adviser's time is spent with fairly

repetitive activities. For example, the process for determining

course prerequisites and planning programs of study may seem

confusing to the individual student. The Graduate Student Adviser

(GSA) is an experimental expert system that simulates a faculty

adviser in suggesting the schedule of study a student should take

for obtaining the degree. Its purpose is to provide students with

the curricular knowledge and information on a uniform and

consistent basis, thus making more efficient use of the graduate

adviser's time.

2. Knowledge Structure and Components

GSAts approach is largely data driven; it begins with a set of

"best" courses and tries to produce a schedule within the

constraints imposed by the properties of the courses, relationships

between them, and restrictions on the schedule.

The knowledge for GSA has been elicited from several experts

including SAN graduate faculty members, professors of Mathematics

and Statistics Department, and the Associate Dean of the Graduate

School. GSA contains two kinds of knowledge:

* knowledge about courses -- course number, title, credit
hours, prerequisites, offering time and so on;

* knowledge about constraints -- rules for determining course
prerequisites, the "bestw courses and rules for determining

the schedule length and forming the schedule of study.

It is implemented in NEXPERT Object. The program currently has

about 550 rules and 50 objects (and classes). Knowledge about

courses is stored as objects (and/or classes) . An object is the

fundamental unit of knowledge representation in NEXPERT Object. A

given object may be defined to belong to one or more classes, which

determine the names and types of its properties. It may include

subobjects which are in turn full-fledged objects with properties

and subobjects of their own. A class is merely a grouping of a set

of objects. The class definition may include any number of

properties to be inherited by the objects belonging to the class

(referred to as its instances or members). The class may have any

number of subclasses, which will likewise inherit its properties

and pass them on in turn on to their own instances, A given class

may be a subclass of more than one other class (called

superclasses), just as a given object may be an instance of more

than one class or a subobject of more than one other object.

Consider the following example, which describes the course SAN572.

Name SAN572
Classes Core - Courses

San - Grad Courses -
. . .

subobjects . . .
Properties credi t -hours : 3

p r e r e q u i s i t e s : Unknown
d e s c l : Systems life cycle; problem definition; gathering information;

desc2 : creative problem-solving; project management; feasibility study;

desc3 : alternative technology selection; system requirements; structured systems

desc4 : analysis tools; data flow diagrams and dictionary, algorithms

desc5: specification; logical design; user procedures; review of translation of

desc6: logical design into systems design. Normally students work on systems

desc7 : development project.

no - of - descs : 7
t i t l e : Analysis of Information Systems
weight : Unknown
when - o f f e r e d : fall, spring

Below is another example, which describes the category of Core

Courses.

Name Core - Courses
Subclasses . . .
properties c r e d i t - hours : Unknown

p r e r e q u i s i t e s : Unknown
d e s c l : Unknown
desc2: Unknown
desc3: Unknown
desc4: Unknown
desc5: Unknown
desc6: Unknown
desc7: Unknown
desc8: Unknown
desc9: Unknown
no of descs : Unknown - -
t i t l e : Unknown
we i g h t : Unknown
when - o f f e r e d : Unknown

Knowledge about constraints is represented by rules. A rule is the

basic unit of inference and reasoning in NEXPERT Object. Every

rule has three basic parts:

*One or more conditions;

*Exactly one hypothesis;

*Zero or more actions.

The following shows an English translation of a sample GSA rule:

IF the student is a full time student
and

the student is supported through a graduate assistantship
THEN setting the rnax and min numbers of total term credit hours
ACTIONS set the max number of total term credit hours to 16;

set the min number of total term grad credit hours to 10.

Objects (and classes) in NEXPERT Object are essentially the same as

frames suggested in an A 1 setting by Minsky [5] . Frames are

formalized structures for representing knowledge. They are often

linked together in a network, thus effectively handling the major

inadequacy of production rules for defining terms and for

describing domain objects and relationships among objects [I, 3 1 .

A frame commonly consists of two parts: a name and a set of

attribute-value pairs. It provides a structured representation of

an object, or a class of objects. The use of frames increases the

efficiency of the stored information processing by attaching

procedures to nodes which know how to compute values of variables

in response to queries and how to update values of variables in

response to assertions [3] . However, the procedures attached to

some slots of individual frames are insufficient to organize the

whole computation. The rule representations play the major role in

organizing the whole computation.

