Computer Science and Systems Analysis
Computer Science and Systems Analysis

Technical Reports

Miami University Year 1993

Tool for Structural Testing of Rule-based
System

Piyapattana Temchareon
Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa_techreports/35

MIAMI UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1993-009

Tool for Structural Testing of
Rule-based System
Piyapattana Temchareon

School of
Engineering &
Applicd Science

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

Tool for Structural Testing
of Rule-based System
by

Piyapattana Temchareon
Systems Analysis Department
Miami University
Oxford, Ohio 45056

Working Paper #93-009 May, 1993

Tool for Structural Testing of Rule-based System

by
Piyapattana Temchareon

Department of System Analysis

Miami University
Oxford, Ohio 45056

January, 1993

TABLE OF CONTENTS
1. INTRODUCTION. et a s a e nr e e et a e te e e e 1
2. ANEXPERT SYSTEM OVERVIEW ...

Ld

2.1, Knowledge Base......ocooiiiiccies e D
2.2, INTErence CIZINS. . oo iirereireaosnerrennn b rrnrseiiassrastaaeea s e e r et aaaraa s e e n s n e 3
2.3, Userinferface ..o e B R e

3, CLIPS EXPERT SYSTEM TOOL .o e 4
1.1, Basic Components of CLIPS ..., e 4
T O B 2 1 SRRSO 4

T O O T (PP USRI 5

3.1.3. Inference enginel.........ccocoorimvinicrniennnnn. e 3

3.2. The CLIPS Cycle of EXecufion..............cooii i3
3.3. The CLIPS Defining Constiucts ..o 6
3.3, Deffacts CONSIUCT ..oviviei i iiiv v eiie i ieee e eareicrreanirecrcens e e arenens O

3.3.2. Defrule COMSITUCT .o ciii e ee e e ene et e 6

3.3.3. Defining fact template ... 7

3.4. The CLIPS Left Hand Side Rule Svntax -- Condfionocovevveicnirnnniennns 7
3.4.1. Literal patierns .ovoe i e 7

3.4.2. Wildcards single and multifield ... g

3.4.3. Variable single and multifield.................. 8

3.4.4. Constraining fields PP G

3.4.5, Constraining PatiermS. ..o D

3.5. The CLIPS Right Hand Side Rule Syntax - Actions............ccocemniinnenn 11
3.5.1. Addnew facts 10 fact DASE ... 11

3.5.2. Remove facts from fact base.......oooociiiriiiier e 11

3.6, The CLIPS Commenting Rules........cooiiiiiiics e 11

LOGICAL PATH GRAPH ALGORITHM. ..., i1
GRAPTOOL PROGRAM ..ot ce e 14

6. INSTRUCTIONS FOR USING GRAPTOOL SOFTWARE......ocoviiin 18
7. WHAT I LEARNED FROM GRADUATE RESEARCH PROJECT........ R 11
g, CONCLUSION . ..o e T ST 3 |
9. REFERENCES ..ottt ettt a s n e s D2

10. APPENDIX A.: PROGRAM TERMS AND SYMBOLS DEFINITION................ 53
11. APPENDIX B...: FUNCTION OF GRAPTOOL SOFTWARE ... 58

T1.1. ACCessory TUNCTONS «..oioiiii it e i ctetnn e ccnnreaeeeaneinneeaaaiaaneees OB
11,2, Major FUncHOnSoiiiiiii oo 85

12. APPENDIX C.: GRAPTOOL SOFTWARE SOURCE CODE......c..ooes I .. 162

Tool for Structural Testing of Rule-based
Expert System

PIYAPATTANA TEMCHAREO

T

Miami University

Traditional software testing techniques are useful in testing some components of the expert
systems, such as the inference engine. However, there is a need for the development of a
testing method that tests the structure in 2 rule-based expert system. This testing method
should be computationally effective, provide a reasonable level of coverage of the rule
base, and be md&gﬁﬁﬂﬂﬁﬂ‘i of the inference engine [KIPER92]. In the article Structural

E“?

T

ting of Rule-based Expert Systems by Dr. James D). Kiper, the logical path graph (1LPG)
method was chosen as a practical testing method for an expert system. However, the

logical path graph algorithm developed in that paper requires further imvestigation by
application 1o large rule bases. This need has resulted in the development of a computer
tool called Graptool. The Graptool software, that has been created, was based on the
logical path algorithm and was written in the C language. This tool reads the CLIPS rule-
based expert svstem as a text file, and constructs a listing that represents the structure of the

rule base.
Key words and phrases: See appendix A.

INTRODUCTION

Expert system (ES) is a branch of artificial intelligence that uses specialized knowledge
extensively 1o solve problems at the level of the human expert. If 15 a computer system that
mimics the decision-making ability of these human experts. Expert systems have a number
of attractive features that give them many advantages over other systems. First of all
expert systems (like a mass production of experis) increase the availability of expertise on
any suitable computer hardware. Secondly, there is reduced cost (for expertise used) and
reduced danger for the human expert (ES can be used in environments that might be
hazardous for humans). The expertise in an expert system is permanent in that iis
knowledge will last indefinitely, and the areas of expertise can be multiple. The knowledge
of several experts can be made available to work simultaneously and continuously on a
problem at any time. By providing second opinions and breaking ties between two human
experts, an ES provides increased reliability by assuring confidence that a correct decision

was made. Furthermore, expert svsiems may respond faster, and be more available than

the human experi. They can act as an intelligent tufor and can be used {0 access a data
base in an intelligent way. Since the knowledge in expert systems is explicitly specified, it
can be examined for correciness, consistency and completeness, whereby it may be

modified. This may, in furn, improve the guality of the decision making [RIL8Y].

Research Ubjective

The testing of a rule base is a technique that tests the structure of cach new rule base
developed for use with a specific inference engine. This type of siructural festing is
important to help assure the correct operation of the expert system. Even though the
inference engine testing is effective and reliable, the disiribution of knowledge of an ES
into a collection of rules requires the development of new testing techniques for this rule

base. The testing method of this research project graphically represents a rule base in a
way that is analogous to control flow graphs of traditional software. In addition, this
graphic form can then characterize the complexity of its rule base and can be used to
determine a set of paths through it that adequately tests the rules and their interaction. In
order for this structural festing fo be done successfully, this method will construct the
logical path graph of a rule base. See figure 9 for a pictorial description of the logical
path graph algorithm.

The goal of this project is to develop a computer tool based on the logical path graph
method. The computer tool that is written in the C language is called Graptool. It will
allow the logical path graph algorithm to be applied to the rule-based expert systems. The
result of this experiment will determine whether the logical path graph method is useful for
testing any rule base siructure. FEven though the logical path graph algorithm cannot
provide a complete solution to the need for validation and verification of a rule-based
expert system, it does provide a technique that can reduce the risk associated with ifs use
IKIPEROZL

In order to develop the software, a test bed was selected. Although this fest bed could
be any expert system shell that supported rle-based development, CLIPS was selected for
use with the software tool because it was used in Dr. Kiper's experiment, ifs synfax and
semantics are very close to those of some other very popular commercial systems, it was
available at no cost since it is a product of NASA at the Artificial Intelligence Section of
the Johnson Space Center (JSC), and ifs souwrce code is available giving access to the
internal structure of the inference engine, rule base, or fact base [KIPER92].

This paper contains the following: an introduction to expert systems, the CLIPS expert
system shell, the logical path graph algorithm, each component of Graptool works, and the

Graptool source code.

2. AN EXPERT SYSTEM OVERVIEW

Expert system technology is an advanced software tool that provides programmers with
new programming environment for incorporating symbolic representation of facts, data,
and heuristic knowledge in their conventional software. The major componenis of an
expert system are the knowledge base, inference engine, user interface mechamism, and

data. The structure of an expert system is shown below:

Uzer Enowisdoe inference Enplanation
Interface — %asﬁg — Engine — acility —D Output

2.1. Knowledge base
An expert system can be built based on three types of knowledge bases: rules of thumb;
facts and relations among components; and assertions and questions. The components

that represent these types of knowledge bases are called rules, frames, and logic [HU89}:

a. Rules: Rules are used to represent rules of thumb for the knowledge base. Rules are

conditional sentences that are expressed in the following form:

IF {(premise) FACTI, ... FACTin THEN ({(conclusion) FACTI, . .. FACTn

-

Frames: A frame provides a convenient structure for representing objects that are
typical to a given situation. It allows nodes to have structures that can be simple values
or other frames. It can be computed through procedures or other computer programs,

and has been used to represent the structure and relation of the facts.

¢. Logic: Logic is the expression of predicates and values to model facts of the real

world. Logic is good for representing assertions and queries.

2.2. Inference engine

Before an FS can be executed using a knowledge base, a reasoning and searching
mechanism must be included for controlling the knowledge. The reasoning and searching
control is the inference engine. The reasoning method in the expert system is the simple

logic rule such as IF . . . ELSE or nested-IF. The searching methods are used to

Lo

determined where to start the reasoning process and which rule fo examine next. Two

main searching methods are forward chaining and backward chaining.

Forward chaining:

In forward chaining, when the premise clause matches the situation, then the conclusion
clauses are asserted. The rules that have been used already are not used again in the same
search. However, the facts or the results of those rules will be added fo the knowledge

base. The above process will be repeated until no matching rule exists.

Backward chaining:
Backward chaining proves the hypotheses from the facts. If the goal is to determine the
fact in the hypothesis, then the premises will be evaluated to determine whether or not i

matches the sifuation.

2.3. Userinterface
This man-machine interface mechanism produces the dialogue between the computer and
the end user. It contains the explanation module that allows the end vser to understand and

amine the reasoning process and its answer. The user imterface also contains the groups

€3
¥

X
of instruction which will guide the user through the operation of the expert system.

3. CLIPS EXPERT SYSTEM TOOL

CLIPS (the C Language Integrated Production System) was designed by NASA at
Johnson Space Center with the specific purpose of providing high portability, low cost, and
casy infegration with external systems. It is a forward chaining, rule-based language that

has inferencing and representation capabilities similar to OPS5 [GIAZ9].

3.1. Basic Components of CLIPS
The basic components of a CLIPS ES are the rules, the facts, and the inference engine.
The following information and details about these three components are necessary 10

describe since the software was developed based on these concepis and rules in CLIPS.

3.1.1. Rules:
The primary method of representing knowledge in CLIPS is use of a rule that is defined as
a set of conditions (lefi-hand side, T.HS), and actions (right-hand side, RHS) that are fo be

taken if the conditions are met. In order to describe how to solve a problem, an expert

system developer must define these rules. A knowledge base (rule base) includes the

entire set of roles m an expert system,

3.1.2. Facts:

The basic form of data in a CLIPS system is called a fact. Each fact represents a piece of
information that is placed in the current list of facts called the fact-list (fact base). The
presence or non-existence of these facts causes the rules to execute or fire. Facts are made
up of fields that are either a number, string, or word. All numbers are defined as any
field that consists only of numbers from 0-9, a decimal point, a plus and minus sign, and an
¢ for exponential notation. Example of a numbers are 222, and +35.9. A string is a set of
characters that starts and ends with double quotations. A string will only match another
string. Tt will not match a word or number. Examples of a string is "123.9", and "top".

A word is any sequence of printable ASCI characters followed by zero or more
characters such as too, top, string, and Tim. Some of these characters act as delimiters that
are used to determine the end of the word. The delimiters include the following: a space,
a tab, a carriage return, a linefeed, a double quotation, parentheses, an ampersand (&), a
bar (|), a less than sign (<), and a tilde (~). CLIPS is case-sensifive and some prinable
ASCIH characters cannot be used as the firsi character in a word depending on the
characters that follow it. The exceptions and their conditions are the following:

1} The word field cannot start with a ? or $7.

7} The field that starts with or without a sign (plus or minus) followed by numbers 0-9 or
decimal is considered a number field. Anything else is considered a word field.

3) A colon followed by a delimiter means that the next item is a function call. Wit is
followed by anvthing else, it is considered a word field.

4y When & and | is followed by itself] it is considered a word. If it is followed by anything
else, it acts as a delimiter.

5) The < follow by - is a special symbol. The < followed by anything else is a word.

3.1.3. Inference engine:

CLIPS uses a mechanism called the inference engine to determine which rules match the
current facts. When the inference engine finds rules whose LHS conditions maich facts, it
places this rule on the agenda of rules to be fired. Ii then determines which rule on the

agenda to fire. The process of matching the LHS of rules to facts is called unification.

3.2. The CLIPS Cycle of Execution
CLIPS is ready to execute rules once a knowledge base is built and a fact list is prepared.

The starting point, the stopping point, and the sequence of operations do not need to be

defined explicitly because the knowledge (rules) and the data (facts) are separated. The

inference engine is used to apply the knowledge to the data. The CLIPS cycle of execution

follows three basic steps:

1} Examination of the knowledge base 1o see if any rule conditions are met.

2} Rules whose conditions are met are placed on the agenda. The agenda is a priority
queue onto which rules fo be fired are pushed when maiched. When several rules
qualify to be fired at a given point in time, it is the job of the inference engine to
determine the priority among these rules (rules of higher priority are placed above ones
of lower priority).

3} The top rule on the agenda is selected and its RHS actions are executed. This execution
may change the fact base so that the inference engine repeats evaluation of the rule
base io determine which rules may now be added to the agenda. The cycle of rule base
evaluation and rule execution continues until the agenda is empty or until the rule lmit

is reached.

3.3. The CLIPS Defining Constructs
There are three defining constructs found in CLIPS: deffacts, defrule, and deftemplate,
All these constructs is opened with the left parenthesis and closed with a nght parenthesis.

Any pattern or block within a construct is also opened and closed with a parenthesis.

3.3.1. Deffacts construct

Any number of initial facts can be added to the fact-list by using a deffacts construct. This
initial fact can be deleted or matched like any other fact. By using a reset command in
CLIPS, all initial facts will be reconstructed and mserted into the fact-list. CLIPS also
automatically adds an (imitial-fact) 1o the beginning of the fact-hst if the (initial-fact) does

not already exist in the fact-list. The svntax of deffacts is the following [CULS9]:
(deffacts <name> ["<comment>"]
{(<facti>)
(<fact n>)j)
where <name> needs o starf with an alphabetic character and must be included in the

construct. A comment is optional and must begin and end with quotation marks.

1

3.3.2. Defrule construct
FEach rule in the CLIPS rule-based will be defined by using the defrule construct. The

syntax of defrule is the following [CULROL:

{defrule <name> ["<comment>"{
[(<first pattersn=)

;Left Hand Side
{<nth pg;fﬁem@} J
[(<first action™)
;Right Hand Side
<rsath @{g;?iém&;gy;

where <name> must start with an alphabetical character and must be included in the
defrule construct. A comment is optional and it can be any siring. An arrow (=>) is used
{o separate the LHS from the RHS.

Additional details about the LHS (condition) and the RHS (action) of the rule base can
be found in the next two following sections. However, only the LHS and the RHS syntax
that was used in the Graptool program will be mentioned in this paper. More complete
information about the LHS and RHS of the CLIPS rule base can be found in the CLIPS

manual [CULE9L

3.3.3. Defining fact template

To access the facts that are free form and encode information positionally, the end user
needs to know where data is stored and which field contains the desired data. The fact
template will allow the user to abstract the structure of a fact by assigning names to cach

field in the facts. However, the fact template is not used in the Graptool software.

3.4. The CLIPS Left Hand Side Ruie Syntax -- Condition

The left-hand side (LHS) is a series of patterns that represent the conditions that must be
satisfied betore a rule can fire. There are several concepts that have been used for
matching and manipulating facts. These concepts involve use of literal pafterns, variables
(single and multiple wildcards, and single and multiple variables), and field consiraints. For
controlling the execution of rules, CLIPS will use the logical pattern operators (consiraint

patierns).

3.4.1. Literal patterns
A literal pattern is a simple matching pattern that precisely defines the exact matching

between the pattern on the LHS rule with the fact in the fact base. This type of patiemn

e

does not contain any variable or wildcard fields that will be explained later. For example
[CULES:

Pattern on LHS of rule Fact i the fact bst Matches?
{(group lelt town) {group left town) Y
(group left town) {group in town) N

3.4.2. Wildcards single and muitifield

Rather than having to specify a specific field of a fact to trigger a rule, a general pattern can
be specified by using a wildcard [RIL89]. In CLIPS, there are single and multificld
wildcards. The ? (question mark) represents a single wildcard and 37 represents the
multifield wildcard. The single wildcard will match any number, word, or string stored in
exactly one field in a fact. The multifield wildcard will match any number, word, or
string in zero or more fields in the fact. Single and multifield wildcard symbols can be

used in anv combination in a single pattern. For example [CUL89Y:

Pattern on LHS of rule Fact in the fact hst Matches?
Single {data red ?7) (data red) N
Wildeard: (data red 7) (data red green) Y
Multiple {data red $7) (data red) Y
Wildceard: {data red $7) {data red green) Y
Combination: (data? §7) {data red green green) Y

(data 7 §7) {data green red) Y

2.4.3. Variable single and multifield

A wvariable refains the value of a field replaced by a wildcard. The rule for pattern
matching in variables is similar to that in wildcards. On its first appearance, a variable acts
just like a wildcard and stores the matching value(s) as its inifial value(s). A single field
variable will capture a field in the fact that matches a single wildcard. A multifield varable
will capture a field (zero or more) which matches with a muliifield wildcard. Afier that, all
reference to that variable must match the value of that varable(s). This applies to both
single and multifield variables. The binding will only be true within a rule in which it
occurs because the variable is local to the rule. The syntax of vanables are the following
[CULBY:

P<preppme> :a single field variable
S7<name> . a multiple field variable

where <name™ must start with an alphabetic character. A double quote cannot be used as

part of a variable name.

3.4.4. Constraining fields
Field constrainis are functions that constrain the range of values that a particular field
within a pattern may have. The are two fypes of field consiraints: logical operations and
predicate functions [CUL89). The logical operation field consirant is the only one that
used in the Graptool program.

There are three types of logical operators: the & representing AND operator, |
representing OR operator, and ~ represeniing NOT operator. Al three logical operators
can be combined almost in any form in a matching patiern. Evaluation of multiple logicals
occur from left to right. The syntax of the three logical operators are the following
[CUL89Y:

<yalue I>&<valnel> :the AND operator
<valuwei>|<valuel> :the OR operator
~ygghppess sthe NOT operator

The AND operator can be used with variable bindings as in the following [CULE9S}:

Ix& <vgluel><valuel> :the OR operator with vanable
Pxde~<valne> ;the NOT operator with variable

If the field matches the constraints defined by the logical operator, CLIPS will take action
based on the number of variable ocouwrrences. If the variable ocours Tor the first time, the
result will be stored in the variable. If the variable has been bound previously, the field

must also mateh the value of the variable.

3.4.5. Constraining patterns
The LHS of a CLIPS rule is a series of relations and needs to be satisfied for the rule fo be
placed on the agenda. There is no need to define an explicit and to the condition because
CLIPS assumes that all the rule's patterns are suurounded by 1. However, it is possible to
define other logical combinations of conditions that cause a rule to perform the actions.

A logical pattern block is a collection of LHS patterns that are combined by an
inclusive or and an explicit and logic. The entire block must be satisfied together with all

other conditions before the rule performance. A logical block can be combined with other

S

logical blocks in any manner. Each logical block must open and close with a parenthesis.
Patterns can also use field constraints. More details about inclusive or, explicit and, and
pattern negation are given below.

Inclusive Or

A constraint of inclusive or is satisfied when anv one of several patterns in an or logical
block exists. If all other LHS conditions are satisfied, the rule will be activated. The
syntax of an or logical block is the following [CULS9:

{defride <name> [<comment>"]
f(<additional patterns>)f
{or (<paftern 1>}

(<pattern n>)j
J{<additiondl patterns>}J

=>
J{<actions>}}

Explicit And

An explicit and will allow a logical combination of patterns within an or logical block.
The constraint i3 satisfied when all the patterns mside of the and logical block match.
When all other LHS conditions are satisfied, the rule will be activated. The syntax of an
and logical block is given [CULEYY:

{defrule <name> ["<comment>"]
f(<additional patterns>}f
{or {and {(<patiern 1>}

{<pattern 1))
{<other pafferns>))
[(<additional patterns>)]

=>
{{=actions>)f}
Patiern Negation
A not function provides the capability to fire a rule when a fact does not exist in the fact
base. The syntax of patiern negation is the following [CULEY]:

[
o

{defrule <name> ["<comment>"]
f(<preceding patterns>)]
{not (<pattern 2>})
[(<additional patterns>)]

T

Jf<actions=}}

3.5. The CLIPS Right Hand Side Rule Syntax -- Actions

The right-hand side (RHS) is a list of actions that will be performed sequentiaily when all
the conditions (LHS) of the rule are satisfied. However, only assert {adding new facts into
the fact base) and retract (removing facts from fact base) have been used in the Grapiool

software and will be explained below.

3.5.1. Add new facts to fact base
New facts can be added to the fact list by the CLIPS assert command. A new fact will not
be added if that fact already exists in the fact list. An assert can be used only on the night

hand side of the rule. The svntax of assert is the following [CULE9]:
{assert (<pattern>)[(<addifional patterns>}j)

3.5.2. Remove facts from fact base

The retract command will remove facts from the fact base. Facts can be identified as a
fact variable (7<fact var>) bound on the LHS of the rule. The syntax of retract 15 the
tollowing [CULB9Y:

frefract ?<fact-var> [?<factvar>f {?<fact-var>j [?<fact-var>{}

3.8. The CLIPS Commenting Rules
In CLIPS, a comment can directly follow the name of defrule, deffacts, and deftemplate.
The comment can also be anywhere in CLIPS afier a semicolon (7). Everything from the

semicolon o the next carriage return (hnefeed) will be ignored.

4. LOGICAL PATH GRAPH ALGORITHM

Before the actual logical path graph algorithm 1s given, the reasons that the logical path
graph method was chosen as a testing method for rule-based ES will be described. The
following discussion is taken from {KIPER92].

A logical path graph method describes accurately the appropriate representation of a

fusey

rule base to identify the logical flow of data through it. Using this representation, various

data flow test path selection fechnigues can be used fo obtain sefs of test paths that satisfy
appropriate adeqguacy criteria. 'This method was chosen over other methods of testing
{physical rule flow graphs and causality graphs) for a couple of reasons. First, physical
rule flow graphs are dependent on knowledge of the inference engine and a rule base's
physical order of execution is generally not the same as its logical order of execution.
Secondly, a causality graph does not capture all of the logical paths through the rule base.

The logical path graph satisfies the three test method criteria for a rule-based expert
systern: inference engine independence, adequate coverage, and computational
effectiveness. It is independent of the physical order of mile firing as determined by the
nference engine. It 18 also semantically equivalent to that of a conirol flow graph from
traditional software where a rule forms the basis for a node and two nodes are connected
by an edge if and only if the second node can follow the first under some set of condifions.
Computational effectiveness is determined by the relationship between the number of rules
and the number of basis paths. The tentative experimental evidence indicates that the size
of the graph and the order of the algorithm are generally reasonable encugh to make this
method practical.

In order for the logical path graph to be strongly connected, there are four conditions
that would need to be satistied. The furst condition requires that each rule be reachable.
Since it is possible to have unsatisfiable rules on the LHS, such miles would never fire and
would have 1o be eliminated. The second condifion requires that there be an addition of a
special initial node to the graph that would be connected to all rules that can be fived as the
initial action of the inference engine. Since every node can be reached from the imitial
node, every rule will ultimately fire as a result of some combination of initial and input
values. The third condition is that each graph would have a terminal node. This means
that anv node representing the last node in a logical path would be connecied 1o a terminal
node. The fourth condition requires that an edge is added to connect the fermmnal node to
the mitial node. Since every node can be reached from the initial node, every node can
reach the terminal node; and since the terminal node is commected to the initial node, the

graph is strongly connected.

Laogical path graph construction algoerithm

Assumptions: BEvery rule is given a unique number and all unreachable rules have been
climinated from the rule base.

Basic concepts of logical path graph:

1y A particular male may be represented by more than one node.

[
b

2} Each node is uniguely labeled using two pieces of information: the number of the
associated rule, and a condition set (set of all conditions asserted by nodes on the path
leading to the node). The condition set for a node is the cumulative effect of all
assertions and retractions that have ocowrred along this path [KIPER92].

3} Rules represented as Ri where index 7 is the vnique number associated with the 7/ rule.

4y Anv node corresponding to rule Ri s called Nij and the associated condition set Cij

5) Since any rule may be represented as more than one node, two indices are needed to
label the node and condition sei. The first index 7 indicates that this condition set is
associated with rule Ri. The second index ; means that this is the j#k node and

condition set associated with rule 7 [KIPER92Z].

Construction algorithm:

Step 1.: Create the start node Noa associated with no rule and give its condition set Co. the

value O, the empty set. Also, create a special terminating node called Nei with Cei =

Step 2.: For anv rule R; with a vacuous LHS, or whose LHS consists entirely of the initial
fact, create a node Nix with Cij= . Connect Noa fo each such Niy with an edge.

Step 3.: For any rule Rw whose LHS conditions are satisfied by the RHS conditions of
some rule Ri corresponding to an existing node Nij plus its associated condition set Cij,
create a new node Nuwp. The condition set Cuyp is defined to be Cij union the assertions
of Ri minus the retractions of i Add an edge from Nij fo Nup. I such a node Ny,
Cumyp is identical to an existing node and condition set, then do not add a new node, but
insert a new edge from Nij to Nmp (unless this edge already exists also.)

Step 3.: extensions

repeat

fori= 110 Nedo
begin
forkin lton do
Step 3a.: Consider all combinations of k nodes whose RHS conditions plus associated
condition sets satisfy the LHS conditions of R; while no proper subset of this
combination satisfies these LHS conditions. For each such combination, add a new
node Nij whose condition set is the union of the k condition sefs union the
assertions of Ri minus the reiractions of Ry, and where j is defined as an integer one
greater than the largest x such that Cix is an existing condition set. I k > 1, these
rules form an "AND" group. If this pair of new node and condifion set are

identical To an existing pair, then do not create a new node, rather add an edge.

Step 3b.: Connect this new node to all the nodes corresponding fo the condition sets in
the combination of k nodes from step 3a. If k > 1, use the AND notation on the
incoming edges to denote this.

Step 3c.: If any of these antecedent rules is not connected to the ferminating node, and
is independent from at least one other rule in the condition set, and there is no other
edge leading from this node, then add an edge connecting this node to the
fermunating node.

end for i
end for i
uniil no new nodes or edges are added to the graph
Step 4.: For every node that has no edges leading out from it, add an edge to node
Ne[KIPER9Z].
The above algorithm will be modified to be used in the Graptool program.

5. GRAPTOOL PROGRAM

Originally, this program was named Graphtool because it is a computer tool which has
been developed based on the logical path graph algorithm. However, the DOS operating
system does not allow any file name to be more than eight characters long. The word
Graphtool has nine characters. Therefore, the character h was taken out from the word
Graphtool to make the eight character requirement. The name of this software then has

become Grapiool.

Program objective
Graptool was designed as a software tool which would be able to use the logical path graph
algorithm for the structural testing of a rule-based expert system. The expert system that
will be used with Graptool is called CLIPS. Graptool reads a CLIPS rule base and
converts it into Graptool format. After all the conversions, Graptool applies the logical
path graph algorithm to the Graptool format rule bases for festing the CLIPS rule-based
structure. The results include the following:

1) Graptool.wrk file which contains the CLIPS rule bases after standardized processing,

2y Graptool.rul file which contains CLIPS rules in Graptool format.

3) Grapiool.fac file which contains CLIPS initial facts in Graptool format,

4y Graptool.err file (optional) which contains process and ervor messages during

software execution.

5} An information file which contains resulis of the rule-based structural festing,

W

Graptool functions
Graptool software was divided into four sections: initialization section, conversion section,
preparation section, and an application section. A brief description and outline of each
section follows:

The initinlization section will prepare the end user and Graptool software iisell for

program processing. Functions in this section include the following:
1) To display a brief description of the Graptool software to the end user.
23 To initialize all the important variables.
3) To set up the working directory.
4) To open the CLIPS rule-based file, the error file (Grapiool.err), the working files
(Graptool fac, Graptool.rul, and Graptool.wrk), and the information file.
The functions involved in this section inchide the following:
a) void Programintroduction{void})
by void InitialValue(void)
¢} void SetWorkingDirectory({char®)
dy void OpenTheFiles{char®)
The conversion section is used to standardize and convert the CLIPS rule bases and
initial facts into Graptool format. Functions in this section include the following:
1) To standardize the CLIPS rule bases to become the same format.
2) To check for possible critical errors in the CLIPS rule bases.
3) To convert the CLIPS rules and initial facts into Graptool format.
The functions involved in this section include the following:
a) void Read TheRulebaseInToWorkingFile(void)
by int ReadRuleAnd FactFromWorking File(int)
¢) void ConvertRulebaseToGraptoolFormat(int)
The preparation section will prepare the initial facts and rule bases for rule-based
structural testing. Functions in this section include the following:
1) To read the imitial facts from the Graptool.foc file inio the fact_base array. If initial
facts do not exist in Grapiool.fac, the user will be asked 1o enter initial facts.
23 To read the Graptool format rule bases from the Grapiool.rul into a rule_base
array.
The functions involved in this section include the following:
ay void PreparelnitialFacts(void)
b} void ReadRulebaseFromWorkingFile(void)
The application section will apply the logical path algorithm to fost the rule-based

structure. Functions in this section include the following:

o
Lé

1) To search the rule_base array for a rule whose conditions have been satisfied by the
fact base. This rule 18 called a working rule,

2y To generate the new node and iis condition set.

33 To display the list of node connections and store that list in the selected information
tile.

4y To do simple rule-based analysis.

The functions fnvolved in this section include the following:

ay char *SearchForTheWorkingRule(int*)

b) void AsseriNew¥Wact(char®)

¢) void RetractOldFact(char®)

) void NodeGenerator{veid)

¢) void DisplayTestResult(void)

1) void FinalAnalysis (void)

Any more details for each function can be found in appendix b.

Extra procedures
In order to understand the Graptool program, two extra procedures have been added to
make the program execute smoother and easier to use. These two extra procedures are the

counting method and the Graptool format.

Counting method
The counting method was used for identifving the location of each character in the rule

base. This method has been used frequently in the ReadTheRulebaseInToWorkingFile

and ReadRuleAndFaciFromWorkingFile functions. The counting method works in two

wavs ag illustrated in the figure below:

i
(detrule rule one
2 t
%, o 4 oy iy ey e M Ty
73 - (pondition-one "esting 7y V7)
2 3 21
(assert {condition-two))
2 1o

{retract 7x}}

Figure 1. Counting method,

The counting method can recognize a character that is inside a block by first assigning

zero 1o a variable called parenthesis counter which is identified as the parenthes_count

o
foi

variable inside the ReadTheRulebaselnToWeorkingFile function and the

ReadRuleAndFactFromWerkingFile function. Graptool will add one to the parenthesis

counter cach time it finds an open parenthesis and subiract one each time it finds a closed
parenthesis. By doing this, Graptool can identify the position of each character relative to a
block. In the figure 1 above, the question mark in front of x has a number of one¢ in the
parenthesis counter, which means that it is a part of the retract index. The question mark
in front of z has a number of two which means that it is part of a single field variable. The
equal sign has a number of one in the parenthesis counter which means that it is a part of
an CLIPS arrow. The parenthesis counter will become zero again at the end of each rule
base.

The counting method can recognize a character within quotation marks (string field)
by first assigning zero to a variable called quote counier which is identified as
quote_count variable. Graptool will add one to the quote counter each time it finds a
guotation mark. In order to determine whether or not a character is inside quotation
marks, Graptool will divide the quote counter by two. If the dividing remainder is zero, if
means that a character is not inside quotation marks. If the remainder is one, it means that
the character js inside quotation marks. However, if the character is a quotation mark and
the remainder is one, then that quotation mark is the beginning of the string field.
Similarly, if the character is a quotation mark and the remainder is zero, then that quotation
mark is the end of the string field.

Graptool format

One of the purposes for developing Graptool is to test the rule-based structure of a large

collection of rule bases. Since computer memory is limited, Grapiool format has been

created 1o save memory. The Graptool format procedures are the following:

1. Graptool will replace the CLIPS defrule, deffacts, assert, retract, and arrow (=>} with
a single unprintable character. The unprintable characters are DEFRULE,
DEFFACTS, CONDITION, ASSERT, RETRACT, and LHSRHS.

. In the Graptool format, a space is used as the separation between the fields inside the

Lot

block. An open and closed parentheses is used as the beginning and end of a block.
Therefore, Graptool will replace a space, an open parenthesis, and a closed parenthesis
with Q SPACE, O PAREN, and C_PAREN characters, respectively.

. The CLIPS command and, or, and not in the logical pattern block will be replaced by

Lod

&, |, and ~ , respeciively.
_ The end of the rule will be identified by the ENDRF character and the end of the imtial
fact will be identified by the ENDARRAY character.

e

For more details about any of these replaced characters, see appendix a.

v
i

| DEFRULE {rule one) CONDITION&({condition-one "festing Vv 72)
LHSEHS
E ASSERT{condition-two) RETRAC T condition-one "testing 7" 7z ENDRF

]

Figure 2. Graptool format.

Figure 2 above 1s the previous figure 1 in Graptool format.

6. INSTRUCTIONS FOR USING GRAPTOOL SOFTWARE

Graptool is a vser friendly software which contains easy instructions for the end user to
follow. Although there are some limitations which will be discussed later, Graptool can
handle the following without modification: LHS literal patterns, wildcards (single and
multifield), variable (single and multifield), constraining fieids, logical operators, and
constraining patterns. For the RHS, Graptool does the retract and assert. Anything else
in the RHS will be ignored by Graptool. FExamples of how io use Graptool are shown
through execution of the block clp CLIPS rule base file in [RILES], pages 423-24.

The objective of block.clp rule base is to rearrange the stack of blocks into a gold
configuration with the minimum of moves. The block.clp rule base can be modified into
blockl.clp. In blockl.clp, the print statements (printout t...) from block.clp were changed
into assert fact statements. The source code of the Alock.clp 1s shown below together with
the block! .clp

{deffacts initial-state {deffacts initial-state
(stack AB) {stack & B)
{stack D E F) (stack D E B}
{move-goal { on-top-~of) {move-goal C on-top-of E}
{stack)) {stack})
{defrule move-direcily { defrule move-directly
?goal <- (move-goeal 7blockl on-top-of Tblock2) 7goal <- (move-goal Yblockl en-top-of ?block}

ack-1 <~ {stack 7blockl $7restl) 7stack-1 <- {stack Thlockl $7resil)
stack-2 =~ (stack TbhlockZ B7rest2) Istack-2 ~- {stack Tblock2 $7rest2)

kret;“ act Tgoal Tstack-1 Zstack-2) {retract 7 'Oai 7 acﬁx }L "“tﬁl?ikz}
assert (stack $7resti)) ams

3 { fockl 7block? $7rest2))
{printout £ Thiockl " move ontop of ¥ Thlock2 "7 orli))

block? " erif)})

BLOCK.CLP SQURCE CODE BLOCKILCLP SOURCE CODE

{defiute move-to-floor (defrule move-to~floor
Tgoal <- {move-goal Thlock? on-top-of floor) Tgoal < (move-goal Thlockl on-top-of Hloor)
Pstack-1 <~ {stack ?block! $7rest) Patack-1 <~ {stack Thlock! B7rest)

{retract 7 {retract Tgoal Tstack-1)
{assert { {assert (stack Thlockl)
{assert {stack §7 { vt (stack B%rest})

{printout £ Thlockl ¥ move on top of floor” crlf)) fgssart (prinfout t 7 e
{defiule clear-upper-block {defrale clear-upper-block

{move-goal Thlockl on-top-of 7} (move-goal Thlockl on-top-of 7)

{stack Tiop 57 Tblockl §7} {stack Tiop 87 7blockl 87}

{assert {move-goal Yiop on-top-of floar))} {assert {move-goal ?top on-top-of floorh}
{defrule clear-lower-block {defiule clear-lower-block

{move-goal 7 on-top-of thiockl} {move-gnal 7 on-top-of 7biockl)

{siack ?top $7 blockl $7) {stack Ttop $7 Tblockl $7)

{assert {move-goal Top on-top~of floor)}) (assert {move-goal top on-top-of floori)}

BLOCK.CLP SOURCE CODE BLOCKLCLY 80URCE CODE

An example of the blockl.clp sequence of execution is shown below with the sequence

of screens that the end user will encounter during Graptool execution. These screens will

have a sample end user response when it is required and will move onto the next screen
resulting from that particular response. The user response will be inserted in bold
characters. The first screen is the information screen which will continue to be displaved

uniil the end user presses a key:

PROGRAM OBJIBECTIVE.. Graptool ir a software tool based on the logical path graph

algotithm. This software will read the CLIPS rule base and convernt & into

Graptoo! format. After the conversion is findghed. the program will apply the

iogical path graph aigorithim to the Graptool format for testing of nule-based

struchure. The results of this tool are the following:

1. GRAPTOOL. WRK contains the CLIPS rule base after Grapiool has eliminated the
unneceszary functions or commands from the original rule base.

2. GRAPTCOOL RUL containg ruler from the nide base in Graptool format.
GRAPTOOL FAC contains initial facts from the sule base in Graptool format.

o

EXeCUION.
. The information file contains the results of male base testing. A user can
select amy file name except the CLIPS rule base file name, and the file
extension cannot be “CLP. Ifthe end user makes an mvalid name selection,
Graptool will select a2 nniqgue file name which starts with T

L=

FINAL NOTE: Al five files will be saved in the selected working directory.
WARNING..: COMPUTER WILL AUTOMATICALLY STOP EXECUTION IF IT FIND ANY ERROR.

Press aiy Key to continne. ...

* THE CURRENT WORKING DIRECTORY -»

Do you want to change the working directory {N)? Y

HMAKIMUM PATH INCLUDING FILE NAME IS 30 BYTES,

Enter the drive of new working directory (A, B, C, etey €

Enter the path of new working directory (\ for ooty BORLANDCWPROGRAM
#* THE CURRENT WORKING DIRECTORY -»= CNBORLANDCOPROGRAM

Do you want to change the working directory (Wy? N

Enter the name of CLIPS rule base file -> BLOCKLCLP
Enter the name of informaiion file (option) -> BLOCKLINF

. - — 7
Do you want to open the error file {(N)? ki

The fact string size is 80 bytes.

The fleld siring size is 50 byles.

The role arvay size is 1024 byies.

The fact_base array size is 300 byies.

The variable array size is 2000 byles.

The selected working directory is CIBORLANDCPROGRAM
The CLIPS mile bage file is BLOCKI1.CLP

The information file is BLOCKLINE

The error file is GRAPTOOL ERR.

s 4 4 4 4 4 4 o o 4 o o e o b o 1 4 o s s e s oo s oo o o ok e e e e sk s e ke s o

Press any key to confinmue

The following is an execution screen which will show the sequence of conversion of
CLIPS rule base into Graptool format. It will show the name of each imtial fact and rule,
and provides some information about reading rules and facts. This information includes
error checking messages and conversion messages. At the end of this screen, the computer
will ask if the end user wants to add any extra facts to the fact base. The response, m this

case, 1§ yes.

- Read CLIPS role base into the working Ble -

- = - Complete the reading -~ - -

** Converting rile bases fnto Graptool format.

FINISH READING ... deffacts intial-state
#4 DOES MOT DETECT ANY EREOR IN READING PROCESS **

20

FINISH READING.....defiule move-directly

#+ DOES NOT DETECT ANY ERROR IN READING PROCESS #*
Converting condition 1o Graptool format. .

Convert assert and retract to Grapiool format. .

FINISH READING.... defrule move-to-floor

DOES NOT DETECT ANY BERROR IN READING PROCESS **
Comverting condition to Graptool format...

Convert assert and retract to Graptool formal...

FINISH READING.....defrule clear-upper-block

t DOES NOT DETECT ANY ERROR IN READING PROCESS #
Converting condition to Graptool format...

Convert agsert and retract to Graptool format. .

e N0 RETRACT IN THIS RULE. min
FINISH READING. .. defiule clear-lower-block

#+ DOES WOT DETECT ANY ERROR IN READING PROCESS **
Converting condition to Graplool format. .

Converi assert and retract to Graptool format...

NI NG RETRACT IN THIS RULE,

#% Converting process I8 finished.

< Start reading facts from Craptool fac >>>>
FINISH READING DEFFACTS. . initial-state

< End reading facts from the Graptool.fac -

Do you want to add the extra facts to fact base (MN)? Y

This is the entering of exira facts screen. The first extra fact entered is an (initial-fact).
The computer will not accept this fact because it already exists inside the fact base. The
reason for this is that Graptool automatically adds an (initial-fact) to the fact base because

hlockl.clp rule base contains the deffacts construct.

sk stk sk d sk TRADORTANT INSTRIJOTIO NG #ehck s satolesiesfidossdiok
The size of the fact_base array is 500 bytes.
BVERY INITIAL FACT MUST §TART AND END WITH A PARENTHESES.
Otherwise the computer will not accept the given fact.
PRESS RETURN (ENTER) AFTER FINISHING INPUT A INITIAL FACT.
Otherwise the computer will not start the fact process.
The computer will accept ONLY ONE INITIAL FACT AT A TIME,
The syniax of the fact is the SAME as the fact of CLIPS.

s COT STRING CANNOT BE LONGER THAN 80 BYTES. !
H FIELD CANNCOT BE LONGER THAN 60 BYTES,
“* YVou have 426 bytes lefl in the fact_base array. *%

{initial-fact)
Processing initial fact ...

ALREADY EXISTS. <Il>

[
sl

The second exira fact entered is a (block red | blue). The computer does not accept

this fact because it contains a logical operator or.

EACH FIELD CANNOT BE LONGER THAN 60 BYTES. 1t
1 have 426 bytes lefl in the fact base arragy. ¥

Enter the fact string
12345678901 23456 78001 23456 TROD1 2343678001 2345678901 23455T8001 23436 7800123436789

{block red | blue)

Processing initial fact ...

stk Y
¥

ERROR! GIVEN FACT HAS 5YNTAX ERROR.

The last extra fact entered is (block red). The computer accepts this fact because each
field is valid (if weord, number, or string) and does not duplicate any fact in the fact base.
The (block red) fact was added to show that Graptool allows the end user to add extra
facts to the fact base. However, this fact does not affect the result of rule-based structural

testing because it will not be used by any rule.

HEFACT STRING CANNOT BE LONGER THAN 80 BYTES.

EACH FIELD CANNOT BE LONGER THAN 60 BYTES. It

** You have 426 bytes left in the fact base array. ™™

Enter the fact string ...

1234567890123456 78201 2345678001 2345678001 23436 78901 2345676901 1345678501 23456789
(block red)

Processing initial fact

HAS BEEM ACCEPTED. <*%>

If the end user does not enter an open parenthesis, the computer will assume that the
end user wants to stop entering extra facts. Affer that, the computer will ask the end user
to confirm the entering of exira facts. If the end user enters Y, the computer will assume

thai the end user wants to re-enter every fact again. In this example, N was entered.