Objects represent the knowledge being reasoned on by the rules.

Hierarchical relationships can be defined between objects to give

rules greater reasoning flexibility over objects. The rules,

objects (and classes) and relationships between them form the whole

knowledge base. The rule and object (and class) relations in

NEXPERT Object are illustrated in Figure 1. Note that the

relations can be static or dynamic. For example, the relations

between courses and their prerequisites are established according

to the student's background and exist only for the duration of the

advising session in which they are created.

A Rule A Class An Object A Slot

Figure 1. Rule and Object Relations in NEXPERT Object

3. Constructive Problem Solving

The distinguishing feature of constructive problem solving is that

solutions have to be constructed rather than selected [3] . Typical

6

tasks that require constructive problem solving are planning,

design and certain kinds of diagnoses [3 3 . In each of the cases,

it is infeasible to fix the solution set in advance, There are

many different ways in which actions can be ordered, components can

be assembled, and faults can co-occur.

Our student advising problem is essentially a constructive problem.

Students come from different backgrounds and have different

interests. There are too many possible programs of study in which

courses can be planned.

Advising a graduate student can be considered as a multi-phase

process [7, 8 3 :
(a) determine how many courses the student should take;

(b) determine which courses the student may take, based on

prerequisite requirements and the student's academic history;

(c) determine the ''bestw courses based on the student's

interests;

(d) generate a program of study from the best courses.

The first three phases determine the needs of the student, and are

thus of a diagnostic character, while the last phase plans the

student's schedule.

The determination of the "best1' courses is based on the course

weights. One course is said to be the "bestw if it has the highest

weight. Each course has a preassigned individual weight to each

interest area. The weight of a course is computed by summing up
the preassigned individual weights of the course to the interest

areas of the student (See the Appendix A for the course individual

weights).

The last phase is the main task: construction of the program of

study. It can be divided into three subtasks:

(1) determine the schedule length;

(2) plan SAN790 courses;

(3) generate each semester's schedule from the best courses.
In the context of the last subtask, there are several constraints

used to form each semester's schedule. Here are some examples:

* Each course must be offered in the current semester.
* The prerequisites of each course must be taken or planned
prior to the current semester.

* The total number of credit hours planned'in the current

semester must not exceed the maximum number of credit hours a

full time student may register in a regular semester.

Although GSA may have several attempts at planning a course, it
never backtracks. In other words, it never makes a decision which

it later has to go back and undo. At any point in the problem-

solving process, it has enough knowledge to recognize what to do;

this cuts down on trial-and-error scheduling. Backtracking is

computationally expensive, especially in terms of run-time [3] .

4. Running An Advisory Session

As described above, the main task of GSA is advising the student

and drawing up a program of study based on the student's background

and interests. Before the system begins to make any inferences for

the case at hand, the student will be asked a series of questions.

There are about 25 questions which may be put to the student.

Which of these questions will be posed vary from case to case, In
other words, a fixed set of questions is not asked in each case;

rather the questions asked depend on answers to previous questions.

All the questions are posed in its natural way. If a question

requires an answer other than a simple "yes/noW answer, a pop-up

list, choice list or selection table is attached to the question.

For some questions, there will be a help information pop-up

available.

As a result of the dialogue, GSA starts planning the student's

schedule. When construction of the student's schedule is

completed, the schedule will be presented to the student, The

student could print out the schedule or look at the course

descriptions. After the student looks over the schedule, he/she

could decide to accept the suggestion or make any change under

course constraints and restrictions on the schedule. The whole

process is very straightforward.

The following is a self-explanatory example of a session with GSA

(See the Appendix B for running the GSA). What would actually

appear on the screen uses pop-up windows. It is very difficult to

draw those pop-up windows here. Therefore, the format has been

changed for the purpose of illustration.

--GSA: On what basis do you intend to pursue your graduate study?

Full-time or part-time?

USER: full-time

--GSA: How are you going to be supported financially in your graduate study?

Graduate assistantship;

Modified graduate assistantship;

Graduate grant-in-aid;

other support means.