HEACT STRING CANNOT BE LONGER THAN 80 BYTES. 1
HEACHFIELD CANNOT BE LONGER THAN s0 BYTES. H
** You have 415 bytes left in the fact base array. **

Enter the % 3
12345678901 2345678901 2345678001 234 56TR901 2345678001 234567001 23456 TRI01 23456789

o

ALL INPUT FACTS WILL BE DELETED IF YOU SELECT Y. @

Do you want to re-enter the facts in fact base (N)? [N

To begin the rule-based structural testing reguires the end user fo enter Y. This 18 also
the last chance for the end user to stop the festing process by enfering anything besides Y

or V.

prsE]) EVERY THING 1S READY FOR TESTING. 111

#* Enter ¥ to start the rule-based testing process..> ¥

The end user has the option of changing the order of refraction and assertion of facts.
The defauli selection involves the asserfion of facts to the fact base before refraction.

Entering N will result in retraction before assertion.

Enter N if vou want (FACT BASE - RETRACT U ASSERT),
or anyihing else (FACT BASE U ASSERT - RETRACT).. > Y

The rest of these screens are the result of rule-based structural testing by the logical

path graph algorithm.

w#% Starting rule base fegt *%%

Rule number (1 the mitial-state.

Rule number 1 s the move-directly.
Rule number 2 is the move-to-floor.
Rule number 3 is the clear-upper-block.
Rule nuanber 4 is the ¢lear-lower-block.

Working NODE(Q, 0)

It's condition setis...

(stack AB)

(stack DEF)

fmove-goal C on-top-of B}
{stack)

g nodes:

MNODEG, O
(stack ABC
{stack DET)
{move-goal C on-top-of E)
(%f {g\i

{move-goal A on-top-of floor)

[
L

NODE((4, 5?}
{stack A
s,\smck ¥} E:

{move-goal C on-top-of B}
{stack)

(imifial-fact)

tblock red)

{move-goal D on-top-of floon)

Working NODE(G, O)
It's condition set 15
{stack A B C)
(stack DE F)
{move-goal O on-top-of)
stack)
{initial-fact)
tblock red)
{move-goal A on-top-of foor)
- and connect to the Bllowing nodes:

NODE(2, 0

{stack D E Fy
{move-goal T on-top-of)}
(stack)

(initial-fact)

tblock ved}
{stack A)
(stack B)

{primtout t A "move on top of floor.” crlf)

NODE3, 0)

{stack A B Oy

(stack DEF)

(move-goal C on-top-of 1)
(‘r&cjﬂx?

{nitial-fact)

R
{
(
{

move-goal A on-top-of floor)

W%’W@E 4, iz

{move-goal C on-top-of E}
(stack)

{mutial-fact)

Block ved)

{move-goal A on-top-of foor)
{move-goal D on-top-of foorn)

Working NODE(4, 0

It's condition set is...

ack ABC)

ack DEF)

sal C on-top-of E)

{move-g
{stack)
{initial-fact)

(block red)

{move-goal D on-top-of floor)

_and connect to the following nodes:

MODER, 1

(stack A B)

(move-goal C on-top-of E)
(stack)

{(initial-fact)

(block red)

{stack D)

(stack E F)

(printout t D "move on top of floor.” erlf)

NODEGE, 1)

(stack A B C)

{stack DE F)

{move-goal C on-top-of B}
{stack)

{(initial-fact)

(block red)

(move-goal D on-top-of floor)
{(move-goal A on-top-of floor)

NODE4, O
(stack ABC)
{stack D E)

{move-goal C on-top-of £}

initial-fact)
7 S
DlocK peif

(move-goal D on-top-of floor)

dng MODE(Z, O3
It's condifion set is. .
ckDEF)

move-goal C on-top-of E)

g, e,
e et e

(printout t A *move on top of foor.” orify
_and conmect to the following nodes:

[
[

{(stack Al

{stack B)

{printout Mfz "move on top of floor”
{move-goal B on-top-of floor)

il

{R
s
I

”&I UF(L
ack D Q %‘*“)
move-goal C on-top-of E)
i\b?ﬁcﬁ&»k

(initial-fact)

(hiock red)

(stack f‘u

stack B O)

{prntout T A "move on top of floor.” orlh)
{move-goal D on-top-of floor)

Worlang NODE(4, D
It's condition set is. .
(stack A B)
{stack DEF)
{move-goal C on-top-of £}
(stack)
{(initial-fact)
thlock red)
(move-goal A on-top-of floor)
{move-goal D on-top-of floon)
..and connect to the following nodes:

NODE{(Z, 2)

(stack DE)

{move-goal C on-top-of E
{stack)

{mitial-fact)

(Biock red)

(move-goal D on-top-of floor)
tack A)

{stack B)
(printout t A “move on top of floor.” orih)

' on-top-of B

(mitial-fact)
(block red)
{move-goal A on-top-of floon)

26

{move-goal D on-top-of floor)

NODE(4, 1)

(stack A B ()

(stack DE)

{move-goal C on-top-of £)
(stack)

{initial-fach)

fhlock red)

{move-goal A on-top-of floor)
{move-goal I on-top-of Hoor)

Working NODE(2, 1)

If's condition setis. .

{stack A B O}

{move-goal C ontop-of B)
{stack)

{initial-fact)

(Block red)

{stack I

{stack £ F)

{prntout t D "move on top of floor.” crth
-.and connect to the following nodes:

NODE3, 3)
{stack AB C)
{move-goal C on-top-ol E)
{stacky

{iratial-facty

(bl 7

{printout t D "move on top of floor.” ¢ilf)
imove-goal A on-top-of oor)

~

(stack A B O
ck DEF

wve-goal C on-top-of B)

{(stack)

{minal-fact)

(block red)

{move-goal I on-top-of floor)
{move-goal A on-top-of floor)

-.and eonnect {o the following nodes:

FC on-top-of B)
(stack)
{inifial-Tact)

(block red)

bd
d

{move-goal A on-top-of i

{stack D)

stack E F)

prirdont £ 1 "move on top of floor" olf)

NODEQ(3, 1)
mﬁu&:ﬁ z% B (, 3

(stack 1 E Fy

(move-goal C on-top-of B}

£ & m,&,«L}

(inttial-fact)

(hlock red)

{move-goal D on-top-of floor)
{move-geal A on-top-of fioor)

NODEME, 1)

{stack AB)

{(stack D E F)
{move-goal C on-top-of E}
{stack)
{inmitial-fact)

(bic
{move-goal D on-top-of floor)
{move-goal & on-top-of Hoor)

ke red)

Worlang NODE é? 2}
E s condifion set 18
(stack D E F3
{me mgs;ai C on-top-of B}

mﬁ wal-fact)
fﬁi&w wsfx

ij‘sm@}; BO

{printout t A "move on top of foor” orlf)
{move-goal B on-top-of floor)

—and connect to the following nodes:

n-top-of E}

(bioek red)
{stack AF
i £ A "move on top of Hoor." aiif)

"ove on top of fleor” ¢rif)

{(stack)y

{(imitial-fact)

(Block red)

{stack A)

{stack B C)

{printout t A "move on top of floor
{move-goal B on-top-of floor)

NODE(, 3)
{stack DE F)
{move-goal C on-top-of £}
(stack)
{(wutial-fact)
{fﬂw S é’u;
(stack A)
(stack B (%)
(printout t A "move on top of floor”
{move-goal B on-top-of floor)
{move-goal D on-top-of door}

Working NODE(4,
It's ¢ cms:imun setis.
(stack DE ¥
{1 w&g@& L_/ on-top-of E)

2)

{stack)
{(inttial-fact)
{block red)

{stack B (3
(printout t A "move on top of floor."
{move-goal T an-top-of flocr)
..and connect
NODE(Z, 5)
{move-goal C
(stack)
{mfial-f;

on-top-of B}

(bia j
{stack A}
{stack B &)

{printeut t A "move on top of floor”
{stack D)

{stack E F)

(printout t D "move on top of floor.”

NODE(3, 4)
(stack DE)
{move-goal C
{stack)

' on-top-of B)

Corlf)

" erlf

to the following nodes:

crlf)

orihy

{printout t A "move on top of floor.” erlf)
{(inove-goal D on-top-of floor)
{move-goal B on-top-of floor)

NODE(4, 1)

(stack DE T

{move-goal C on-top-of B}

{stack)

{mnitial-facty

(block red)

{stack A)

(stack B ()

{printout t A "move on top of floor." ¢rlh
{move-goal D on-top-of floon)

Werking MODE2, 2

or setis..

(stack DEFy

{move-goal C on-top-of £}

{(stack)

(mutial-fact)

tblock red)

{move-goal D on-top-of floor)

(stack A)

{stack B)

{printout £ A "meove on top of floor.” crlf)
.and conneet to the following nodes:

NODE(2, 5)

{move-goal C on-top-of F}

{stack)

(tial-fagt)

(block red)

(stack A)

stack B O

{printout t & "move on top of floor.” ¢l

{stack E T
{printout t D "move on top of floor.

" ertfy
NODES, 4

ack DET)

{move-goal C on-top-of £}

{stack)

{(mtial-fact)

(block v
{move-goal D on-top-of floon)

{stack A)

{(stack B ()

{prntowt £ A "move on top of foor” oD
{move-goal B on-top-of fleor)

(s

{move-goal C on-top-of E)

{stack)

(rtial-fact)

fblock ved)

{move-goal D on-top-of floor)

{stack &)

(stack B)

{prntout t A "move on top of floor.” ottty

Working NODEG, 3)

It's condition setis...

{stack A B)

{move-goal C on-top-of B}

(nital-fact)
(Block red)
{stack D

(stack £ F)

{prmtout t D "move on top of floor.” ¢rif)
{move-goal A on-top-of floor)

-.and connect to the following nodes:

NODE(, 5)

{move-goal C on-top-of B}

{stack)

(iitial-fact)

(hlock red)

(stack 1)

(stack E F)

{printout t D "move on top of Hoor” orlf)
{stack A}

{stack B C)

(printout t A "move on top of floor.” arth

{initial-fact)
fock red)

{stack D}
(stack EF)
rintout { I "move on top of Hoor” crlf)

(g2

{move-goal A on-top-of floor)

s cong

{stack A B O
{move-goal C on-top-of &)
{
{mital-fact)

{block red)
{move-goal A on-top-of floor)
{(stack D}
(stack E B
(prmtout t D "move on top of Hoor.” crlf)
and connect to the following nodes:

MNODE®, 5
{move-goal C on-top-of £}
{stack}
(imiia’i-facﬁ
block red)
%MQ\)
{(stack E)
{printout t D "move on top of floor.” ¢rlf)
(stack A ‘}
{m ckBC
{printout t L\ "move on top of floor.” orth)

NODEG, 3)

(stack AB)

{move-goal C on-top-of E)

{stack)

{initial-fact)

(block ved)

(move-goal A on-top-of floor)

{stack)

(stack E F)

{prmntout t D "move on top of floor.” crlf

Working NODE(2, 43

I's condition setis...

{stack DEF)

{fmove-goal C on-top-of E)
{stack)
{irgfial-fact)

{Block red)

{stack A

{prinfout t A "move on top of floor.” cilf)
(stack B)

{stack ()

{printout t B "move on fop of floor." crif)
and cormect to the llowing nodes:

NODEE, 4
{stack DE)
{move-goal C on-top-of E
{sta

{initial-fact)
ff?gc‘e ke red)
{stack A
m‘mtf

,v A "move on top of floor” o)

g

o

{stack C)
{(printout t B "move on top of Hoor” orlf)
{move-goal D on-top-of floor)

3

[

Worlang NODE(
It's condition setis..
(stack DEFy

{move-goal C on-top-of E)
{stack)

(irifial-fhet)

tblock red)
{stack A)
{stack B)
{prmfout t A "move on top of floor " crif)
{move-goal B on-top-of floor)
(move-goal D on-top-of floor}

-.and connect to the following nodes:

NODE(Z, 63

{stack D E F)

{move-goal O on-op-of B
{(stack)
(mitial-fact)
thiock ved)
{stack A)

{
i

printout t A "move on top of foor” orlf;
move-goal T on-top-of floor)
(stack B}

20

1)

{stack DEF)

{move-goal on-top-of B)

{stack)

(nitial-fact)

(block red)

{(stack &)

(stack B O

{printout t A "move on fop of foor.” o)
{move-goual B on-top-of floor)
{move-goal I3 on-top-of foor)

NODE(4, 3)
(stack DE)
(move-goal C on-top-of E)

{ A "move on top of Hoor” el
{move-goal B on-top-of floor)

fae

s

{move-goal D on-top-of floor)
Working NODE(2, 5)

It's condition sefis..
{mmmy;;:mﬂ C on-top-of B}
(stack)

{mitial-fact)

*P‘?ﬁa ﬂ:’ Pﬁ'd;

{pmimut t A "move on top of floor.” orlf)
{stack 1)

(stack E F}

{prmtout t D "move on top of floor." erif)
..and connect to the following nodes:

NODE3,
{move-goal C on-top-of E)
{stack)

(mitial-fact)

thlock red)

{stack A)

{stack B

(printout t A "move on top of floor.” ¢rlf)
(stack [}

{stack EF)

{prinfout t I "move on top of floor” o)
(move-goal B on-top-of floor)

5

Worlking NODE(G, 4)

It's condition set is

(stack DE F)

{move-goal C on-top-of E)

{(stack)

(rinal-fact)

{block red;

{stack A)

(stack B O

{printout t A "move on top of floor.” orlf)
{move-goal D on-top-of floor)
{move-goal B on-top-of floor)

-.and connect to the following nodes:

NODE(2, 7

{move-goal C on-top-of B}

{(stack)

{initial-fact)

(block red)

{(stack A}

{stack B)

{prmtout t A "move on top of floor.” o)
{move-goal B on-top-of floon)

{stack D)

NODE(3, 43

{stack D E F}

{move-goal C on-top-of B}
{stack)

{(inifial-fact)

thiock red)

{stack A}

{atack B O

(prniont t A "move on top of foor.” ot
{move-goal D on-top-of floor)

' e-goal B on-top-of Hoor)

C on-top-of E)

{stack B O

(printout t A "move on fop of foor." orlf)
{move-goal U on-top-of floor)
{move-goal B on-top-of floor)

Working NODE(4, 4)

If's condifion set is. .

{stack D E I3

{move-goal C on-top-of B}

{stacky

(nitiak-fact)

(Block red)

{stack &)

{prinfout T A "move on top of Hoor" orlf)
{(stack B)

(stack C)

(printout t B "move on top of Hoor " orlf)
{move-goal D on-top-of floor)

..and conmest 1o the following nodes:

NODE(®Z, 83

{move-goal C on-top-of E)
{stack)

{mitial-fact)

thlock red)

{stack A)

prmtout t A "move on top of floor” ofdf)
tack By

on top of floor.” et

{stack I}

Td
LAy

{(stack E F}
(printout t D "move on top of floor.” erlh)

NODE(4, 4)
&*«‘Q}L DEF)
{move-goal C
{stack)
{(inital-fact)
(Block red)
{(stack &)
(printout t A "move on top of floor.” erlf)
{stack B)

{stack)

(printout £ B "move on top of floor.” o1l
{move-goal D on-top-of floor)

on-top-0f E)

Working NMODE{(2, 6)

It's condition sef1s...

(stack DE F)

{move-goal C on-top-of B

(stack)

E/:HL?ELQ fact)

(block red)

{stack A)

(printout t A "move on top of floor.” crf)
{move-goal D on-top-of Hoor)

(stack B)

(stack C)

{printout t B "move on top of floor.” a1l
..and connzct to the following nodes:

NODE(Z, 8)
{move-goal C on-top-of B}

{stack)

{(initial-fact)

(block red)

(stack A)

{printout t A "move on top of floor.” crlf)
{(stack B}

(stack C)

{primtout t B "move on of floor.” crlf
(stack D)

{stack EF)

{printout t D "move on top of floor.” crif)

FODEA, 4
(stack DE)
{move-goal C on-top-of B)
{stack)
{initiad-fa
(hlock s

{stack A)

{printout t A "move on top of floor.” cilf)

onl D on-top-of floor)

éczi B "move on top of foor." ef)

Working NODE(3, 5}
ﬁ & r@m%ﬂ@ﬂ setis..
re-goal O 253@ -0f E)

(printout t A "move on top of floor.” crlf)
Cstack D

(stack E F)

(printout t D "move on top of floor.” crlf)
{move-goal B on-top-of Hoor)

_and connzet to the following nodes

e-goal C * on-top-of E)

itial-fact)
m%@ﬁw red)
{(stack A)
{printout t A "move on top of floor.” crlf)
{stack D}
{(stack E F)
{printout t D "move on top of floor." cilf)
{stack B}
{stack C)
{printout t B "move on top of Hoor." crlf}

= on-top-of B

stack B C)
M sintout t A "move on top of floor.” ertf)
{stack 1)
ck E T
{printout t D "move on top of floor.” erlf)
@,NS&,M@% B on-top-of floor)

Working NODE(2, 7)
I's condition setis...
{move-goal

(w
-

(stack A)

{stack B C)

(prirttout t A "move on top of foar.” crlf)
{move-goal B on-top-of floor)

{stack D)

{stack E F)

(printout t D "move on top of floor.” ¢rlf)
-and conmect to the following nodes;

NODE(Z, 8

{move-goal C on~top-of E)

{(stack)

{mihal-fact)

(block red)

{stack A)

(prinfout t A "move on top of floor™ ¢l
{stack I}

(stack E F)

{printout t D "move on top of floor " ¢rlf)
{stack B}

(stack C)

{(pontout t B "move on top of foor.” crlf}

NODE3, 5)

{move-goal C on-top-of £}

{stack)

{initial-fact)

(block ved)

stack A

{stack B ()

{printout t A "move on top of floor.” arlf)
{move-goal B on-top-of floor)

{stack I

{stack B F}

(printout t I "move on top of foor.” ol

Working NODE(Z,)
s condition set s,
{move-goal C on-top-of B3

{stack:

{(initial-fact)

(Block redi

(stack A)

{primfout t A "move on top of floor.” orlf)
{stack B)

{stack)

{(prmtout t B "move on top of floor” orif)

{printout t D "move on top of foor." cilf)
-and eonmect to the following nodes:

Lo
=<

NODE(, 03

(stack)

{ingtial-fact)

fhlock red)

{stack A)

{primtout £ A "move on top of foor.” erlf)
{stack B

(printout £ B "move on top of Hoor.” orli)
(stack D

{printout t D "move on top of floor.” erll)
(stack CEF)

{printout t C "move ontop of E . erlf)

Worlang MNODE(L, Oy

It's condition sef1s...

{stack)

{(mifial-fact)

(hlock red)

{(stack &)

{printont t A "move on top of foor." ortf)
(stack B}

{printout t B "move on fop of floor.” ertf)
{stack I

{prmtout t D "move on top of floor” orll)
{stack CEF)

{prtout £ C Ymove on top of " E .1 orll)
~and conmest to the following nodes:

TEEMINATION NODE
#5% Rule base test1s finished *%*
ookl Rilebase Structural Analysis HossssRsEERR

RULE NUMBER - 0
NUMBER OF NODES - §
NUMBER OF DUPLICATE NODES - 6

RULE NUMBER - 1
NUMBER OF NODES - |
NUMBER OF DUPLICATE NODES - 0

RULE NUMBER - 2
NUMBER OF NODES - 15
NUMBER OF DUPLICATE NODES - 6

RULE NUMBER - 3
NUMBER OF NODES - 17
NUMBER OF DUPLICATE NODES - 11

39

RULE NUMBER - 4
NUMBER. OF NODES - 14
NUMBER OF DUPLICATE NODES - 9

Rulebase modifications

Even though Grapiool can handle constraining patterns, it will not handle a complicated
logical pattern block Grapiool allows each rule 1o have three logical blocks, inclusive or,
pattern negation, and explicit and. FEach logical block cannot have logical sub-blocks.
Fach logical operator 1s connected by the AND logical operator. For example, the lefi
hand side logical block is the inclusive or block and has no logical sub-block. See figure 3

below. Graptool has no problem with this logical patiern biock.

{or thght red)
(walk-sign don't walk)
{police say don't wallk))

i
1

i
—

Figure 3. Inclusive or block.

The logical block shown below is also the inclusive or block which has three explicit
and sub-blocks. Graptool will not handle this one. These or logical blocks need to be
modified. The first block contains (police sav walk}; the second contains (walk-sign walk)

and (fight green); and the last contains (wall-sign walk) and (light yellow).

'y . R

| {or (police says walk)

| (and (walk-sign walk)
% {hight greeny)
l

fand (walk-sign w
{hight vellow

As another example, these LHS has three logical blocks. Explicit and block is (n0 car
coming). Inclusive or block contains (police sav walk), (walk-sign walk), and (light red),
and the negation block s (nof light green). Al these three blocks are connected with

logical AND. Graptool has no problem in processing it.

) (110 car cOTming)

{or (police says walk)
{walk-sign wall)

{(hght red)y)

| {not (hght-green})

|
|
;
?

40

In order to modify the LHS logical pattern block correctly, the end user needs know
the AND-OR expression formula such as AV B A O ={(AV BYAN AV C). For

example:

{guery phase)

{defiule defermine-point-surface state

{on (and (working-state-engine does-not-start)
(spark-state-engine trregular spark))
(symptom sngine low-output))

{not (point-surface-state points))

S

Assumpiion..:
A = {{query phase)}

B = {{working-state-engine does-not-start)}
C = {{spark-state-engine irregular-spark)}
D = {{(svmptom engine low-outpui)}

E = {~{pont-surface-state points)}

We can express the LHS of Determine-point-surface-state rule as following:

AMBAC)VDIAE) =(ANEYA (B AC)V D))

= ((AANEYABACYH V {(ANE)ADY)

= {;j‘x ABACH E:} Y (}\ ABRACA B:g

From the final expression called the disjunctive normal form, we will separate the rule

into two paths. Path one will contain the LHS which is expressed as (A AN B N C N E)
Another path contains the LHS as expressed in (A /A B /A C /A D). Both paths will have the

same RHS. The results sre:

{defiule determine-poini-surface state
{gnery phase)

{or { and {working-state-engine does-
not-start)

{spark-state-engine irregnlar spark))
{symptom engine low-cutpui}}

{not {point-surface-state points))

Original

{defrule determine-point-surtace
statel

{suery phase}

{working-state-engine does-not-start)
{spark-state-engine irregular-spark)
{not {point-surface-staie poings)

=

Path 1

{defrule determine-point-surface
state?

{auery phase)

{working-state-engine does-not-start}
{zpark-state-engine irregular-spark)

(sympiom engine low-cutput)

Path 2

The advantage of simplifving the LHS into small paths is that it still mamtains the

original ability of the rule-based structure, and it also provides the clear result of which path

of the rule will be used and performed.

Graptool Limitafions

Since Graptool does not handle any type of input by the end user, the rule base needs to be

modified in order for Graptool to work. There are two modifications that may solve this

input problem.

method.

I . - “
. Program by Chris Orfiz

ic racts star
(start-fact))

4 “heck which mumnber to see iFif is a factorial? {Ask user)

f,dcfﬁnh:‘ start
’start <- (start-fact)

| {retract Pstart)

{printout t crlf "Enter a mumber to see if'1t 15 2 factorial” orlf)
1 (bind Ymumber (ready)
{agsert {factorial Tnumber O Inumber)))

o

: Check number for factorial

{defiule Find Fact
P <- (factonial Yromber Ppass Tstart)
{test (> Ynumber 1))

{retract Inum)
’}iﬂd Ipass (+ Tpass 1)
iaﬂﬂgamnm ={/ Jroamber 7pass) Tpass Tstart)))

{; Factorial Found

orial I ?pass Zstart)

g

Efrc—zt act Yo
(assert {conlinue pmmp
yrtout t ”hzzm?}e; 78

o

5 a factorial " Ppass "1 crtth)

These modifications are the replacement method and the separation

-

‘igure 4. CLIPS rule base to be modified

: Prompt User to Continue

{defrule Confinue Prompt
Fresponse <- {continue prompt)

(retract Presponse)
{printout t ol "Do vou wish to continue (v/n)")
{assert (continue =(read)

. Starf agafn 1fuser wishes {o continue

{defrule Go Again
esponse <- (continue y)

{retract 7response)
{(assert (start-fact)))

Figure 4. CLIPS rule base to be modified {continued).

Replacement method
The purpose of this method is to replace any set of facts in LHS and RHS with a new fact.
This new fact will represent the same thing but will not alter the structure of the rule base.
Therefore, the replacement must be done consistently throughout the rule base. For
example, in figure 4 above, the rule Start, Find Fact and Is Factorial need 1o be
modified. Since there is an endless possibility of numbers that the end user can enfer at the
rule start, those possible numbers are replaced by (factorial) fact. This (factorial) fact will
replace the (factorial.....) fact in Start, Find Fact, and Is_Factorial rule. Even though
9pass and ?start in the Find_Fact rule does not have values, it does not matier because the
ralue of Ppass and Psiart ave a part of the (faciorial.....) fact. The result of this changing

is shown below:

: Check which number to see if' i is a factorial? (Ask user)

{(defrule start
2atart <- (start-fact

{retract Ystart)

(printout t ordf "Enter a number to see 11 s a factorial” crliy
{(bind 2number (read))

{assert {factoriail))

Figure 5. Replacement.

. Check number for factorial

(defrule Find Fact
Pnumn <- {facterial)
{test (> Ynumber 1))

(yetract Pnuam)
(bind Ypass (+ Ypass 1)
(assert ffactorial)y

3

- Factorial Found

{(defiule Is Factornal
Ty <- {faciorial)

{retract Zrmam)
{assert (continue prompt))
{printout t "Number " ?start " 15 2 factonal " Vpass "' erlf)

Figure 5. Replacement (continued).

Separation method

The purpose of the separation method is to divide the rule nto two or three parts
depending on the number of input choices. For example, in figure 4 above, the
Continue _Prompt vule will be modified. The Continue Prompt rule asks the end user fo
enter etther y or # at a prompt. The result of his input will make the computer assert either
{continue y) or (continue n) to the lact base. Since the main goal of the rule-based
structure testing is to determine which rule has an effect on a specific result. Therefore,
the Continue Prompt rule will be replaced by two rules named Continue Prompt-1/2 and
Continue Prompt-2/2. The Continue Prompt-1/2 will assert (confinue v} to the fact base
while Continue Prompt-2/2 will assert (cowmfinue rn) 1o the fact base. By using the
separation method, the rule Go Adgain (which initially did not fire) will fire because its
conditions are satisfied by the condition set of the node that was generated by rule
Continue Prompt-1/2. The node which was created by rule Go Again will cause the rule
Start to fiwre. Since the condiion set of the node which was created by rule
Continue Prompt-2/2 will not satisty any rule in the rule base, this node will have no node

connected to i, The result of this replacing and separating is as follows:

44

rompt User to Continue

G e s e
fods e

(defrule Continue Prompt
Presponse <- (continue prompt}
(retract Presponss)
(prmtout t erlf "Do you wish to continue (v/ni")
{assert {continue =(read)

before separating

5

§ Prompt User to Continue paih 1

5
s . S . ,
| defrule Continue Prompi-1/2

Tresponse <- (confinue prompt)

(retract 7response}

(printout ¢ orll "Do vou wish fo continue (y/0)")

{assert (continue yib

¥

; Promp? User o Continue path 2

{defrule Continue Prompt-2/2
Tresponse <- (continue prompt)
=
{refvact 7response)
{primtout t orlf " Do vou wish fo continue (v/n)'")
{ussert {continue)

after separating

Figure 6. Separation method.

The two methods described above are only some suggestions for solving the input
problem not handled by Graptool. It may nof work in every sifuation, but it does work in
the example above. A creative end user may use similar devices or methods to solve any
further problems that may be encountered. The complete modification of the CLIPS rule

base (ligure 7), the node bisting (figure 8), and the logical path graph (figure 9) are shown:

: Chieck which nomber to see if it i8 a factorial? {Ask usern)

{defrule start

Tstart <~ (start-fact)

{retract Ystart}

{printout t orlf "Enter a number 10 see if # is a factorial® orlf)
{bind ?number (read))

‘ {asseri (fuctorinl)

.
(¥ 41

: Check number for factorial

{defrule Find Fact
Zrgzm <~ fuctorial
{tesi (> mmamber 13)
(retract 7nuim)

{bind ?pass (+ 7pass 1))
faswert (factoriall;)

Prgsn < {factorigl

{(retract Zivam}

{assert {continue prompi}

{printont ¢ "Mumber Ostart * is a factorial ¥ Ppass "1 ety

5

; Prompt User to Continue

éfdefmie Continue FPrompt-1/72
Tresponse <- {continue prompt)

{retract 7response}
{printont t crlf Do you wish to continue (y/n)'")
fassert {continue yi}}

{defrule Continue Prompt-2/2
Tresponse < {continue prompt)

==

{retract Tresponse)
{printont { crlf "Do you wish to conlinue {v/n}'")
{asserf {continue ni)}

; Start again if user wishes to continue

{defmle Go Mr&gam
Fresponse <- {(continue y)

{tetract 7response}
{asseri (start-fact)y)

Figure 7. Complete modification of CLIPS rule bases.

Rule namber 0 15 the intfiai-state.

Rule number 1 s the start.

Rude mummnber 2 18 the Find_ Fact,

Rule nuumber 3 s the s Factonal

Rule maunber 4 is the Continue Prompt-1/2.
Rule number 5 15 the Continue Prompt-2/2.
Rule number 6 1z the Go Agam.

FACT BASE MINUS RETRACT UNION ASBERT

46

Working NODE(0,0)
If's condition sef is
{start-fach)
{initial-fact)
&a ~onnect to the Bllowing nodes:

NODE(LD)
{initial-fact)
{factorial}

Working NODE(L,0)
It's condiion set1s
(initial-fact)
(factorial)
_.and connect to the following nodes:

ODECZ0
mwmzﬁm%mm&w
{tactorial}

NO ﬁ_m@)]
{initial-fact)
{continue prompt)

Working WODE(2,0)

It's condition setis..

{initial-fact)

{factorial)

..and gonnect 1o the following node

i':}

NODE(2
{initial- m&
{factoria

NODEGD
(inatial-fact)
{continue prompt)

Working NODE(3,0)
It's condition setis...
{ritial-fact
{continue prompt)

.and connect to the following nodes:
NODE(4,0)
(rutial-fact)

{continue v

_@Mw;
aw

m

47

Working NODE(4,0)

It's condition set is...

(initial-fact)

{continue v)

_.and connect to the following nodes:
NODE(®,0)

{initial-fact)

{start-fact)

Working NODE(S.0)

it's condition set is...

(matial-fact)

{continue 1}

..and connect to the ollowing nodes:

NO CONNECTING NODE

Worling NODE(6,0}

s condition setis...

(irutial-fact)

{start-fact)

..and connect to the following nodes:

NODE(LG)
{(indfial-fact)
{factorial)

TERMINATION NODE
wokwdd Rodebase Structural Analysis ** %%

RULE NUMBER -0
NUMBER OF NODES - 1
NUMBER OF DUPLICATE NODES - 0

RULE NUMBER - |
NUMBER OF NODES -2
NUMBER OF DUPLICATE NODES - 1

RULE NUMBER - 2
NUMBER OF NODES - 2
NUMBER OF DUPLICATE NODES - 1

RULE NUMBER - 3
NUMBER OF NODES -2
NUMBER OF DUPLICATE NODES - 1

RULE NUMBER - 4
NUMBER OF NODES - |
NUMBER OF DUPLICATE NODES - 0

48

7. WHAT | LEARNED FROM GRADUATE RESEARCH PROJECT

Technical knowledge:

et

fd

fabd

. Background on expert system rule bases
. CLIPS language: how to write a program with it; understand how Grapiool does pattern

matching, assert, and retract

. Logical path graph algorithm in testing rule base siructure

Personally:

t

I learned how to write a technical paper based on others' research and what I could
develop based on the information and concepts from that research. Having to explain
many concepts, I learned more formal English that was required for writing and my
vocabulary knowledge has expanded.

From developing such a large program, I learned how to make a plan for developing it
with specific steps. Even though I encountered many problems, I was able fo rethink
my plan and change my course of action. This resulted in the workable program,
Graptool, and gave me a better sense of what I should consider the next time I write a

program of this size.

1 learned the meaning of the term "user friendly.” When I first started to develop the
Graptool program, I did not think much about it being user friendly until I started io
test my program. 1 found that it was confusing because it did not have good directions.
The main problem I encountered was with the working directory because 1 did not
allow the end user to change it. 1t became difficult when 1 wanted to change the
working directory after I ran the program, so I had it changed. From this problem, 1
fearned that my program not only had to work, but that it also had to be user friendly.

When I ran the program in the beginning, it did not work all the time, and determining
where the error in my program came from was difficult. I could not tell which function
or which section of my program did not work. Therefore I started to add messages to
sach section in my program to tell which section was beginning to run and when it was
finished. Not onlv did this help me, but it will help anyone using it in the future who
might wish to develop Graptool further.

RULE NUMBER - 5

NUMBER OF NODES -1

NUMBER OF DUPLICATE NODES - 0
RULE NUMBER -6

NUMBER OF NODES -1

NUMBER OF DUPLICATE NODES - 0

sfe o ohe ok ol o afe e vl ot e vle ol s sk vl we o o ohe e ol ot ol dle Dl ok ok ol ok ol K Sk 2fe e ok 2l ol o e ke s 3R

Figure 8. Node listing of modified CLIPS rule base.

o & =
{;‘Eﬁz?miﬁﬁiiﬁﬂ }

Figure 9. Logical path graph of block.clp.

5. 1 learned how to use most of the functions of the Microsoft Word for Windows in
wriling, drawing and refining my paper. [have never used this software before and

really enjoved learning how to use it and how much I could do with it.

8. CONCLUSION

From previous research on the use of graphical representations of rule bases to determine a
set of test paths through it, a testing method using the logical path graph algorithm was
chosen as the basis from which a computer tool could be developed to create a basis of set
of logical paths. A compuier tool called Graptool was developed for the purpose of testing
the structure of a rule-base in an expert system. Graptool was created using the CLIPS
expert system tool and the logical path graph algorithm. Before creating this tool, some
background knowledge on expert systems, CLIPS, and structural testing of rule-bases had
io be learned. Although Graptool has some limitations already discussed in this paper, it
provides an adequate testing of large rule bases in an expert svstem.

Future work. Graptool's performance may be improved in the following ways:

1. Since modifications had to be made in order for Graptool to handle the CLIPS input
commmand, there are uncertainiies as to which cases it can or cannot be applied.
Graptool performance might be improved if it allowed the end user more input
flexibility.

The current result of Graptool produces a node connection listing. There may be more

[

clarity il the results could be put in graphic forms such as the logical path graph of
blockl.clp in figure 9.

3. Since computer memory is very limited, it cannot handle large node chains. One way
to solve this problem would be to install each node and its condition set as a record in
the file. This will slow down the rule-based structural festing process, but it will allow

the Graptool program to handle larger rule bases.

9. REFERENCES

[KIPER92Z] Kiper, James D. Ph.D., Structural testing of rule-based expert systems. ACAL
Transactions on Software Engineering and Methodology. 1,2 (1992), 168-187.

[CULRY] Culbert, Chris. CLIPS Reference Manual. Astificial Intelligence Section,
Lyndon B. Johnson Space Center. NASA, July 1989,

[GIARY] Giarratano, Joseph C. Ph.D. CLIPS User's Guide. Artificial Intelligence
Section, Lyndon B. Johnson Space Center. NASA, August 1989,

[RIL89] Riley, Gary., Giarratano, Joseph C. Expert Systems Principles ond
FProgramming. PWS-KENT, Boston, 1989,

[(HUB9] Hu, David. C/C++ For Expert Systems. Management Information Source,
Portland, Oregon, 1989,

[LAF90] Lafore, Robert. The Waite Group’s C Programming Using Turbo C++.
SAMS, Carmel, Indiana, 1990.

Ly
b

10. APPENDIX A.: PROGRAM TERMS AND SYMBOLS DEFINITION
This section defines some of the terminology and symbols used throughout the appendix B
section. Each term will be writien in bold letters and each symbol will be written in
CAPITAL letters.

DEFINITION.: A block which is in the RHS of defrule construct. The action block
which Graptool software processes are assert block and retract block
The action block of the defrule construct will be performed if all

conditions of that construct are satisfied.

TERM. ..o D ArTOW (=)
DEFINITION.: A combination of an equal sign (=) with a greater than sign {~} which is

used to separate the LHS from the RHS of the rule.

DEFINITION.: A block in which the first field is an assert (see section 3.5.1 for more
defail). This block also has a sub-block right affer the first field. All
variables in sub-block must exist in one of the condition blocks of the
defrule construct.

SYMBOL.......: ASSERT

DEFINITION.: An ASCIH character, number 15, which replaces an assert command in
Graptool format. A bleck that follows an ASSERT character is called a

new block

TERM.............: block
DEFINITION.: A collection of one or more fields that begins with an open parenthesis

and ends with a closed parenthesis. There is no limit to the number of
sub-blocks inside a block.

SYMBOL.......: COMMENT

DEFINITION.: An ASCI character, number 59 (;), which indicates the beginning of a

CLIPS comment (see 3.6 section for more detail).

TERM......c...... : condition block or pattern

DEFINITION.: A block which is on the LHS of a defrule construct. One or more
condition blocks can be combined using an inclusive or and/or an explicit
and logic. This combination is called a logical pattern block (see section
3.4.5 for more detail). Tvery pattem must be satisfied by a fact base

before the action block can be performed.

SYMBOL........ CONDITION
DEFINITION.: An ASCII character, number 17, which is added in front of cach rule
base's condition in Graptool format. A block that follows a CONDITION

character is a condition of the rule base,

SYMBOL........ C PAREN
DEFINITION.: An ASCII character, number 22, which will replace a closed parenthesis

between the quotes in Graptool format.

SYMBOL........ C PARENTHES

DEFINITION.: An ASCI character, number 41)", which represents a closed parenthesis.
This parenthesis identifies the end of a block or rule-based construct.

DEFINITION.: A rule-based construct in which the first field is a deffacts. Each block

mside a consiruct is called a faci block

SYMBOL.......: DEFFACTS

DEFINITION.: An ASCIH character, number 18, which replaces a deffacts command m
Graptool format. In the Grapfool. fac file, a block that follows right after a
DEFFACTS character is the name of that deffacis construct.

TERM. ..o - defrule construct

DEFINITION.: A rule-based counstruct in which the first file is a defrule (see section 3.3
for more detail). This construct can be divided into two parts: the LHS
and the RHS. A block in the LHS is called a condition block or a
pattern. A block in the RHS is called an action block. The LHS and

RHS of a defrule construct is separated by an arrow.

g
ok

SYMBOL.......x

DEFINITION.:

SYMBOL........
DEFINITION.:

DEFRULE

An ASCIH character, number 14, which replaces a defrule command in

Grapiool format. In the Graptool rul file, a block that follows right after a
DEFRULE character is the name of that defrule construct.

CENDARRAY
.- An ASCII character, number O (null), which indicates the end of an array.

ENDLHS and STARTRHS

An ENDLHS is an ASCI character, number 61 (=). A STARTRHS 18 an

ASCH character, number 62 (&)

STARTRHS 18 an arrow.

SYMBOL.......: ENDRF
DEFINITION

TERM. ...l

from one another in Graptool format.

The combination of ENDLHS and

. An ASCH character, number 158, which is used to separate the rule bases

- A block which is inside of a deffacts construct. Every field in a fact

block must be either a word, a number, or a string.

: field

.. A single word, string, number, variable, or wildcard (see section 3.1.2

and 3.4 for more detail) which is separated from one another by a space.

The first field is a field right after an open parenthesis. The last field is a

field beftore a closed parenthesis.

: LHSRHS
© An ASCIH character, number 20, which replaces an arrow in Graptool

Tormat,

- LOGI AND
© An ASCI character, number 38 (&), which replaces an and logical

operator of rule patterns in Graptool format.

s LOGI NOT

: An ASCI character, number 126 (~), which replaces a not logical

operator of rule patterns in Graptool format.

Ly

L

TERM.............

SYMBOL......c

SYMBOL.......

DEFINITION.:

DEFINITION

. An ASCH character, number 124 ™", which replaces an or logical operator

of rule patterns in Graptool format.

: M_WILDCARD

An ASCH character, number 36 (§), which identifies a multifield
wildcard or a multifield variable (see section 3.4.2 and 3.4.3 for more
detail) when it combines with a 5 WILDCARD character,

: NEXTLINE

.. An ASCIH character, number 10 (linefeed), which causes a computer 10 go

to the next hne. The NEXTLINE character also indicales the end of a

CLIPS comment (se¢ 3.6 section for more detail).

s new block

A hlock that follows an ASSERT character. This block will be added to a

fact base when all rule base conditions are satisfied. Any variable in a new

hlock must be replaced by its value before a new block is added to a fact

base.
O PAREN

© An ASCIH character, number 21, which replaces an open parenthesis

between the quotes in Graptool format,

: O PARENTHES
.. An ASCH character, number 40 "(", which represents an open parenthesis.

This parenthesis indicates the beginning of a block or rule-based

constract,

. Q SPACE

An ASCI character, number 19, which replaces a space between the

quotes in Graptool format,

An ASCIH character, number 34 (™), which represents a quotation mark.

(¥4
&

DEFINITION

SYMBOL........

TERM............
DEFINITION.:

SYMBOL.......

DEFINITION.:

.o A block that follows a RETRACT character. This block will be removed

from a fact base when a2l conditions of the rule base is satishied.

: RE POINT1 and RE POINTZ
.. A RE POINTI is an ASCII character, number 60 (<), A RE POINT2 is

an ASCIH character, number 95 (-). The combination of a RE POINT1
and a RE POINT?Z is a CLIPS special character (<),

A block i which the first field is 3 retract (see section 3.5.2 for morve
detail). This block has no sub-block. Every field beside the first field
All of the fact variables
must exist in the LHS of that defrule construct and bind a condition
block.

must be a single variable named fact variable.

: RETRACT

: An ASCH character, number 16, which replaces a retract command in

Graptool format. A block that follows a RETRACT character is called a

removing block.

.» A collection of blocks which opens with a left parenthesis and closes with

a right parenthesis. The first field of a rule-based construct must be
defrule or deffacis (see section 3.3 for more detail). A second field must

be the name of that rule-based construct.

: SPACE

.o An ASCIH character, number 20, which represents a space.

s sub-block

A block which is mside another blogk,

S WILDCARD
An ASCII character, number 63 (7), which identifies a single wildcard or

a single variable (see section 3.4.2 and 3.4.3 for more detail).

%5
e

11. APPENDIX B...: FUNCTION OF GRAPTOOL SOFTWARE
The Graptool software contains thirty four functions including the Main function. All
thirty four functions can be divided mio two groups: accessory functions and major

functions. An explanation of each function follows:

11.4. Accessory functions

There are ten accessory functions in the Graptool software: Message, Error, GetAFact
GetATield, WriteFormatToWorkingFile, CheckTheFieldSvntax, LogicalOperation,
FieldUnification, FactIsInTheFactbase, and ReplaceVariableWith Value.

1) Message function

Purpose: A Message function will display a given message and store it in Grapiool.err if
that file has been opened.

Prototype:
g void Message(char *first_mess, inf mess_nmnber, char *second_mess)
|
|

£
3

A first_mess and a second_mess are characier pointer variables which contain an
address of a message array.

A mess_number is an integer number variable.