USER: graduate assistantship

--GSA: Please indicate the first semester of the study schedule you would like

to let GSA create for you.

USER: fall, 1992

--GSA: Is this going to be your first semester in the SAN graduate program at

Miami?

USER: y

--GSA: Have you ever taken any systems analysis classes (at the 500 or higher

level) and/or statistics classes (sta563, sta663) at Miami before?

USER: n

--GSA: The following is a list of current SAN graduate faculty research

interests. Please indicate which areas you would be interested in:

Research Areas Graduate Faculty

Artificial Intelligence

Database Systems

Software Engineering

M. Ozden, A. Sanders

Y. Uckan

J. Kiper

. . .
Undecided

USER: Database Systems, Software Engineering

--GSA: What is your undergraduate major?

Computer Science;

Decision Science;

Management Information System;

Mathematics;

Operations Research;

Statistics;

Systems Analysis;

Other.

USER: Mathematics

--GSA: Have you ever taken any communication class before?

USER: n

--GSA: Please choose one of the following suggested communication classes:

com135 Essentials of Public Speaking;

com138 Technical Communication;

com231 Small Group Communication.

USER: com135

--GSA: How many probability and statistics classes have you taken before?

USER: 2

--GSA: Have you ever taken any class(es) in Engineering Economics, Linear

Programming, and/or Stochastic Process?

USER: y

-GSA: Are you familiar with any programming language?

USER: y

--GSA: Do you have any background in Data and File Structures?

USER: n

--GSA: Do you have any background in Computer Architecture and Assembly Language

Programming?

USER: n

--GSA: Based on the information you have provided about your background and

interests, GSA suggests to you the following schedule:

Fall. 1992 Total Credit Hours: 13

coml35 3 Essentials of Public Speaking

san586 3 Artificial Intelligence

san603 3 Program, Data and File Structures

san604 3 Computer Organization and Operating Systems

Spring. 1993 Total Credit Hours: 12

san571 3 Simulation

san572 3 Analysis of Information Systems

san623 3 Data Communication, Networks and Distributed Processing

san624 3 Expert Systems

Fall. 1993 Total Credit Hours: 12

san573 3 Automata, Formal Languages, and Computabiliy

san575 3 Structured Design and Implementation

san612 3 Data Structures and Database Systems

san790 3 Graduate Research

Spring, 1994 Total Credit Hours: 12

san574 3 Language, Interface, and Their Processors

san622 3 Advanced Database Systems

sta663 3 Introduction to Applied Probability

san790 3 Graduate Research

Would you like to make any changes ? (Y/N)

USER: y

--GSA: To which semester would you like to make changes?

USER: Spring, 1994

--GSA: You may check any courses you would not want to take in Spring, 1994:

CRHR - COURSE TITLE

san574 3 Language, Interface and Their Processors

san622 3 Advanced Database Systems

*sta663 3 Introduction to Applied Probability

san790 3 Graduate Research

You may choose the courses you would like to take in Spring, 1994:

CRHR SEMESTER PREREOUISITES COURSE TITLE -
san582 3 Fall none Analysis of Inventory Systems

*san584 3 Spring none Analysis of Manufacturing Systems

. . .
--GSA: On the basis of the information you have provided about your background

and interests, GSA suggests to you the following schedule:

Fall. 1992 Total Credit Hours: 13

com135 3 Essentials of Public Speaking

san586 3 Artificial Intelligence

san603 3 Program, Data and File Structures

san604 3 Computer Organization and Operating Systems

Spring. - 1993 Total Credit Hours: 12

san571 3 Simulation

san572 3 Analysis of Information Systems

san623 3 Data Communication, Networks and Distributed Processing

san624 3 Expert Systems

Fall. 1993 Total Credit Hours: 12

san573 3 Automata, Formal Languages, and Computabiliy

san575 3 Structured Design and Implementation

san612 3 Data Structures and Database Systems

san790 3 Graduate Research

Spring. 1994 Total Credit Hours: 12

san574 3 Language, Interface, and Their Processors

san622 3 Advanced Database Systems

san584 3 Analysis of Manufacturing Systems

san790 3 Graduate Research

Would you like to make any changes ? (Y/N)

USER: n

5. Maintainerws Manual

This section describes how to modify the knowledge about courses

and the related rules if necessary. It is assumed that you know

NEXPERT Obj ect .