Pseudo-code:
Step 1.: If the *first_mess is not an ENDARRAY character (first_mess has an message),

the computer will display a message in first._mess on the screen.
g /* CHECK FOR AN ENDARRAY CHARACTER ¥/

| it *first_mess = ENDARRAY)

| prntf{"%es”, first_mess),

Step 2.: If the mess_number is not a NONE (negative one), the computer will display a

mess_number value on the screen.
.
| /% CHECK FOR A NEGATIVE ONE */
ifiimess number = NONE)
prinif"%ed", mess number); |

Step 3.: If the second_mess is not an ENDARRAY character (second_mess has an
__message), the computer will display a message in second_mess on the screen.
l /* CHECK FOR AN ENDARRAY CHARACTER */
| iff"second_mess = ENDARRAY)
’ printfl"%6s", second mess);

LA
=]

Step 4.: If the Graprool.err file is opened, the condition checking of step one through three
will be repeated. However, the action will store the wvalue of first_mess,
mess_number, second_mess, or all of them in the Grapiool.err file.

P CHECK AN ERROR FILE IS OPENED %/
iflerror file open}

&

i

CHECK FOR AN ENDARRAY CHARACTER */
CRfirst mess = ENDARRAY)
forintfeptr, "s", first mess),
/* CHECK FOR A NEGATIVE ONE */
if{mess number = NONE)
| fprintfleptr, "%ed", mess_numbery;
; /* CHECK FOR AN ENDARRAY CHARACTER %/
| if(*second mess I= ENDARRAY)
| fprintfleptr, "%s", second_mess);
|

i
i

Step 3.: The Message will return to the calling funciion.

[y
1

 —

L4
MO

2) Error function Sub-funciion

Message

Purpose: An Error function will display the error message and stop Graptool soltware

execuion,

Proiotype:

void Error{char *first_errmess, int err_number, char *second errmess)

13
P

A first_errmess and a second_errmess are character pointer variables which contain an
address ol an error message array.

An err_number is an infeger number variable,

Pseudo-code:

An Error function will send the address of a first_errmess, the value of an err_number,

and the address of a second_errmess to the Message function. After that, the computer
~will close all the opened files and return control back to the DOS operating system.

§ /* DISPLAY THE ERROR MESSAGE ON A COMPUTER SCREEN */
| Message{"\n'\n ERROR”, NONE, first_errmess),

[Message ENDARRAY, et number, second_ermmess),

% /% CLOSE ALL THE OPENED FILES */
|
|
|
|

| feloseall(y
/# RETURN THE CONTROL TO DOS OPERATING BYSTEM */
exiti 1y

¥

60

3y GetAFact function Sub-function

Error

Purpose: A GetAFact function will get a block from a given array.

Prototvpe:

| ’ " £ e
'\ char *GetAFact(char *array piy, int fact_type, chara fact{])
H

;

i
L

An array_ptr is a characier pointer variable that contains an ending array address of the
previous block which has already been read.

A fact_type is an integer variable which contains the ASCI number of a DEFFACTS, a
CONDITION, an ASSERT, or a RETRACT character. A DEFFACTS, a CONDITION,
an ASSERT, and a RETRACT character indicate the function 1o read a fact block, a
condition block, a new block, and a removing block, respectively.

An a_fact is an array character which passes an already being read block fo the calling

function.

Pseudo-code:

Step 1.: A computer first assigns an O_PARENTHES character to the facltype variable
(identify the block) and ENDARRAY character to the endch variable (indicate the end
of the array). Afier that, the computer will check a value inside the fact_type. If a
value is not a DEFFACTS character, the computer will assign ENDREY character to the
endch and a value of the fact_type to the facttype.

char facttyvpe = 0 PARENTHES, endch = ENDARRAY,
I FCHECK ITISNOT AN DEFFACTS */

if{fact_type I= DEFFACTS)

{

endch = (chan)ENDRF,
facttype = (chariact type;
Y

Step 2.: The computer will start the searching of the factfype value from a given array
address (in array_ptr) until it finds that value or reaches the end of an array (endch
value). If the factfype value is found, the computer will start to copy it character by
character after that value until the computer copy a closed parenthesis {the end of a
block). The result will be stored in the a_fact array.

J*SEARCH FOR A facttype CHARACTER IN THE GIVEN ARRAY ¥/

o (*array pir 1= facttype) && (Marray plr I=endchy
armay D tr+

FCHECK FOR THE EXISTENCE OF A fhettype CHARACTER */

i array

L
ifi*array pir==0 PARENTHES)
array ptr-)
/% READ AFACT FROM THE GIVEN ARRAY TO AN a_fact ARRAY */
do
{
array plt;
a_facth]=*amay ptr
+

%

’
widle((Farray pir t=C PARENTHES) && (1< FACT SIZE-1));
a_facthi] =ENDAERAY;

%
J

Step 3.: If the size of a_fact is in excess, the computer will call the Error function to
display an error message..
j PCHECK FOR THE SIZE OF RETURNING FACT */
| iffi = FACT SIZE-2)
\ Error("FIND A FACT TOO LONG FOR THE FACT ARRAY." -1, "n");

Step 4.: The GetAFact will return to the calling function with the array_plr value (ending
address of an given array which equal to endch value or ending address of being read
block whaich is a closed parenthesis).

l returnfarray pir), o

|

:

3

i

L™
P

4, GGetAField function Zub-function

Error

Purpose: A GetAField function will get a field from a block.

Prototype:

f 4 AT G/ e 1 ~ 5o o
| char *GetAField(char *fact_ptr, char a_field[], int *notlast)

it i

A fact_plr is a character pointer variable that contains an ending address of the previous
field which has already been read.

An a_field is a character array which passes an already being read field to the calling
function.

A notlast is an integer variable. The notlast is TRUE (one) if the field being read is the
Iast field in the block. Otherwise, the notlastis FALSE (zero).

Pseudo-code:

Step 1.: The computer will first assign a FALSE fo the notlast. After that, the computer
will start to copy from the previous field ending address (in fact_ptr), until it reaches a
space (the end of a field) or closed parenthesis (the end of a block). The resuli will be
stored in the a_field array.

*notlast = FALSE;

/# READ A FILED FROM THE GIVEN FACT TO AN a_field ARRAY

while((*fact_ptr I= SPACE)&&(*fact_pir 1= C PARENTHES)&&(O < FIELD_SIZE-2p
.

N
a fieldfi] = *fact_ptr;
fact phrtt;

k)
§

| a_field[i] = ENDARRAY;

Step 2.: If the size of the a_field array is in excess, the computer will send an error
message to the Error function.
i / CHECK FOR THE RETURNING FIELD SIZE */
| if(i >= FIELD_SIZE-2)
J Error{"FIND A FIELD TOO LARGE FORE THE FIELD ARRAY.", -1, "n"),

Step 3.: The computer will check for the end of a given block. If the end of a block
{closed parenthesis) has not been reached, notlast will be set to TRUE. Otherwise, if
will remain FALSE. -

l A CHECK ITIS NOTTHE LAST FIELD IN A FACT ™/
| ift*fact pirl=C PARENTHES)
*notiast =TRUE; %

Step 4.: The GetAField will return to the calling function with the fact _ptr value (ending
address of a block which is a closed parenthesis or ending address of being read field
which is a space).

(B

D return(fact pir); |
i
5

64

5) WriteFormatToWorkFile function Sub-function

Error

Purpose: A WriteFormatToWorkingFile function will write a block into a given working

file. This function also checks the initialization of a fact base array.

Prototypes:

[char *WriteFormatToWorkingFile(int fact_type, char *fact pir, FILE *workfile)
K

A fact_type is an integer number variable which contains the ASCI number of a
DEFFACTS, a DEFRULE, a CONDITION, an ASSERT, or a RETRACT character.
This character will be written in the front of a block that is being written.

A fact_ptr is a character pointer variable that contains an address of a block which will be
written to the working file.

A workfile is a file pointer variable which contains an address of a working file.

Pseudao-code:
Step 1.: The computer will first write a fact_type to the selected working file. After that,
the computer will start to write character by character from a given address (in the

fact_ptr) to the first closed parenthesis (the end of a block) into the working file.

* WRITE THE GRAPTOOL FORMAT BLOCK TO THE WORKING FILE */
putcifact fype, workfile),
while(*fact_ptr '=C_PARENTHES)

{

pute{*fact ptr, workfile);

block sizet++,

fact plr+,

K
2

putctC PARENTHES, workfile);

Step 2.: The computer will do an approximate calculation of the fact base size and
compares it to the size of the fuct base arvay. If the fact base array is too small, the

computer will call an Error function to display an error message.

J* CALCULATE AN APPRONIMATION SIZE OF FACT BASE ™/
it uE:& ne == RETRACT)
fact base size=fact base size - block size,

(’J

elss
i

Eu
9\‘:

‘{U

fact _type == ASSERT}|| (fact_type == DEFFACTSE})
t base size=fact_base size+ block size;

CHECKT H” ‘%ME OF fact base ARRAY */

iiﬂgwéiﬁ % 5 = { i}\i ~IZE- »*1

Error("CON biZ? "CON SIZE", BYTES I8 TOD SMALL. \n");

2 {";

Step 3.: The WriteFormatToWorkingFile will return to the calling function with the

fact_ptr value which is an ending address of a block (a closed parenthesis).

(etarn{fact piry

E

£,
gt ¥
e,

&) CheckTheField Syntax function Sub-function

GetAField

Purpose: A CheckTheFieldSyntax function will check the syniax errors of each field in

the given fact block.

Prototype:

]
|
é

int CheckTheFieldSyntax{char *fact pir)

¢
L

A fact_pftr 1s a character pointer variable which contains an address of a fact block.

Pseudo-code:
Step 1.: The computer calls the GetAField function to get a field from a given fact block
{an address is in the fact_ptr). The field being read will be stored in an a_field arvay.

! S CHECK THE 8YNTAX OF EACH FIELD IN A FACT BLOCK */
* do
|1
i/ GET AFIELD FROM THE GIVEN FACT BLOCK %/
E fact pir= GetAFeld{fact ptr, a_field, ¬last);

Step 2.: If the a_field is not a string, the computer will do the sub-step two. Otherwise,
~the computer will go 1o step three.
/M CHECK ITIS NOT A STRING (BEGIN AND END WITH QUOTEY */
iffa_field[0] I= QUOTE)

4
2

I

Step 2.1.: If the a_field is a wildcard or variable, the good fact variable will be set to
FALSE and go to step three. Otherwise the good_fact remains TRUE,

[/FCHECKITIS AWILDCARD OR VARIABLE FIELD */

ifi{a field[0]==8 WILDCARD) |
z {{a feld[0]=M WILDCARD) && (a3 field[l}==58 WILDCARD
§ good fact=FALSE,

Step 2.2.: If the good_fact is still TRUE, the computer will check for the existence of any
logical operators and parentheses in the a_field arvay. The good fact will be set to
~ FALSE if the computer finds any logical operators or parentheses.
/% CHECK good fact VALUE IS TRUE */
ifigood fact)

{
L

f# CALCULATE THE SIZE OF o field ARRAY ¥/
length = stden{a_field);

/& CHECK FOR THE EXISTENCE OF ANY
/¥ OPERATORS OR PARENTHESES INTH
for(=0; 1< length; +++)

]
H

if{{{a_field[i] == LOGI OR) || (a fieldli] == LOGI AND]{|
{a_feldli]=""0 && (a_field[i] I=a feld{i+1])
good fact =FALSE:
clse
ifita field[i]= LOGI NOT)||
{a_field[ij = O PARENTHES) || (a_field{i] == C_PARENTHES))
good fact=FALSE;

LOGICAL ™
E FIELD ™%/

%
¥
k!

U S —

Step 3.: The computer will go back to step one if the field (in a_field) is not the last field
{rotfast variable is TRUE) in the given fact block.

t
£

while(notlasty,

Step 4.: The CheckTheFieldSyntax will return to the calling function with the good_fact
value. The good _fact value is TRUE for a good fact block and FALSE for the

exastence of any error.

(, P
| return{good fact);

1
3

68

73 LogicalOperation function

Purpose: A LogicalOperation function will compare a given field from a fact block of

the fact base array with a given logical field from a condition block of the

rule base array.

Prototype:

i

‘ int LogicalOperation{char ffield]], char cfield[};
H

A ffield is a character array which contains a logical field from a condition block of the
rule base arvay.
A cfield is a character array which contains a field from a fact block of the fact base

array.

Pseudo-code:

Step 1.: The computer will check the while loop condition which is the ffield[fptr] value. If
field[fptr] does not equal ENDARRAY character (the computer does not reach the end
of the logical field), the computer will do step two. Otherwise, the computer go to step

nine.

i /* DO A TIELD LOGICAL OPERATION */
while{feld[fptr] = ENDARRAY)

.

i

Step 2.: Because a given logical field (in the ffield) can be the combination of fields, the
computer will copy a sub-logical field (separated by a logical and or logical or) from the
ffield into a subfield array.

spir = (0
/A READ A SUB-LOGICAL FIELD FROM fiield TO subhield ARRAY™/
do

Subﬁsid[sptr} = fleld][fpir];
splrt]
o+,

i
while((fheld[fptr] = LOGI AND) &&
{fheldlfptel 1= LOGL OR) && (fhield{fptr] 1= ENDARRAY)Y
subfieldsptr] = ENDARRAY,

Step 3.: The computer will first set a current variable to FALSE. If the subfield has a
logical and or logical or, the computer will copy that logical operator to the fogical
variable.

tptr = current = FALSE;
/* GET A LOGICAL OPERATOR FROM A subfield ¥/
ififsubfield[0] == LOGI_AND) || (subfield[0] == LOGI OR})
;
I
logical = subfield[0}
tptet+,

H
]

Step 4.: I the subfield has a logical not, that logical not will be hidden before the
computer compares the subfield with the cfield. If the subfield arrav matches the

cfield, the current will be set to TRUE. Otherwise, the current remains FALSE.
/* CHECK FOR AN EXISTENCE OF LOGICAL NOT IN A subfield */
i subfield[tptr] = LOGI NGT)
-+
* COMPARE subfield WITH cficld ARRAY*/
istrompl&subfield[tptr], cfield) = SUCCESS)
current = TRUE,

Step 5. If the subfield has a logical operator net, the current value will be set to the
opposite value (TRUE become FALSE and vice versa).

s! S INVERSE A cumrent VALUE IF subfield HAS A LOGICAL NOT ¥/
i (tptr 1= 0) && (subfield[iptr-1] == LOGI_NOT))
current = [eurrent; g

Step 6.: If' 1t 1s the first time the computer performs the logical operation, the computer will
take the current value as the logical result (assign the current value to a malch
variable) and go to step eight.

| /¥ CHECK ITIS THE FIRST LOGICAL OPERATION */ 5
if{previous == NONE) !
match = current; é

70

Step 7.: If it is not the first time the computer performs the logical operation, the computer
will do the logical operation with the previous field (its value is in the previous
variable). The result of this step will be saved in the mafch variable.

else
/* D0 THE LOGICAL OPERATION WITH PREVIOUS FIELD */
switch{logical)
)
case LOGI AND ifcurrent && previous)
maich = TRUE:;
else
mafch = FALSE;
break;
case LOGL OR aflcurrent || previous)
match = TRUE;

clse
match = FALSE;
breal
default match = current;
!
5

Step 8.: The computer assigns a current value to the previous variable and goes back 1o

step one.

} /* ASBIGN A cumrent VALUE TO A previous VARIABLE %/
{ . .
] previous = current,

1
J

Step 9.: The LogicalOperation will return to the FieldUnification function with the result
of the logical operation {in match), which can be either TRUE or FAL SE.,

refuridmateh);
5
J

BN |
[

8y FieldUnification function Sub-funciion

LogicalOperation

et Aleld

GetAFact

Purpose: A FieldUnification function will check for any matching between two given

blocks. One of the blocks comes from the rule_base array and the other block
comes from the fact base array. This function will compare two fields from
cach block at a time. If the field from the rule base array block is a variable
field, the function will store that field and its values i the variable array.

Prototype:

’ int FieldUnification{char fact str[], char con_stef])
H

[
ik

A fact_str is a character array which contains a block from the rule base array. This
block will be either a new block, a removing block, or a condition block
A con_str is a character array which contains a block from the fact base array. This

hiock is a fact block

Pseudo-code:
Step 1.: The computer assigns the address of fact_str and con_str to fpir and cptr which
are character pointer vanables. The computer also assigns a zero to the variables

foount and coount.

| /% ASSIGN THE fact_str AND con_str ADDRESSES TO fptr AND cptr VARIABLE/

fptr = fact_sir;
oplr = con_str,
foount = geount = 0;

Step 2.: The computer calculates the number of fields in fact_str and con_str. The
number of fields in fact_str is stored in the variable named ffofal. The number of
fields in con_sir is stored in cfofal. The computer will then re-initialize the value of

fptr, cptr, fecount, and ccourt, as in step one.
& CALCULATE THE TOTAL NUMBER OF FIELDS IN THE fact str ¥/
do
{
feount++;
oty = GetAField(ipt, fheld, &otlast),

3
£

while{ fnotlasty,
/¥ CALCULATE THE TOTAL NUMBER OF FIELDS IN THE con_str */
do

I
b

coount+t,
cptr = GetAFeld(cptr, cfield, &enotlast),

3
while{onotlasty,
[/ ASSIGN NUMBER OF FIELDS TO fiotal AND ctotal */
fiotal = feount;
ctotal = ceount;
/F RE-INITIALIZE THE VALUE OF fptr, eptr, foount, AND ceount */
fptr = faot_str;
eptr = con_sir,
feount = coount =

Step 3.: The computer will assign the address in fplr and cplr to the pointer variables
named £ _plr and ¢_plr because the computer will need this address later on in the
process. The computer will also assign FALSE (zero) to mafch and logical.

7 DO THE FIELD UNIFICATION PROCESS %/
do

{

f pir=iptr;

o pir=cpir,
match = logical = FALSE,

Step 4.: The computer will get a field from fact_sir and con_sir. A field from fact_str is
stored in the fffeld array and its address is stored in fpfr. A field from con_str is stored
in the ¢ffeld array and its address is stored in cplir. The computer also updates the field
number of each field in increments of the value of feount (contains the field number of

ffieldy and cocount (contains the field number of ¢field) by one.
M GET A FIELD FROM fact str AND STORE IT IN ffield ARRAY */
fpir = GetAFweld(ir, fheld, &fotlasty,
[GET A FIELD FROM con_str AND STORE IT IN cfield ARRAY #/
optr = GetAField(optr, ofield, &onotlasty,
/4 UPDATE THE FIELD NUMBER OF ffield AND cfield */
foounit+;

cooumnit;

i

L

Step 5.: The computer will check if ffiefd is or contains a logical field. The ffield will be
considered a logical field if i contains any logical characters (LOGI NOT "~" a
LOGI AND "$", or a LOGI OR """} and does not begin with a QUOTE character. If
it is true that the ffield is/has the logical field, the computer will do the following:

The computer will set the logical variable to TRUE and assign the address of ffield to
the pfr pointer variable.

It the ffield 15 a variable field that contains any sub-logical field, the computer will
search the beginning address of that sub-field and assign it to the pfr variable.

The computer will call the LogicalOperation function to do the logical operation
between the logical field of ffield (the address is inside ptr) and cfield. The result of
this operation will be stored in the mafch variable.

If the address of ffiefd is not the pir value, the computer will assign the ENDARRAY
character to the address inside pir to erase the sub-logical field of ffield.

The computer will go to step seven.

M CHECK FOR THE EXISTENCE OF ANY LOGICAL OPERATORS INSIDE field */
it (strohe(flield, LOGI NOT) = ENDARRAY) |
(strehr(ffield, LOGI_AND) '= ENDARRAY) |
(strobu(ffield, LOGI OR) = ENDARRAY) &&
{fheldi0] = QUOTEY
.
)]
logical = TRUE,
pir = fHeld;
/* CHECKIF flield IS A VARIABLE FIELD ¥/
it fheld[0] == 5 WILDCARD)
/* SEARCH FOR THE BEGINNING ADDRESS OF LOGICAL FIELD IN ffeld */
ptr = strehi(fhield, LOGI _ANDY;
7 DO THE LOGICAL OPERATION BETWEEN flield AND cfield */
match = LogicalOperation{++pir, ofield);
/* CHECK IF THE ADDRESS INSIDE ptr IS NOT AN fheld ADDRESS */
ifiptr = ffeld)
7 ERASE THE SUB-LOGICAL FIELD INRSIDE ffield ¥/
*(_ptr) = ENDARRAY:

3
i

Step 6.: If the ffield does not have any logical fields, the computer will compare ffiefd with
a cfield. 11 they do not match, both fields will be converted into real numbers before
another comparison 18 done. If ffield maiches cfield (before or after the conversion),
the maich variable will be set to TRUE. Otherwise, the mafch remains FALSE.

else

7 COMPARING fHeld WITH cfield */

*ffbim*ﬁmihﬁid cfieldy == SUCCESS)
match = TRUE;

slse

{

CONVERT flield AND ¢field TO REAL NUMBERS */
ame = strtod{flield, &fendptry,
cvahie = strtod{chield, &cendptry,
/* COMPARING THE REAL NUMBERS OF field AND cfield */
H{(fvalue = cvalue)& &P lendptr == ENDARRA Y& & cendpty == ENDARRAY))
match = TRUE,

3y
¥

Step 7.: The computer will check if ffiefd is a wildcard or a variable field. The ffield will
be considered a wildcard or a variable field if it begins with an S WILDCARD (?) or
the combination of M WILDCARD with § WILDCARD ($?7). If it is true that ffield is
a wildcard or a variable field, the computer will do sub-step 7. Otherwise, it will skip
io step eight.

CHECK IF ffield IS A WILDCARD OR VARIABLE FIELD */
ifl(fHeldl0] = 5 WILDCARD)
|| ((fheld]0] =M _WILDCARD) && (flield[1]= S _WILDCARD))

I
L

Step 7.1.: The computer will first check the value of logical. I logical is FALSE (ffield
dose not have any logical fields.), the computer will set mafch to TRUE. Otherwise the
match value remams unchanged. The computer also sets the found wvarable to
FALSE, assigns an address of variable arvay to the vpir pointer variable, and sets the
var_mafch variable to TRUE.

/% CHECKIF fHield IS OR HAS ANY LOGICAL FIELDS */
ift Hogical)
match =TRUE;
S INITIALIZE THE VALUE OF found, vptr, AND var_match */
found = FALSE;
vpir = vanable;
var_match =TRUE,

Step 7.2.: The computer will check for the existence of ffield in the variable array. It
Jffield is found, the computer will set found to TRUE and search for the ffield values
from the variable array inside con_sir. This search will start from cfield through the
last field of con_str. If any of the ffield values from the variable array does not exist
in con_str, the computer will set var_match to FALSE.

M CHECK FOR THE EXISTENCE OF field IN THE vanable ARRAY %/
while((Hfound) && (*{vplr = GetAFact{(vplr,
DEFFACTS, var str)) t= (chanENDARRAYY)
{ o~
viptr = var st
7 GET A FIELD FROM vanable ARRAY %/
viptr = GetAFeld(vipt, viield, &vnotlast);
/% CHECK IF ffield EXISTS IN THE vanable ARRAY */
if{ stremp(ffield, viield) = SUCCERBS)
;
cptr =< _ptr;
found = TRUE;
/* CHECK FOR THE EXISTENCE OF fheld VALUES %/
/* FROM vartable ARREAY INSIDE THE con_str */
do
;
/¥ GET A FIELD FROM con_str */
optr = GetAField{optr, cfield, &enotlast);
/* GET A FIELD FROM vaniable ARRAY ™/
viptr = GetAField(viptr, viield, &vnotlast),
 CHECK TF field VALUE EXISTS INSIDE con_str */
ifistromp(viield, efield) I= SUCCESSE)
var_mafch = FALSE;
!
while{(var_match) && (ynotlasty);
;

)
Kl

Step 7.3.: The ffield maiches the cfield if and only if both match and var_match are
TRUE. The computer will set mafch to TRUE if maitch and var_malch are TRUE.
Otherwise, the computer will set maifch to FALSE.

/* THE fheld MATCHES THE cfield */
IR AND ONLY IF BOTH mateh AND var_match ARE TRUE */
ifmatch && var_mateh)
match = TRUE;
else
match = FALSE,

Step 7.4.: The computer will check the value of found variable. If the found value is
FALSE, the computer will update the variable array. This process is started by setting
the nofvar variable to FALSE, setting 7 to the current ending of variable array, and
then adding an open parenthesis and ffield to the end of variable array. After that, the
computer will do sub-step 7.4. However, if the found variable is TRUE, the computer
will skip to step eight.

f# CHECK POR THE EXISTENCE OF ffield IN variable ARRAY™/
iff tfound)

¥

i

notvar = FALRE,

M SET1TO CURRENT ENDING OF vanable ARRAY ¥/

i = strlen{variable);

/¥ ADD AN OPEN PARENTHESIS AND ffield TO variable ARRAY ™/
streat(varnable, "(");

stroat({vanable, field);

Step 7.4.1. The computer will first check if ffield is a single-field wildcard or a single-
field variable by checking if the first character in ffield s a 5 WILDCARD (7)
character. After that, the computer will separate a single-field wildcard from a single-
field variable by checking the second character in ffield. If the second character of
ffield is an ENDARRAY (null) character, the ffield is a single-field wildcard. The
computer will then set notvar to TRUE. In this step, the computer also sets the
endread value to the ccount value (the field number of ffield) plus one. The
endread will be used later on to indicate the ending of the ffield value in the con_sir.

/% CHECK IF ffield IS A SINGLE-FIELD VARIABLE OR WILDCARD */
ifffield[0] = S WILDCARD)

L
MCHECK IF flield IS A SINGLE-FIELD WILDCARD */

notvar = TRUE;
endread = coount + 1

)

s

Step 7.4.2. The computer will first check if ffield is a multifield wildcard or a multifield
variable by checking if the first two characters in the ffield are a M WILDCARD (5}
character and a S WILDCARD (?) characters. After that, the computer will separate a
multifield wildeard from a multifield variable by checking the third character in the
ffield. 1T the third character of ffield is an ENDARRAY character, the ffield 1s a
multifield wildcard. The computer will then set notvar to TRUE. In this step, the
value of endread depends on the location of ffield in the fact_str which are divided

into three categories:

/% CHECK IF ffield IS A MULTIFIELD VARIABLE OR WILDCARD */
if{(ffield[0] = M_WILDCARD) && (ffield[1] == §_WILDCARD))

{
L

P CHBECK IF field 1S A MULTIFIELD WILDCARD */
if{ffield[2] =— ENDARRAY)
notvar = TRUE;

=
i

If ffield is the last field in fact_str (fnoflast is FALSE), endread will be the value of
ctotal (the field number of last field in con_sir) plus one and the computer will go to
step 7.4.3.

/* CHECK IF field IS THE LAST FILED IN fact str %/
iff thotlast)

[UPDATE THE endread VALUE */

endread = clotal + 13

If ffield is not the last field in fact_str, the computer will search for the boundary of
[ffield by getting a field after the ffield in fact_str. If a field after ffied is a wildcard or
a variable field, the endch value will be the field number of a field in the con_sir
{which has the same backward position with a field afier the ffield from the fact_sir).
However, if the field afier ffield is not a wildcard or a variable field, the computer will
first set the endch value to the ccount value. It will then search for the matching field
of a field afier ffield m the con_str. The endread value will be the field number of
that matching field and the computer will go to step 7.4.3.

else
f ptr=iptr;
/* GETTHE BOUNDARY FIELD OF field */
fptr = GetAField(fpty, [feld, &motast);
fptr={ _ptr;
fotlast = TRUE,
/ CHECK IF BOUNDARY FIELD IS A VARIABLE FIELD OR WILDCARD */
if{(feld[0] = 5 WILDCARD) ||
((fHeld[0] =M WILDCARD} && (theld{1]==8 WILDCARD)))
/* UPDATE THE endread VALUE */
endread = ¢total - (ftotal - feount + 1) + ceount;
else
/* INTTIALIZE endread AND cptr */
endread = ceount;
optr = ¢_plr;
7 SEARCH FOR THE BOUNDARY FIELD IN THE con_sir */
do
(
opty = GetAField(epir, cfield, &enotlast);
ifistremp(ffield, cheld) 1= SUCCESS)
/ UPDATE THE endread VALUE */
endread++;
else

oply = con_sir;

whilel{{enotlast) && {(cptr =con_str));

£

If the computer cannot find the value of ffield in the con_sitr for any reason (the
endread value equals the ccount value), the computer will set the cnotfast and the

notvar to TRUE and go to step 7.4.3.

| MCHECK IF THE fhisld VARIABLE IS BOUND TO NOTHING */
t iflendread == ccount)
|

cnotlast = notvar = TRUE;

%
¥

Step 7.4.3.: The computer will write the values of ffield from con_str into the variabie
array by starting from cfield until endread field is reached. I ffield is not a variable
field (notvaris TRUE), the computer will reset the ending of the variable array to the
previous ending (/ value).
cpir = ¢ pir;

/¥ ADD flield VALUE TO THE variable ARRAY */
for(i = coount;, <endread; i++)

¥
)

‘L‘»}J*ﬁ}' = GetA Feld(optr, cficld, Lonotlasty,
sircat{vanable, " *);
streat{vanable, cfield);
%
£
streat(varmable, 3"},
/* CHECK IF fhield ISNOT A VARIABLE FIELD */
ifinotvar)
{* RE-SETTING THE END OF vanable ARRAY */
variable[i] = ENDARRAY:
3
},

Step 8.: The computer will go back to do step three if #f has not reached the end of
fact_str (fnotlast is TRUE), the end of con_str (cnotlast is TRUE), and it ffield
matches cfield (maitch is TRUE).

]
J
Lﬁfhﬁe(‘é\mawh} && (fhotlast) && (cnotlast)y,

Step 9.0 I the last field of fact_sir has not been checked (fnoflast does not equal to
SUCCESS) and maich is TRUE, the computer will get that last field. If that field is
not a multifield wildcard or multifield variable, the mafch will be set to FALSE.

/* CHECK faet str IF LAST FIELD HAS NOT BEEN CHECKED */
ifl(notlast I= SUCCESS) && (match))
GetAField(ipt, fheld, &fhotlast);
/¥ CHECK fact str IFLASTFIELDISNOTA Y
PMULTIFIELD WILDCARD OR VARIABLE */
ifl(ffield[0] = M_WILDCARD) || (ffield[1] = S WILDCARD))
match = FALSE;

3
i

Step 10.: If fact_sftr or con_str have not reached the end, the match variable will be set
to FALSE.
A CHECKIF fact str OR con str HAS NOT REACHED THE END %/
ifi(fhotlast = BUCCESS) || (cnotlast 1= SUCCESS))
match = FPALSE;

Step 11.: The FieldUnification retumns to the FactisinTheFactbase funciion with the
match value (TRUE or FALSE).
(return{match);

80

9y FactlsinTheFactbase function Sub-funcion

GetAFact

FieldUnification

Purpose: A FactlsInTheFactbase function will check for the existence of a given block

from the rufe base array in the fact base array.

Prototype:
char *FactlsInTheFactbase(char fact_strl], int *found)
.

L

A fact_str is a character array which contains a block. from the rule base array.
A found is an integer variable which contains the existence status of fact_str in the
fact_base array.

Pseudo-code:

Step 1.: While the fact_str does not exist in the fact base array (match vanable is
FALSE) and the end of faet base array (an ENDARRAY character) has not been
reached, the computer will assign address in ¢_pir to the match_plr and then get a fact
block from the facf base arrav by the GetAFact function. The fact block being read
is stored in an a_fact array. The FieldUnification function will compare the fact_str

with #_fact array. The result of this comparison will be stored in the match variable.
If the match value is FALSE, the computer will reset the end of variable array.

¢ pir=fact base;

endvar = strlen{vanable),

/DO THE SEARCHING OF A GIVEN FACT IN A fact_base ARRAY ™/

while{{tmatch) && (*c ptr = (chan)ENDARRAY))

!
k

match pir=¢ pir;
COMPARE A GIVEN FACT WITH A FACT FROM THE fact base ARRAY ™/
i*{e ptr = GetAFact{c ptr, DEFFACTS, a fact)) = (chan ENDARRAY)
match = FieldUmification(fact_str, & fact);
/P CHECK match IS NOT TRUE */
ifl lmatoh)
vanable[endvar] = ENDARRAY,
¢ plrtt;

%
i

g1

Step 2.: The result of step one which is the mafch value, will be assigned to the "found.
/* ASSIGN A match VALUE TO A found VARIABLE %/
*found = maich;

|
|

Step 3.: The FactIsInTheFactbase will return to the calling function with the match_pir

value {address of the matching fact block in the facs_Base array, or the ending address
of the fact base array).

‘ returnimateh piry;
i
i g

16) ReplaceVariableWithValue function Sub-function

GetAField

Purpose: A ReplaceVariableWithValue function will replace all the variable fields in the

given action block with its values from the variable array.

Prototype:
void ReplaceVariableWithValue(char fact_str{], char result_ste{])

i
|
;k,

A fact_str is a character array which contains the action block.

A resuit_str is a character array which contains the result of the function processes.

Psendo-code:
Step 1.: The computer will assign the fact_str value to the fact_pfr variable and copy an
open parenthesis to the beginning of resuli_str. -
| /% INITIALIZE THE VARIABLE */ E
fact pir=fact str;
| stripy(result str, "(");

Step 2.: While the last field of fact_str array has not been read (fnotfast is TRUL), the

~ compuier will do step three. Otherwise, the computer will go to step four.
! /* DO THE VALUE REPLACEMENT PROCESSES */
while(fhotiast)

Siep 3.: The computer will call the GetAField function to get a field from the fact_str
array. The field being read is saved in the ffield array. If the ffield is a variable field,
the computer will do step 3.1, 3.2 and then go back to step two.. Otherwise, the
computer will do step 3.3 and then go back to step two..

!
i
/¥ GET A FIELD FROM THE fact_sir ARRAY ¥/
faot ptr = GetAbield(fact pir, tHeld, ¬last),
M CHECK ffield IS A VARIABLE FIELD ¥/
H{{fheld[0] == 8 WILDCARD)||
({theld[0] == M WILDCARD) && (field[1]=85 WILDCARD})

Step 3.1.: I the ffield contains any logical fields, the computer will assign an ENDARRAY
character to the beginning of that logical field.
/* CHECK fhigld CONTAINS ANY LOGICAL PIELDS */
i (fiptr = strehr(ffeld, LOGI_AND)) 1= ENDARRAY)
*ptr = ENDARRAY,

(
i

[

Step 3.2.: The compuier will search for the ffield values in the variable array. If the ffield

values have been found, the computer will write it into the result_str array.

] vplr = variable;
notdong = TRUE,
MSEARCH FOR THE VALUES OF flield IN A variable ARRAY */
while((notdone) && (*vpty I= ENDARRAY)
F
E
vptr = GetAFeld(vplr, vield, &vnotlasty;
if{stremp(fheld, viield) == SUCCESS)

.

i,
/¥ ADD VALUES FROM A variable ARRAY TO THE result str ARRAY ¥/
while(vnotlast)

.
{

vptr = GetAField(vptr, viield, &vnotlasty,

streat{result str, vield),

streat(result ste, ™ "y,

i
F

notdone = FALSE:

3
5
M SEARCH FOR THE BEGINNING OF VARIABLE FIELD IN A variable ARRAY ™/
yptr = strehr(vptr, O PARENTHES),
!
},.

Step 3.3.: If the ffield arrav is not the varable field, the computer will add 1t to the

result_str array.

else
/% IF fheld IS NOT A VARIABLE FIELD, ADD IT TO THE resuli_str ARRAY ¥/
{
streat(result str, fheld),
streat{result sir, " ")

i

i
)
J

Step 4.: The computer will check for the existence of fields in the result_str array by
calculating the size of it. If the result_str has any fields inside, its size will be bigger
than one. The computer will then add a2 closed parenthesis (C PARENTHES
characier) before the end of result_sir array. Otherwise, the computer will write an

ENIDDARRAY character fo the beginning of result_str array.

7 CALCULATE THE SIZE OF A result str ARRAY ¥/
length = gtrlen(result_stry;
/¥ CHECK THE EXISTENCE OF ANY FIELDS IN resull str ARRAY */
ifflength = 1}

resudt strllength-1] = {chan)C PARENTHES;
else

result strf0] = ENDARRAY,

Step 5.0 The ReplaceVariableWithValue will return to the calling function.
R L

4

84

71.2. Major functions
There are twenty-four major functions. Sixteen of them are used in the Main function.

The rest of them will be called by anv of the sixteen funciions.

1) Bain function g ﬂh”mﬁm e
/;j Programintroduction K
Initialization seciion M InitialValue E

N SetWorkingDireclory ;

| OpenTheFiles i

{ A ReadTheRulebaseInToWorking[File

: [

\ReadRuleAndFactFromWorkingFile i

Conversion section

ConvertRulebase ToGraptooiFormat 3

5 ;

Preparation section L//{é Preparelnitial Facts E

AssertNewlact

Application section

NeodeGenerator

DisplayTestResult

]
|
i
|
RetractOldFact E
|
|
i
E
|

FinalAnalysis

Agcessory functions Ervor E

Flessage

A Main function is the heart of the Graptool software. The sequential work of the Main

can be divided into four sections:

void mamn{void)

!

L

Initialization section:
Purpose: The initialization section will prepare the end user and Graptool software itself

for program processing.

Pseudo-code:
Step 1.: The computer will call the ProgramIntroduction function to display a brief

description of the Graptool software. After that, the computer will call the InitialValue

__function fo initialize all the important variables.
Il preesa INTTIALIZATION SECTION #wks/
|

Programintroduction();
[Initial Value();

Step 2.: The computer will call the SetWorkingDirectory function to sef up the working

directory. After the working directory has been set up, the computer will call the
OpenTheFiles function to open the CLIPS rule-based file, the error file (Graptool.err),
the working files (Graptool fac, Graptool.rul, and Graptool.wrk), and the information
file. The OpenTheFiles funciion also allows the end user to select the information file

which will store the result of rule-based testing,

poe)

SetWorkingDirectory(path);
OpenTheFies(path);

Conversion secfion:
Purpose: The conversion section is used to convert the CLIPS rule bases and mnitial facts

mto Graptool format.

Pseudo-code:

Step 3.; The computer will call the ReadTheRulebaseInToWorkingFile function to
check for critical errors and make adjustments of the CLIPS rule-base. The result will
be stored in the Graptool working file that temporarily uses the information file.

| /##%% CONVERSION SECTION *##%/
! ReadTheRulebaseInToWorkingFile(),

Step 4.: The computer will first display a process message and then the computer will do
the while Joop. While it is not the end of information file, the computer will call the
ReadRuleAndFactFromWorkingFile function to read a CLIPS rule-base from the
information file (used temporarily as working file), and check for all possible critical
errors. The result of this checking will be written into the Graproolwrk file and the
rule _base array. The computer then calls the ConveriRulebaseToGraptoolFormat

function to convert a rule base or inifial fact in the rule base array into Graptool
format. The result of this conversion will be saved in the Grapioolrul tile or the
Graptool fac file. Before the computer goes back to the beginning of the while Joop,
the delay function is called to slow down loop processing,

} /* DISPLAY A PROCESS MESSAGE */

} Message("n'in** Converting ruale-based into Graptool format.”, NONE, ENDARRAYY,
% /* DO GRAPTOOL FORMAT CONVERTING PROCERS */

[while(Hzofiptey)
\
|
|

i

done = ReadRule AndFactFromWorkingFile(DEFRULEY,
ConvertRulebaseToGraptoolFormat{done);
delav(DELAY LOOP/2y,

1
J

Step 5.: If no rule-base exists in the CLIPS file (rufe_flag is FALSE), the computer will
call the Error function to display an ervor message and stop execution. Otherwise, the

computer will display the ending process message.
| /* CHECK FOR THE EXISTENCE OF RULE BASE */
| iffmle flag == FALSE)
{ o Error("CANNOT FIND ANY RULES IN THIS RULE-BASE.”, NONE, "\n"}),
} Message{ "\nn™* Converting process is findshed. \n", NONE, ENDAREAYY,

&7

Preparafion sectiosn:
Purpose: The preparation section will prepare the nitial facts and rule bases for rule-based

structural testing.

Pseudo-code:
Step 6.: The compuier will call the PreparelnitialFacts function to read the initial facts

from the i:wpz‘a@? fac file mio the fﬁcsf base array, If initial facts do not exist in
1’

ﬁ;{:ﬁj}ii&:@f array. If there are no initial facts in 'ih@jﬁzc{ base { fac:{__ flag is FALSE), the
computer will display a warning message. Otherwise, the computer will display a "go
ahead” message. The compuier will then ask the end user for confirmation of starting

the Graptool rule-based testing process by entering Y or v.

Jrees PREPARATION SECTION *x®%/
PreparelnitialFacts();
P CHECK FOR THE EXISTENCE OF INITIAL FACT */
ififact flag == FALSE)

Wiessage("niFEFRE N THE INTTIAL FACTS DO NOT BXIRT, [pesssri]
else

Message{"n!1*** 1 EVERYTHING IS READY FOR TESTING
/¥ DECIDE WHETHER OR NOT TO START THE TESTING ?‘R_UCES% */
printf™n** Enter Y if vou wish to start the mule-based testing process..> "),
gets{ans);
Step 7.: If the user decides to start the rule-based testing process (entering Y or v), the

computer will do the procedure in step eight. Otherwise, the computer will skip to step

thirteen.
3 # CHECK IF AN USER WANTS TO CONTINUE THE PR&;! ESSES */
(s &mpz ans, vy == SUCCESE} || (strempians, "Y"y == SUCCESS))
¥
L ' ;

BEY

.\HH};

PREFLN] Ry

Step 8.: The computer will first clear the computer screen and set the assert_first variable
to TRUE. BSince the order of assert and retract is important to rule-based structural
testing, the computer will ask the end user fo select the applying order of assertion and
refraction. If the end user wants the computer to apply the retraction first (entering N or
n), the assert_first will be set to FALSE.

clrser(y,
assert first=TRUE,
* GETTHE APPLYING ORDER OF ASSERTION AND RETRACTION */
prtil“Enter N 1if you want (FACT BASE - RETRACT U ASSERT),");
printf "nor anything else (FACT BASE IJ ASSERT - RETRACT). ="y
gets{ans),
M CHECK IF THE USER WANTS TO APPLY THE RETRACTION FIRST */
il {stremplans, "n") == SUCCESS) || (stromplans, "N") == SUCCESS))

assert first = FALSE;

Step 9.: The computer will call the ReadRulebaseFromWorkingFile function to read the

Graptool format rule bases from the Grapicolrul into a rule base array. The

Message!"\n™** Starting rule base test ** " MONE, ENDARRAYY,
ReadRulebaseFromWorlangFile();
iflassert frst)

forintflipts, “n** FACT BASE SET UNION ASSERT MINUS RETRACT *+n"),
else

forintfipty, "n** FACT BASE SET MINUS RETRACT UNION ASSERT **n"y,

Application section:

Purpose: The application section will apply the logical path algorithm to test the rule-based

struaciure.

Pseudo-code:

Step 10.: The computer will first initialize all the variables which will be used in the testing

process, such as nofdone to TRUE. The computer will call the NodeGenerator

function to generate the initial node and its condition set. The NodeGenerator also sets

the nitial node ag the first working node and iis condition set will be used as the facts in
the fact base. The initial node and s condition set will be displayed on the screen and
saved in the information file by the DisplavTestResult function.

jreerkk APPLICATION SECTION ¥xsx/

/4 INITIALIZE THE RULE-BASED TESTING VARIABLES #/
notdone = TRUE;

display = nowherg,

prrwork = pirfirst;

ntle pir=rule base;

connect =rule_counter = fact flag=clp flag = SUCCESS;
NodeGenerator(),

DisplavTestResuli();

E’
(

Step 11.: The computer will first check the value of notdone variable. If notdone is

TRUE, the computer continues to test the rule-baged structwre in step 11.1 fo 11.4.