5.1 Update Offering Time of a Course

First, use Object Editor to find the object with the course number

as object name. Then activate Meta-slot Editor to update the value

of the property when-offered.

5.2 Update the Description of a Course

Updating the course description is similar to updating the course

offering time. First, use Object Editor to find the object with

the course number as object name. Note that there are 9 properties

descl, . . . , desc9, which can be used to define up to 9 lines of
course description. Each line can hold about 70 characters.

Activate Meta-slot Editor to modify the values of properties descl,

. . . , desc9. Then, use Meta-slot Editor to update the value of

property no-of-descs, which hold the actual number of lines of the

course description.

5.3 Add A New Course

Currently, GSA has the knowledge about all SAN graduate courses.

In the case that a new course should be offered in the future time,

you can add it to the knowledge base in NEXPERT Object. First, use

Object Editor to create an object with the course number (e.g.

san626) as the object name. Fill in the class field of the Object

Editor window one of the class names (Foundations, Cores,

Electives) to indicate that the course is a foundation course, core

course, or elective course. The object created will have the same

properties as other SAN courses belonging to the same class have.

Then use Meta-slot Editor to define the values of the properties:

course number, course title, credit hours, offering time, course

description, prerequisites. There are nine properties: descl, .,.,
desc9, which can be used to define the course description. Thus,

you can define up to 9 lines of course description. Put the actual

number of lines in property no-of-descs. If the course does not

have any prerequisites, assign "nonew to property prerequisites.

When it has prerequisites or is prerequisite of other courses, you
need to update those rules dealing with course prerequisites. Here

is what needs to be done. If the course has foundation course(s)

as its prerequisites, use Rule Editor or Rule Notebook to find

those rules with hypothesis "set - grad - course~rereq'~ . Then use

Rule Editor to modify the action part of those rules. For example,

say, san603 is a prerequisite of the new course san626. Add to the

action part of those rules with condition "1s student,san603-ok

Ilnflw the following three actions :

Do 11san6031@ san626 .prerequisites

createobject san603 san626

Do MAX(san603.wgt, san626,wgt+l) san603,wgt

If the new course is a prerequisite of other SAN course(s), use

Rule Editor or Rule Notebook to find the rule with hypothesis

t8setgrereq_wgttt. Then use Rule Editor to modify it. For example,

say, the new course san567 is a prerequisite of san654. Add the

statement:

CreateObj ect san567 san654

to the condition part and the following two actions:

Do 1gsan567e1 san654 ,prerequisites

Do MAX(san567.wgt, san654.wgt+l) san567,wgt

to the action part of the rule. If the new course has as its

prerequisites some course(s) other than foundation courses, similar

modifications should be made to the rule with hypothesis

wset-prereq-wgt". Finally, you have to update the weight list of

each interest area. First, determine the weight of the new course

to each interest area. Then, Add the weight of the new course to

the end of the wgt-list property value of the corresponding

interest area. Find the rule with hypothesis I t in i t - dialogue88.
Then, add the new course number (e.g, san567) to the end of the

String Value in the second condition.

6 . Lessons Learned

(1) One of the major pitfalls to be avoided in developing an expert
system is choosing an inappropriate problem [2, 3, 4, 93 . Here are
some important criteria relevant to the selection of an appropriate

problem for expert system development [2, 3, 4, 9, 101:

*The application task must have a well-defined domain;

*One or more experts must have the knowledge required;

*Those experts must be able to verbalize desired task

performance;

*The task does not depend heavily on common sense;

*The task is of managementable size.

Not picking the "rightw problem can lead to complications, even

failure in the subsequent development of the system.

(2) There is a fundamental difference between an expert system

shell and a conventional programming language: shells are object

oriented and knowledge intensive, while conventional programming

languages are procedure oriented and code intensive [63. However,

it is not necessary that programming in shells should be any easier

to debug and result in less effort. In conventional programming,

there exist notions of what constitutes good programming practice

[3] . Such is less the case in knowledge engineering [3]. My own

experience of programming in NEXPERT Object suggests that the level

of programming skill required by a shell should not be

underestimated.