_ Otherwise, the computer will go io step 12.

/DO THE TESTING RULE-BASED STRUCTURE PROCESSE */
while(notdone)

Step 11.1. The computer copies the condition set of the working node over into the

fuct_base array. The SearchForTheWorkingRule function will be called to search the

rule base array for a rule whose conditions have been satisfied by the fact base. This

rule is called a working rule.
f

S INITIALIZE THE FACTS OF FACT BASE */
strepy(fact_base, prwork->condition_sety

right tule = SearchForTheWorkingRule(& found),

Step 11.2.: If the working rule is found (the found value is TRUE), rule assertions and
retractions will be performed based on the selected order. Afier that, the

NodeGenerator function will be called to generate the new node and its condition set

and then the compute will go fo step 11.4.

/F CHECK IF RULE LHS I8 SATISFIED */
it found)
connect = clp flag ="TRUE,
/* CHECK THE ORDER OF ASSERTION AND RETRACTION %/
iffassert first)
{
AsgertiNewFact{night rule);
RetractOldPact{night rule);

RetractOldFact(nght rule);
AssertMewFact{right e},

v
]

ModeGenerator(),

Y
¥

I

Step 11.3.: If the working rule is found (the value of found is FALSE), the computer will
first check for the existence of a node comnected to the working node. If a working
node is not connected to any node (connect is FALSE), a warning message will be
displayed. The computer then searches for a new working node that has not been used
before. If a new working node is found {(pfrwork does not equal the nowhere value),
the variables of the festing process will be re-inttialized. However, if a new working
node is not found, notdone will be set to FALSE.

else

f
4

MCHECK IF WORKING NODE CONNECTS TO ANY NODE */
ifllconnect)

i
k

printf{"in No CONNECTING NODE 'n'"y,
forntf{iptr, "n No CONNECTING NODE ‘"),
il
ptrwork = ptrwork->plmext;
/* SEARCH FOR THE NEXT WORKING NODE */
while({ptrwork->duplicate = nowhere) && (ptrwork = nowhere]}
virwork = ptrwork->ptrext;

i ptrwork 1= nowhere)

3
3

o

fisplay = nowhere;

rule pir=rule base;

connect =rule counter = fact flag = SUCCERS;
elss
notdons = FALSE,

et

o
Lo

Step 11.4.: The computer will call the DisplavTestResult function to display the new node

and its condition set on the screen. It will also store the result of rule-based testing to
the selected information file. The computer will then go back 1o process siep eleven.
DusplayTestResult(y, -
! |
Step 12.: After the computer has done the rule-based structural testing, the computer will

display an ending process message and call the FinalAnalysis function to do simple
rule~-based analysis. This analysis will be shown on the screen and will be added into

the information file. After that, the computer will go to step fourteen.
f /7 TASPLAY AN ENDING PROCESS MESSAGE %/

Message("\nin*** Rule base test is finished ***" NONE, ENDARRAY); i
’ FinalAnalysis(); ;
‘ |

L
¥

Step 13.: If the end user decides not to contimue the rule-based testing process (user does

not enter Y or y at the step seven.), a termination message will be displayed.

o
3

tessaget™n Computer processing has been terminated. \n", -1, ENDARRAY Y,

sl

el

I#

=

i

Step 14.: The computer will close every opened file, stop Graptool software execution, and

return control back to the DOS operating system.
F N
] feloseall()y;

k

S
o

2) ProgramIntroduction function

Purpose: A ProgramIntroduction function will give a general description of the Graptool

software 1o the end user.

Pseudo-code:
The computer will continues to display the Graptool general information on the screen unfil
a kev is pressed. The Programintroduction will then return to the Main function.

i
v

v e}}d ProgramIntroduction(void)

o

mi i

clrser();

for(#=0; 1=79, b+ putt(205);

printi"n AR GRAPTOOL.C oFessxsin

printf" PROGRAM OBRJIECTIVE.: Graptool is a software tfu,)ﬁi baa@d on the ")
printfi "logical path 'n algorithm. This software will read the C LIP 5

printf{"rule base and convert it info \n Graptool format. After the ™

printf{"conversion is finished, the program will apply 'n the lﬂgzmi path ")

| printi{"algorithm to the Graptool format for testing of the rule base \n "),

orintf{"structure. The results of this tool are the following: ")

printf{™n 1. GRAFTOOL WRK contains the CLIPS rule base after Graptool has ")

printf"eliminated the 'n wrmecessary functions or commands rom the "},

primtf{ ”cmgmai rule base.");

printfi " 2. GRAPTOOL. RUL contans rules from the nile base in Graptool

prntf " format."),

printfi " 3. GRAPTOOL FAC contains initial facts from the rule base in),

pﬁnﬁ?”f}fapm@] format.”};

printf{"n 4, GRAPTOOL.ERR(Qpl‘iﬂﬁ} wn?&ms process and error messages),
printf{"during software '\n execution.”

printfi™n 5. The miorm/fmn EP cenmms 1%1@ zsults of mle base "),

printfesting, The end user 'n can select any file name except the ");

printf *CLIPS rule base file name, and the file'n exfension cannot be "),

prntfE” CLP'. If the end user makes an invabid name selection, "),

printf{" Graptool will select & unique Hle name which starts with T \nn";

printfl” FINAL NOTE: All five fles will be saved m the selected worlang),

printf"directory . \n");

printf(" WARNING... THE COMPUTER WILL AUTOMATICALLY STOP EXECUTION IF "),

privtf"IT DETECTS \n ANY ERROR. ")
for(i=0; <79, 1+ putch(205);

printf{"nin Press any kev to continue..... "),
getch();

clrser();

3) InitialValue function

Purpose: An InitialValue function imitializes values of important variables such as the
nowhere fact_base_size, rule_size, cic.

Pseudo-code:

void nitialValue(veid)
i
A

fact base size =rtule size = SUCCESS,
role counter = mmimsm counter = TRUE;
i error_file open=rtule flag = fact_flag = c¢lp_flag = nocondition flag=FALSE;

K

|
| nowhere = (struct node *)NULL:
(
|

)
g

i
g

4y SetWorkingDirectory function Sub-function

CurrentWorkingDirectoryls

Iiessage

Purpose: A SetWorkingDirectory function allows the end user to set up a working

directory which will be used to store the working files.

Prototype:

| : Xy : : / 3 5
L void SetWorkingDirectorvi(char ¥path)
K

A path is a character pointer variable which will contain an address of the selected working

directory information,

Pseudo-code:

Step 1.: The computer will call the CurrentWorkingDirectoryls function to get and

display the current directory (the computer assumes the current directory to be the
working directorv.). The computer also asks if the end user wants to change the

working directory by entering Y or v,
J DO SET WORKING DIRECTORY PROCESSES */
! do

|

i MGET A CURRENT DIRECTORY */

i

|

{

,\

i

CurrentWorkingDirectoryis(path);
/* DECIDE WHETHER OR NOT TO CHANGE A WORKING DIRECTORY */
printfl™n Do vou want to change the working directory(N)? 'y,

getsfansy,

Step 2.: If the end user decides to change the working directory (enter Y or v), a new
directory drive and a new directory path must be entered. Afier that, the computer will
check for the existence of the new drive and the new path. If the end user makes an
invalid drive selection, the working directory will not be changed. However, if the end
user makes a correct drive selection but invalid directory path, the computer will select
the root directory of that selection drive to be a working directory.

/* CHECK IF USER WANTS TO CHANGE THE WORKING DIRECTORY */
if{ (stromp(ans, "y") == SUCCESS) || (stromp(ans, "Y") = SUCCESS))

{
printi"nt MAKIMUM PATH INCLUDING FILE NAME 18 %d BYTES" PATH_SIZE),
/% GET A NEW WORKING DIRECTORY DRIVE */
printf"n Enter the dnive of new working directory(A, B, C, ete.r ")
gets{drve),
/* GET A NEW WORKING DIRECTORY PATH */
printf{ "Enter the path of new working directory(\ for root): "1,
gets(path),
dptr = strupr{drive);
disk = (inty*dptr - 65,
setdisk{disky;
/* CHECK FOR THE EXISTENCE OF THE GIVEN DRIVE */
ifi disk b= getdisk(})
tessage”n Warning.. GIVEN DRIVE DOES NOT EXIST wn", -1, ENDARRAY),
else
J;
chdir(™3"y;
M CHECK FOR THE BEXISTENCE OF THE GIVEN PATH */
if{chdir(path} 1= SUCCESS}
Message{"n Warning.. GIVEN PATH DOES NOT EXIST. \n", -1, ENDARRAYY,
k)
\

{

Step 3.: The computer will keep going back to step one until the end user stops answering

with a ves {entering Y or y) to the question in step one.

1)

i
/DO PROCESSES WHILE THE USER WANTS TO CHANGE A WORKING DIRECTORY #/
while({strompians, "yv") == SUCCESS} || (strempfans, "Y") == SUCCESEY);

!
i
z

Step 4.: The SetWorkingDirectory returns {o the Main function.

E]

O
(¥4

4.1y CurrentWorkingDirectory function

Purpose: A CurrentWorkingDirectoryls function will get the cwrent direciory

miormation.

Pseudo-code:

The computer will get the directory information from the DOS operating svstem and
display it on the screen. The CurrentWorkingDirectoryls will then return fo the
SetWorkingDirectory function.

void CurrentWorkingDirectoryls{char ®path)

pathi0] = A"+ getdisk(y,
getenrdin(0, path + 3%,
printfi "o * THE CURRENT WORKING DIRECTORY -> %s \n", path),

i
£

r
|
% atrepyipath, "X,
!
|
1
|
J

Note: The CurrentWorkingDirectorvls functions are not valid for any other operating
system besides DOS. Therefore; the end user needs to modity this function when he

runs the Graptool software in a different operating system.

5y OpenTheFiles function Sub-function

Programinformation

Frror

Purpose: The OpenTheFiles function will open a CLIPS rule-based file, an information

file, an error file, and working files.

Prototype:

: yvoid OpenTheFiles(char *path)
L.

|

1

{

A path is a character pointer variable which will contain an address of the selected working

directory information.

Pseudo-cade:
Step 1.: The computer will get the name of the CLIPS file and the information file. The

end user also needs to decide whether or not he wanis to open the error file.

MGET CLIPS RULE-BASE FILE */

printf a1 Enter the name of CLIPS rule base file -> "),
gets{cname),

AGET INFORMATION FILE #/

printfl" Enter the name of miormation file(option) -> "),
gets(iname);

/# DECIDE WHETHER OR NOT TO OPEN AN ERROE FILE */
printfl" Do yvou want {o open the error file(N)? "y,

gets(ansy,

Step 2.: The computer will check the selected information file. If it is invalid, the computer
will call the Error function to display an error message and stop program execution.

/* CONVERT FILE NAME TO CAPITAL LETTERER */
strepy{cname, strupr{cname)),
stropy(iname, strupr{iname}),
/* CHECK IF SELECTED INFORMATION FILE IS VALID®/
ti(strlen{cname) b= 0) && ((length = strlen(inamey) 1= 0))

ifl (stromploname, name) == SUCCESS) |

(stremp{&inameflength-41" CLP") == SUCCESE))
Bror"INVALID NAME FOR THE INFORMATION FILE.", -1, "n");

Step 3.: If the computer cannot open the CLIPS file, an error message will be displayed
and program execution will be stopped by the Error function..

M CHECK FOR THE EXISTENCE OF CLIPS RULE-BASED FILE */
Hi{(fptr = fopenfoname, ")) == NULL)

Error("CANNOT OPEN THE CLIPS RULE BASE " -1 ,"\n");

Step 4.: The computer opens the selected information file. If it cannot be opened, the
computer will select a unique file name which starts with ™" for the information file.
Then the computer will open that file. e

/% CHECK FOR THE EXISTENCE OF INFORMATION FILE */

il {iptr = fopen{iname, "wi+"}y == NULL)

{
i

S GET A UNIQUE INFORMATION FILE NAME */
whame = mktemp(ifile);

/* RE-OPEN THE INFORMATION FILE */

Iptr = fopendwname, "wi+"),

strepy{iname, wname);

b}
'

Step 5.: The three working files (Graptool. rul, Graptool fac, and Graptoolwrk) will be

opened. If the end user decides to open the error file, Graptool err will be opened.

4 OPEN ALL THE WORKING FILES ™/

wplr = fopen{"GRAPTOOL. WRK", "wi+");

rpir = fopen{"GRAPTOOL RUL", "wit+");

optr = fopen("GRAPTOOL. FACY, "wi+"},

7 CHBECK IF USER WANTS TO OPEN AN ERROR FILE %/
iff(stremp{ans, "y") == SUCCEES} || (stremp(ans, "Y") == SUCCESS)

¥
{
error_file open=TRUE;
/*OPEN AN ERROR FILE Y/
epir = fopen{"GRAPTOOL ERR", "wi"),

|3
S

Step 6.: The computer will call the ProgramInformation function to display information

about the initialization of Graptool software.

I — - - .
| Programinformation(path, cname, inamey,

Step 7.: The OpenTheFiles returns to the Main function.
=

Pf
|

5.1) ProgramInformation function

Purpose: A ProgramInformation function provides information about Graptool software

initialization such as the size of the fact array, the size of the field array, etc.

Pseudo-code:
The computer will displaved the information of Graptool software initialization until a key

is pressed. The ProgramInformation will then return to the OpenTheFiles function.

l void Programinformation{char *path, char *cname, char *iname}
4
clrser(y;

Message("\n The fact_base array size is ",CON_SIZE." bytes."};
Message(n The variable aray size is ", VARIABLE SIZE." bytes."};
Message("\n The selected working directory is ", NONE, strupr{path)),
Message(™n The CLIPS rale base file 1s ", NONE, cname};
Message("n The information file s ", NONE, inamej;
J* CHECHK IF THE ERROR FILE I8 OPENED */
ifferror_file open}

Message! " The error file is GRAPTOOL ERR.", NONE, EN DARERAYY

e L ; e ol o T ST
Efie:magc{\”m JF*hﬁ*%5&**#%96*%%****“#44%*)&*%%4%*M%*x%*****%***%**%*%”ﬁ N{jNEj ”\ﬂy)

5

printf{™n Press any key to continue.......... ¥
getehi);

clrsor(s;

1

3

&) ReadTheRulebaselnToWorkingFile function Sub-funclion

Error

Message

Purpose: A ReadTheRulebaseInToWorkingFile function will read the CLIPS rule-based

expert system program eliminating unprintable characters, extra spaces and

comments. It will also adjust the rule bases, and check for critical syntax errors.
The resulis of this function will be stored in an information file which will also

be used as the Graptool working file.

Prototype:

I

% void FeadTheRulsbaseinToWorkingFile(void)
§

| i

There is no prototype in this function.

w

Pseudo-code:

Step 1.: The computer will first display a process message and reset the information file
pointer to the beginning. The computer will then search for the first open parenthesis
(indicating the beginning of a rule-based construct) in the CLIPS file. The resulf of
this searching will be stored in the ch variable. If ¢/ is not an open parenthesis (it 1s not
a CLIPS file), the compuier will call the Error function fo display an error message.
Otherwise, the computer will set resulf.rem, parenthes_count, and quote_count to
SUCCESS.

/ RESET INFORMATION FILE POINTER TO THE BEGINNING OF FILE */
rewind(iptry,
* SEARCH FOR THE PIRST OPEN PARENTHESIS OF THE CLIPS FILE %/
whilef{(Hfeofl(fpir)) && ((ch = get{fpty)) 1= O PARENTHES)),
M CHECK IF ITI5 AN OPEN PARENTHESIS */
if{ch =0 PARENTHES)

Frror("CANNOT FIND THE BEGINMING OF THE CLIPS RULE BASE", NONE, "n'");
SRINTTIALIZE VARIABLES VALUE */
result.rem = parenthes count = quote_count = SUCCESS

Step 2.: The computer will check the while loop condition which is the returned value of
feof(fpir) function. If feof(Tptr) returns FALSE (the computer has not reach the end
of CLIPS file), the computer will set acceptable letter value to TRUE and do sub-siep

two. Otherwise, the computer will go fo step three,

/* DO THE ADJUSTMENT AND CHECK SYNTAX ERROR PROCESS */
while(Hfeof{fpir
{
/* INITIALIZE acceptable letter TO TRUE */
acceptable letter = TRUE,

100

Step 2.1.: If ch is not a printable character., the computer will set accepifable_lefter 1o
FALSE and go to step 2.10.

H

/* ELIMINATE AN UNPRINTABLE CHARACTER */ ﬁ
W isprint(eh))
acceptable letter = FALSE; i

Step 2.2.: The computer will set acceptable lefter to FALSE and then go fo step 2.10 if
the ch value is a space, and the previous_ch value satisfies one of the following
conditions: 1) previous_ch is a space; 1) previous_ch is a first quote (previous_ch
is a quote and result.rem is equal to TRUE, one,); i} previous_ch is not between
quotes (resuft.rem equals to SUCCESS, zero,) and its value lies in one of the logical
operators (&, |, ~) or an open parenthesis; iv) previous_ch is not between quotes or
between block, and is either a S WILDCARD (7), ENDLHS (=), or RE POINT1 {<)

characters.

else
A CHECK IFITIS A SPACE #/
ifich = SPACE)

{

 ELIMINATE A SPACE AFTER ANY SPACE ™/
if{previous ch == SPACE)
acceptable letter = FALSE;
zise
/* ELIMINATE A SPACE AFTER THE FIRST QUOTE */
ifl{previous_ch == QUOTE) && (resulirem = TRUE)
acceptable letter = FALSE;
else
/% CHECK IF IT IS OUTSIDE THE QUOTE */
iffresult.rem == SUCCESS)
.
/M ELIMINATE A SPACE AFTER ALL THESE CHARACTERS #/
iffiprevious ch==LOGI OR}|| (previcus ch==LOGI AND}|
{previous_ch == LOGI_NOT) || (previous_ch == _PARENTHESY)
accepiable letter = FALSE;
else
fl{(previons ch==58 WILDCARD) || {previous ch==RE POINTL}) ||
(previous ch == ENDLHE) && (parenthes count==TRUE})
acceptable letter = FALSE,

j
ki

Step 2.3.0 If ¢h is a COMMENT character (indicating the beginning of the CLIPS
comment), the computer will skip the entire comment (ch is set to NEXTLINE
character), set acceptable letter to FALSE, and go to step 2.10.

else
[CHECK IFIT IS THE BEGINNING OF THE COMMENT */
if{(gh == COMMENT} && (result.rem == SUCCESS)Y)

i
H

/* SEARCH FOR THE END OF A COMMENT */
while({!Tecf{fptr)) && ((ch = gete(fptr)yy = NEXTLINE)),
aceeptable letter = FALSE;

y

101

Step 2.4.: If cfr is a quote and it is outside any block (parenthes_count is TRUL), the
compuier will treat it as the beginning of a comment which occurs afier the rule-based
construct name. The computer will then skip over the whole comment, set

acceptable letter 1o FALSE, and go to step 2.10.

else
/¥ CHECK IFITIS A COMMENT AFTER THE RULE-BASED CONSTRUCT NAME */
if{{ch == QUOTE) && (parenthes count == TRUE}

p

k

/* SEARCH FOR THE END OF COMMENT */

while({ Heol{fptr)) && ((ch = gete(iptry) 1= QUOTE),

acceptable letter = FALSE,

1
i

Step 2.5.: If ¢h is a quote mside a block (parenthes_count is more than one), the
computer will re-calculate the ¢h position, and add a space to the information file if ch
is the first quote (resuftrem equal to TRUE) and previous_ch is neither an open

parenthesis nor a space. Then 1t will go to step 2.10.

| else
A CHECKIFITIS A QUOTE INSIDE A BLOCK %/
ifl{ch == QUOTE) && (parenthes count > 13}
I

{
result = divi{++quote_count), 2);
/* ADD A SPACE TO WORKING FILE IF ITIS A FIRST QUOTE AND */
/* AFTER A CHARACTER BESIDE AN OPEN PARENTHESIS AND A SPACE */
iff (resudt rem = TRUE) &&
{previous_ch =0 PARENTHES) && (previous ch I= SPACEY)

pute SPACE, ipiry;

Y

Step 2.6.: If ¢k is either S WILDCARD (?7), ENDLHS (=), RE POINT1 (<) character,
or is outside a block (parenthes_count equal to TRUE), and previous_ch is not a
space, the computer will add a space to the information file and then go to step 2.10.

else
M ADD A SPACE IN FRONT OF THESE CHARACTERS IF IT IS OUTSIDE FACT BLOCK™®/
W({{ch==5 WILDCARD) || (ch==ENDLHS) || (ch==RE_POINTL)) &&

{previous_ch = 8PACE) && (parenthes eount == TRUE}))

putcf SPACE, iptry,

Step 2.7.: If ¢h is an open parenthesis and outside the quotes (resuft.rem equal to
SUCCESS), the computer will add 1 to the parenthes_countvalue, and a space to the
information file if previous_ch variable is neither a space nor an open parenthesis.
Then it will go 1o step 2.10.

else B
/* CHECK IFIT IS AN OPEN PARENTHESIS OUTSIDE THE QUOUTES */
if{i{ch==0 PARENTHES) && (resultrem == SUCCESS))

{

parenthes count++;

/* ADD A SPACE IN FRONT OF AN OPEN PARENTHERIS */

ifi{previous ch 1= 8PACE) && (previous ch =0 PARENTHES)
putc{ SPACE, iptr);

I
3

Step 2.8.: If ch is a closed parenthesis outside the quotes (resuffrem equal to
SUCCESS), the computer will subtract 1 from the parenthes_count value and go o
step 2.10.

else
/* SUBTRACT ONE FROM parenthes count FOR CLOSE PARENTHESRIS #/
ifi{ch==C PARENTHES) && (resuit rem == SUCCESSE))

parenthes count--;

Step 2.9.: If the parenthes_count value is equal to SUCCESS (the ¢h is outside a rule-
based construct) and ¢h is neither an open parenthesis nor a space, the computer will

call the Error function io display an error message.

else

/* CHECK IF IT IS AN UNIDENTIFIED CHARACTER */
iff(parenthes_count == SUCCESS) && (ch = O_PARENTHES) && (ch I= SPACE))
Error("FIND UNIDENTIFIED CHARACTERS IN THE CLIPS RULE BASE.", NONE, "n"};

Step 2.10.: If acceptable_letter is TRUE (a character inside the c¢h varable is
acceptable), the computer will write the ¢h value mmto the information file and the
previous_ch variable. After that, the computer will get the new character from the
CLIPS file and store it in the ¢h variable and return to step two.