(3) Every aspect of the advising process has to be mapped out in
detail, and every alternative has to be explored to the point of a

conclusion. The expert system can start with only the intelligence

that is put into it. If that information is confusing or

incomplete, then your "expertw will be also. A large part of the

total effort in creating an expert system must take place before

you even touch the keys of a computer.

(4) The process of building an expert system is inherently

experimental [3]. It is reported that simple expert systems have

been built in as little as 3 man-months [2]. The time for expert

system development with present techniques appears to be around 5

man-years per system [2]. If you see a demonstration of a really

good expert system that took three scientists years to develop

using Prolog, Lisp or some expert language on a mainframe, do not

expect to create a similar system in weeks on a microcomputer by

using an expert system shell.

7 , Conclusion

The process of building the Graduate Student Advisor was very

educational and insightful. The GSA program performs well. The

decomposition of student advising process into phases has been of

help in the following ways: (1) it simplifies interactions with the

domain experts; (2) it reduces the complexity; (3) it provides

effective modularization. The GSA approach is not necessarily

limited to advising graduate students. It could be applied in

solving some other problems such as personal financial planning

[71

References

1. Fikes, R. and Kehler, T. (1985). The Role of Frame-based
Representation in Reasoninq. Communication of the ACM, September,
pp. 904-920

2. Gevarter, W. B. (1990) . The Basic Principles of Expert Systems.
In Raeth, P. G. Expert Systems: A Software Methodoloqy for Modern
Applications. Los Alamitos, California: IEEE Computer Society
Press. pp. 17-32

3. Jackson, P. (1990) . Introduction to Expert Systems 2nd edn.
Wokingham UK: Addison-Wesley

4. Liebowitz, J. and De Salvo, D. A. eds. (1989). Structurinq
Expert Systems: Domain, Desisn, and Development. Englewood Cliffs
NJ: Yourdon Press

5. Minsky, M. (1975). A Framework for Representins Knowledqe. In
Winston, P. ed. The Psycholoqy of Computer Vision. New York:
McGraw-Hill. pp. 211-277

6. Raeth, P. G. (1990). Two PC-based Expert System Shells for the
First-time Developer. In Raeth, P. G. Expert Systems: A Software
Methodoloqy for Modern Applications. Los Alamitos, California: IEEE
Computer Society Press. pp. 2-6

7. Valtorta, M. G., Smith, B. T. and Loveland, D. W. (1984). The
Graduate Course Advisor: A Multi-phase Rule-based Expert System.
Report No. CS-1984-18, Dept. of Computer Science, Duke University

8. Valtorta, M. G. (1983). The Graduate Course Adviser. Master
Project Report, Dept. of Computer Science, Duke University

9. Waterman, D. A. (1986). A Guide to Expert Systems. Reading,
Massachusetts: Addison-Wesley

10. Williams, C. (1990). Expert Systems, Knowledqe Enqineerinq, and
A 1 Tools: An Overview. In Raeth, P. G. Expert Systems: A Software
Methodoloqy for Modern Applications. Los Alamitos, California: IEEE
Computer Society Press. pp. 2-6

Appendix: Survey Results on the Course Weights

Note: I n t h e survey, SAN graduate f acu l t y members w e r e asked t o
eva lua te the individual weight of each SAN graduate course t o each
research i n t e r e s t a rea using a s c a l e from 0 t o 5. Eight of them
responded t o t h e survey.

Algorithms

Artificial Intelligence

Computer Assisted Instruction

Computer Graphics

Data Corranunication & Computer
Networks

Database Systems

Expert Systems

Forecast Systems

Information Retrieval

Inventory systems

Machine Learning

Mathematical Optimization

Natural Language Processing

Operating Systems

Programming Languages

Queueing Systems

Simulation

Software Engineering

Systems Dynamics

Theory of Computation

SAN575

2

1

3

1

1

2

2

1

1

0

1

1

2

1

3

0

1

5

0

2

SAN571

1

1

3

2

2

2

2

3

2

3

2

3

1

2

1

4

5

2

1

1

SAN573

5

3

2

1

2

3

2

1

2

0

4

2

5

3

4

0

0

4

0

5

SAN572

1

1

3

1

2

2

3

2

4

2

0

1

2

1

1

0

2

5

3

1

SAN574

3

3

3

1

2

3

3

1

2

0

3

1

5

3

5

0

0

4

0

4

SANS82

1

1

0

0

0

0

1

3

0

5

0

3

1

0

0

2

3

0

2

0

SAN583

1

1

0

0

0

0

1

5

0

4

0

2

0

0

0

2

2

0

2

0

SAN584

1

1

0

0

0

0

1

3

0

3

0

3

0

0

0

2

2

0

1

0

SAN604

1

2

2

2

3

3

2

0

3

0

3

2

2

5

5

2

2

5

0

3

SANG12

3

4

3

1

2

5

3

0

4

1

2

1

2

3

3

2

1

4

0

2

(continued)

Algorithms

Artificial Intelligence

Computer Assisted Instruction

Computer Graphics

Data Comunication & Computer
Networks

Database Systems

Expert Systems

Forecasting Systems

Informational Retrieval

Inventory Systems

Machine Learning

Mathematical Optimization

Natural Language Processing

Operating Systems

Programming Languages

Queueing Systems

Simulation

Software Engineering

Systems Dynamics

Theory of Computation

SAN613

4

1

1

1

2

1

2

2

1

4

1

5

1

1

0

3

3

0

2

2

SAN586

3

5

3

1

1

3

5

1

2

1

5

3

5

1

3

1

2

2

2

2

SAN614

1

1

3

1

2

1

1

2

1

3

1

3

1

1

0

4

5

0

4

1

SAN603

5

3

3

3

3

5

4

1

3

2

3

2

2

4

5

3

3

5

1

2

SANG01

5

3

3

3

3

3

4

2

3

2

3

4

3

4

3

3

5

4

2

3

SAN602

4

3

1

1

3

1

3

4

1

5

2

5

2

1

1

5

5

1

3

2

Alnori thms
--

Artificial Intelligence
--

Computer Assisted Instruction 1 2
--

Computer Graphics

--

Forecasting Systems l o

Data Communication & Computer
Networks

Database Systems

Exwert Systems

- -

Information Retrieval
- -

Inventory Systems

2

1

2

Machine Learning

Mathematical Optimization 1 0 1 1 1 3 11

2

5

2

Natural Language Processing 1 2 I 2 I 2 I 4 I 1 I 1 I 1 II
Operating Systems I 4 1 5 I 1 II

5

3

1

1

3

5

Programming Languages

Queueing Systems

Simulation

Software Engineering

Systems Dynamics

Theory of Computation

4 1 1

3 0 1

2 1 1

3

1

1

5

0

1

1

0

0

3

0

1

2

2

2

3

0

0

2

1

2

2

2

1

2

1

1

3

0

1

Appendix B: Running the GSA

The GSA system consists of the following files (total 77 files):
GSA . RTD
GSA. TKB
FRM1. FRM . 0 .

FRM69. FRM
COURSE.TXT
CRSEDESCOTXT
SCHEDULE. TXT
SEMESTER. TXT
WAIT. TXT
HLP2 0 HLP

The file GSA.RTD is the Runtime Definition File which is used to
start the GSA. The file GSA.TKB is the knowledge base developed
under NEXPERT Object. The files with .FRM extension are the
NEXPERT forms which are used to create customized interfaces.
COURSE.TXT, CRSEDEC.TXT, SCHEDULE.TXT and SEMESTER.TXT are NEXPERT
report files used to display course descriptions and schedules.
WAIT.TXT and HLP2O.HLP are just DOS text files used to display some
information to the users.

Suppose that the directory \GSA contains all the files of GSA. In
order to start NEXPERT Forms with GSA automatically, NXPFORMS.EXE
should also be under the same directory \GSA. To start GSA on your
system from the directory \GSA, type

NXPFORHS /FGSA.RTD
at the prompt. This command automatically starts PJEXPERT Forms
with GSA.

If NXPFORMS.EXE is not under the directory, you have to start
NEXPERT Forms environment by typing the command

NXPFORMS
at the prompt. Then use the System menu to read the runtime
definition file of GSA and start GSA.