[WRITE AN ACCEPTABLE CHARACTER INTO THE INFORMATION FILE */
iflacceptable letter)
P
i
putei{ch, ipir);
previous_ch = ch;
/% GET A NEW CHARACTER FROM CLIPS FILE */
ch = gete({phr);

1
B

Step 3.: The computer will check for missing parentheses. If a parentheses is missing
{parenthes_count is not equal to SUCCESS), the computer will send an error

message to the Error function.

| /% CHECK FOR MISSING PARENTHESIS */
1 ifiparenthes count I= SUCCESS)
| Error("MISSING THE PARENTHESIS IN THE CLIPS RULE BASE.", NONE, "n");

Step 4.: The computer will close the CLIPS file, reset the information file pointer to the
beginning, and display the ending message process.

| /* CLOSING A CLIPS FILE */

i folose(ipiry,

| /* SET THE POINTER OF INFORMATION FILE TO THE BEGINNING */
2 E"V\‘}ﬁsj 1pé:r

| Message("nin_-_-_-_ Complete the reading - - - ", NONE, "n'");

fau S

Step 5.0 The Readfé"heRﬂ?eéageEnTa%"@ﬂ{ingﬁle will return to the Main function.

B

163

7) ReadRuleAndFactFromWorkingFile function Sub-funclion

Error

Message

Purpose: A ReadRuleAndFactFromWorkingFile function will read one rule-based

construct at a time from the information file into a rufe base array. The
computer will make adjustments and check for critical errors which it did not do

in the ReadTheRulebaseInToWorkingFile funciion. The computer also

compares Graptool's software configuration with its needs. If the configuration
does not match its need or any errors have been detected, an appropriate error
message will be displaved on the screen. The result of this function will be

stored in the Grapiool.wrk file and rule_base array.

Prototype:

int ReadRule AndFactFromWorkingFile(int type) —%
{ !
L |

A type is an integer variable which will be a DEFFACTS or DEFRULE character. The
DEFFACTS character will indicate to the computer that it only needs to read a deffacts
construct. However, the DEFRULE character will indicate that only the rule-based

construct {defrule and deffacts construct) needs to be read..

Pseudo-code:

Step 1.: The computer will first assign rule_base value to currplr, set limit 1o
RULE SIZE minus two, and set rule_plr, parenthes_count, quote _count
result.rem and done to SUCCESS (zero). The computer will then search for an open
parenthesis in the information file and save that result in the ¢h variable. If ch is an
open parenthesis (the beginning of rule-based construct is found), the computer will

do step two. Otherwise, the computer will go to step six.

S INITIALIZE VARIABLES VALUE */

cunpty = rule base;

brmt=RULE_SIZE - 2,

rule pir = parenthes count = quote_count = result.rem = dong = SUCCESS;

/* SEARCH FOR THE BEGINNING OF RULE-BASED CONSTRUCT ¥/

while({! feoflipty)) && ((ch = gete(iptr)) =0 _PARENTHES)),

A CHECK IFIT IS AN OPEN PARENTHESIS (BEGINNING OF CONSTRUCT) */
ifich =0 PARENTHES)

104

Step 2.: The computer will start reading the rule-based construct into the rule base array

process by checking if the character being read (ch variable) is outside the quote. If the
resuff.rem is equal to SUCCESS (ch is outside the quote), the computer will do step

2.1. Otherwise, the computer will go to step 2.2.

K

/% DO READING OF A RULE-BASED CONSTRUCT PROCESS */

do
/* CHECK IF ¢h { BEING READ CHARACTER) IS OUTSIDE QUOTES */
ifiresultrem == SUCCESS)

Step 2.1.: The computer will do the following:

The computer will update the parenthes_count value. If ¢ch is an open parenthesis,
the computer will add 1 to the parenthes_count However, if ch is a closed

parenthesis, the compuier will subiract 1 from the parenthes_count.
L
/* ADD ONE TO parenthes count FOR AN OPEN PARENTHESIS */
ifich == O_PARENTHES)
parenthes count++;
glse
/* SUBTRACT ONE FROM parenthes_count FOR A CLOSED PARENTHESIS */
ifich = C_PARENTHES)
parenthes cournt--;

The compuier will add a space behind the last quote (chr will be added behind) in the

rufe base array it ¢f is not a space or a closed parenthesis.

/* ADD A SPACE BEHIND LAST QUOTE */
if{(ch = SPACE) &&
{¢h I=C PARENTHER) && (rule basefrule ptr-1] == QUOTE))
f
I8
mule basefmile ptrl= SPACE;
rule plhr;
3

The computer will add a space in front of "<-" if ¢h is a RE_POINT2 character(-) that
follows RE _POINT1 character (<), and the character in front of a RE POINT1 is not a

space.

/* ADD A SPACE IN FRONT OF "< %/
ifi(rule_base[rule pir-1]1==RE POINTI} &&

(ch==RE POINT2) && (rule baselrule pir-2] = SPACE))
.
L

rule base[mle pir-1]=SPACE;

rule base[nde pir]=RE POINTI;

rule_ptr++,

1
i

The computer will eliminate a space in front of ¢fy if it is a closed parenthesis, a logical

and, or a logical or.

/* DELETE SPACE BEFORE A CLOSE PARENTHESIS AND LOGICAL OPERATORS #/
ifi({ch==C PARENTHES)|| (ch==L0GI AND}| (ch==L0OGI OR) &&

{mule base[rule pir-1]==5SPACEY)

rale_pir-; E

[
]
L

The computer will replace the arrow, =>, with a2 LHSRHS character and then go to

step 2.3.
/% REPLACE A CLIPS ARROW WITH A LHSRHS CHARACTER ¥/
if{(parenthes count == TRUE} && (ch == STARTRHES) &&

(rile base[mule ptr-1]==ENDLHS}H

{
mile pir--;
ch=LHERHS;

}

)
|

Step 2.2.: The computer will check if ch is between quotes. If ch is imside quotes
(result.rem is TRUE), its value will be replaced with Q SPACE, O PAREN, or
C PAREN depending on whether ¢ch is a space, an open parenthesis, or a closed

parenthesis, respectively.

else
M CHECK IF ¢h I8 BETWEEN QUOTES */
iffresultrem == TRUE)

i
} /* REPLACE SPACE WITH (§ SPACE CHARACTER */
g ifich == SPACE)

’ ch=0 SPACE;

J elze

/# REPLACE OPEN PARENTHESIS WITH O PAREN CHARACTER™/
ifich==0 PARENTHES)

ch=0_PAREN;
else
/* REPLACE CLOSED PARENTHESIS WITH C PAREN CHARACTER */
ifleh = C PARENTHES)

ch=C PAREN,

3
¥

Step 2.3.: The computer will check if ¢h is a quote. If if is, the computer will update the
guote _count value and re-calculate the resultrem value. If ch is the last quote
(resuit.rem is equal to SUCCESS) following a space, the computer will eliminate that

space.
/% CHECK IF ch IS A QUOTE */
ifich == QUOTE)

i

f* RE-CALCULATE resultrem VALUE */

result = div({(++quote_county, 2);

f* ELIMINATE A SPACE BEFORE THE LAST QUOTE */

iff (result rem = SUCCESS) && (rule_base[rule_pir-1]==0 SPACEY)
e pir--;

%
o
|

!
!]
| H

(
|
|
|
|
|
|
|
i

Step 2.4.: The computer will add the ch value into a rule base array, get the next

character (store in ¢h variable) from the information file, and increment rife _ptr value
by one. It will then go back to perform step two if the end of the information file has
ot been reached (feof(iptr) is FALSE), the parenthes_cournt value does not equal
SUCCESS (it is not the end of rule-based construct), and there is not an excess in the

size of the rule base array.

h
while((!feofliptr)) && (parenthes_count = SUCCESS) && (rule_plr < imit)},
rule base[rule ptr]=ENDARRAY;

P WERITE ch VALUE TO rule_base AREAY ¥/
rule baselrule pir]=ch;

/A GET ANEXT CHARACTER ¥/

ch = getoliptr),

A INCREMENT rule_ptr VALUE BY ONE %/
mile _plrtt;

4

Step 3.: Before the computer can determine what type of rule-based construct (defrule or

deffacts consiruct) is in the rule base array, it must check the parenthes_count value.
If the parenthes_count value does not equal SUCCESS (the reading process is
stopped before the computer reaches the end of the rule-based construct being read),
the computer will call an Errgr function to display an error message (assuming that the
rule_base array is too small for a complete rule-based construct). Otherwise, the
computer will search for the end of a first field (a space) in the rule_base and iis
address will be stored in the currply variable. If a space isn't found (Fcurrptr value is an
ENDARRAY character), the computer will call Error function to display an error
message (assuming that the rule-based construct has nothing). Otherwise, the “currpir
value (a space) will be replaced by an ENDARRAY characier.

/* CHECK IF THE END OF RULE-BASED CONSTRUCT HAS NOT BEEN READ #/
iffparenthes_count = SUCCESE)
Frror("THE RULE ARRAY IS TOO SMALL. ", NONE, "n'"),
* SEARCH FOR THE END OF THE FIRST FIELD ¥/
currptr = strehi{rule_base, SPACE);
/# CHECK FOR THE EXISTENCE OF THE FIRST FIELD */
W*currplr == ENDARRAY)
Error{"CANNOT FIND ANVTHING IN THE CLIPS RULE BASE. ", NONE, "n"),
*currptr = ENDARRAY,

107

Step 4.: The computer will know what type of rule-based construct is in the rufe-base
array by determining the first field. If the first field is a "defrule”, fact variable will be
set to FALSE (rule-based construct is a defrule construct). Otherwise, if first field is
a "deffacts", fact variable will be set to TRUE (rule-based construct is a deffacts
construct). However, if neither "defrule” nor "deffacts” are the first field, the

computer will display an error message.
/A CHBCK IFITIS A DEFRULE CONSTRUCT ¥/
Histrempi&rule_basell], "defiule”) == BUCCESE)
fact = FALSE;
else
A CHECK IFIT IS A DEFFACTS CONSTRUCT #/
if{stromp(&nile_basel(1], "deffacts”) == SUCCESS)
fact = TRUE;
else
Error("CANNOT FIND DEFRULE OR DEFFACTS IN THE RULE BASE.", NONE, "n");

Step 5.: Once the computer knows the rule-based construct type, it will check the value of
the type variable. If type is DEFFACTS and rale_base is defrule consiruct (fact is
FALSE), the computer will set the done to NONE (the computer did not read the right
construct) and go to step six. Otherwise, the computer will replace a "currplr value (an
ENDARRAY character) with its original value (a space). It will then assign the currptr
value, incremented by one (beginning address of rule-based construct name), to the

temptr, The computer will then do sub-step five.

/% CHECK IF COMPUTER READS THE RIGHT CONSTRUCT */
ifl(type == DEFFACTS) && (act))
done = NONE;

else

i ;
[i

*cunptr = SPACE;S
temply = HHouriplr;

108

“—-—--‘

Step 5.1.: The computer will search for the rule-based construct name starting from

currptr value. The end of a rule-based construct name can be identitied as follows: i)
If rule_Base is a defrule construct and it does not have any LHS pattern, a LHSRHS
character will be found after a name: ii). If a name is followed by a fact block, an open
parenthesis will indicate the end of that name; #i). A space can be found after a name
becanse each field is normally separated by a space;). If a rule_base is a defrule
construct and a name is followed by an index retract, a question mark will indicate the
end of that name; V). It is possible that this rale base does not have anything after the
first field. An ENDARRAY character (\0) will be used as a terminating character,
meaming that the compuier will stop a searching loop whenever it reads an
ENDARRAY.

If the computer cannot find a name (currplr still equal to femptr or “currplr is an
ENDARRAY character), an error message will be displayed. Otherwise, the computer
will save the *currptr value in the ch, replace “currplr value with an ENDARRAY
character, and display the rule-based construct name with its type on the screen. Affer

that, the computer will replace *currptr value with the previous ¢h value.

S* SEARCH FOR THE ENDING OF rule_base ARRAY NAME */

while((*curmptr t= LHSRHS) && (*cunptr 1= O_PARENTHER) &&
Ctourtpty 1= SPACE) && (*cunpty 1= §_WILDCARD) && (*eurrpir =100
currpti+;

f CHECK FOR THE EXISTENCE OF rule_base ARRAY NAME ™/

i ourrpir == tempin) || ouorptr == ENDARRAY))
Error{"CANNOT FIND DEFRULE NAME OR DEFFACTS NAME. ", NONE, "n"}

¢h = *ourrptr;

*ourrptr = ENDARRAY,

/* DISPLAY A mule base ARRAY NAME WITHITS TYPE */

Message("\n'n FINISH READING..." NONE, &rule_basel1]),

*ourphr = ohy

Step 5.2.: The computer will check if rufe_base is a defrule construct. If it is a defrule

construct (fact is FALSE), the computer will update a rule_size value. The
computer will then initialize all the variables before it checks the configuration and
syntax error procedures in step 5.3. This procedure includes writing a rule-based
construct from the rule base array into a Graptool wrk file.

/# CHECK IF IT IS A DEFRULE CONSTRUCT ¥/

if{1fach)
rule size =rule sive -+ vule pir;
/S INITIALIZE VARIABLES VALUE %/
quote_count = space_count = variable_count = SUCCESS;
rule pir= Ihsths = resultrem = fact size = field size = SUCCESS,

Step 5.3 The computer will check the while /loop condition, which 18 a
rule_basefrule_ptr] value. If rule_basefrule_ptr] is not an ENDARRAY character,

/DO A CHECKING CONFIGURATION AND SYNTAX ERROR PROCESE */
while(rule base[tule_ptr{ = ENDARRAY)

I
|
!

Step 5.3.1.: If a character inside rule_base[rule_ptr] is a space, the computer will do the
following: i) Add a space into Graptoolwrk and calculate the position of that space
(resuff rem valuey, i) If result rem value is TRUE (it is a space in front of a field),
the computer will assign the rule _plr value to fiekd_start. Otherwise, the computer
will re-calcolate the maximum size of the field in the rale base array; ni) Go to ste
5.3.7.

| L
! M CHECK IFITIS A SPACE ™
ifirule baselrule pir] = SPACE)
¢
/2 WRITE A SPACE TO Graptoolwrk FILE */
pute{SPACE, wpir),
/* CALCULATE THE SPACE POSITION %/
result = div({(++space_count), 2,
S CHECK IF A SPACE IS IN FRONT OF A FIELD */
ifiresult.rem == TRUE)
field start=rule ph,
else
/* CALCULATE THE MAXIMUM SIZE OF FIELD %/
if{field size < (rule pir - field start + 1))
field size =rule pir - field starf+ 1,
\
)

Step 5.3.2.: If a character inside rule_basefrule_ptr] is a quote, the computer will
increment guote count value by 1, add a quote info Graptoolwrk, and go 1o step
5.3.7.

else

% CHECK IFITIS A QUOTE */

ifirule _base{rule pir] == QUUTE};
5

.

/* ADD ONE TG quote count VALUE ¥/

quote_counttr,

/* ADD A QUOTE TO Graptoolwrk ®/

putc(QUOTE, wpir);

1

7
Ed

Step 5.3.3.: I a character inside rule_basefrule_ptr] is a 5 WILDCARD character
(assuming it is part of variable field), the computer will do the following: 1) If a
character inside rule_base[rule_pir} is also part of index retract, the computer will
add a lnefeed (NEXTLINE character) and a space to Grapioolwrk file; i) The
computer will add one to variable_count (update number of variable file), and write a
S WILDCARD character into Graptool.wrk; i) The computer will go to step 5.3.7.

else
CHECK IFITIS A PART OF VARIABLE FIELD ™/
ifirule basefrule ptrl==85 WILDCARD)
{
/% CHECK IF IT IS A PART OF RETRACT VARIABLE #/
if{(parenthes_count== 1) && (rule_base[rule ptr-2] 1= C_PARENTHES})
.
i
/# ADD A LINEFEED AND A SPACE TO Graptoolwik FILE */
putcNEXTLINE, wpir;
pute{ SPACE, wpir),

!

£

/* UPDATE A NUMBER OF VARIABLE FIELD ¥/
variable _count++;

= ADD A QUESTION MARK TG Graptoolwrk FILE */
pute{S WILDCARD, wptr),

i

Step 5.3.4.: If a rule_basefrule_pt] is an open parenthesis, the computer will do the
following: i) Add one to parenthes_count and store rufe_ptr value (beginning of a
block) in the fact start vadiable; i) A linefeed and a space will be added to
Grapiool.wrk if this open parenthesis is followed by an index retract and/or block; i)

Add an open parenthesis to Graptoolwrk, 1v) the computer will go to step 5.3.7.

else
/& CHECK IF IT I8 AN OPEN PARENTHESIS */
iffrule_base[rule pitr] = O PARENTHES)
/% ADD ONE TO parenthes count */
parenthes countt+,
fact start = rule pir;
i CHECK IF 1T I8 THE BEGINNING OF FACT BLOCK
if{{parenthes _count==2) && (rule baselrule pir-2] t=RE_POINTZ)
&& (rule baselrule ph-2]1=C PARENTHES)
{
7 ADD A LINEFEED AND A SPACE TO Graptoolwrk FILE */
putc(NEXTLINE, wptr},
putc(SPACE, wplry,
3
j* ADD AN OPEN PARENTHESIS TO Graptoolwrk ™/
pute{C PARENTHES, wpl),
g

J

o
o
o

-—-—-—_,

Step 5.3.5.: If a rule_base[rule_ptr] is a closed parenthesis, the computer will do the
following: 1) Subtract 1 from parenthes_count and add a closed parenthesis fo
Graptool.wrk;, i) Re-calculate the maximum size of a block in the rule_base array; iii)
If the closed parenthesis is not followed by another closed parenthesis, the computer will
add a linefeed to Grapioolwrk, iv) The computer will go to step 5.3.7,

else
4 CHECK IFITIS A CLOSED PARENTHESIS */
iflrule base{rule ptr]=={ PARENTHES)

!
kS

parenthes_cotnt--;
pute{C PARENTHES, wpirk
/* RE-CALCULATE THE MAXIMUM FACT S[ZE */
ifffact_size < (rule pir - thot_start+ 1))
fact size=rne pir - fact start + 1,
/* CHECK IF IT 1S FOLLOWED BY ANCOTHER CLOSED PARENTHESLS */
irule basefrule pte+ 1] 1=C PARENTHES)H
7 ADD A LINEFEED TO Graptool.wrk ™/
putc{NEXTLING, wpir),

i }

Step 5.3.6.: The computer will do the following: 1) If a rule_baserule_ptr] is a
LHSRHS character, the computer will set /hsrhs to TRUE and wiite an arrow (=)
into Grapioolwri; i) If a rule_basefrule_pltr] is a Q_SPACE, the compuier will add
a space to the Graptoolwrk, i) If a character in rule basefrule_ptr] is the
O PAREN, an open parenthesis will be added to Grapioolwrk, 1v) It the value of
rule_basefrule_plr] s a C PAREN, a closed parenthesis will be added to
Grapioolwrk. Otherwise, a character in rule_basefrule_ptr] will be written into
Graptool.wrk;, v) The computer will go to step 5.3.7.

else
/* REPLACE A LHSRHS CHARACTER WITH => IN Graptool.wrk™/
HLHSRHS = rule_base{rule_ptrD)

i

thsths = TRUE,
pute{ ENDLHS, wptr),
putef STARTRHS, wptry;
Y
else
MAREPLACE A Q SPACE WITH A SPACE IN Graptoolwrk */
ifirule basefrule ptel==Q SPACE)
putc(SPACE, wptr),

SREPLACE AN O _PAREN WITH AN OPEN PARENTHESIS IN Graptool wrk */
iffrule baselrule puf== (O PAREN)
putc{C PARENTHES, wpir),
else
SAREPLACE AC PAREN WITH A CLOSED PARENTHESIS IN Graptoolwrl */
iffrule base[rule ptrl=={C PAREN)
pute{C PARENTHES, wpir);
else
JEWRITE A CHARACTER BEING READ INTO Graptool wrk */
] putetrule basefrule pt], wptr);

112

Step 5.3.7.: The computer will increment the rufe_ptr value by 1 and then go back to step

5.3,
FINCREMENT A mule ptr BY ONE */
rule phr+;

(-

Step 5.4.: The computer will show an error message and stop program execution it one of
the following error conditions occur: 1) An arrow is found in the deffacts construct,

2) No arrow is found in the defrule construct, 3) There is a missing quote, 4) The

size of rule_base, fuct base, field, or variable array is 100 small.

/= ADD A LINEFEED TO GRAPTOOL WREK */
putc(NEXTLINE, wpto);

SCHBECK IF AN ARROW I8 IN DEFFACTS CONSTRUCT ¥/
if{fact && Ihsths)

Error("FIND => [N THE DEFFACTS.” NONE, "'},

I A 7}1?@& I TH%:RE IS NO ARROW IN DEFRULE CONSTRUCT */
it && Hhsihs)

Brror("CANMNOT == IN THE DEFRULE ", NONE, "n");
result = diviquote count, 2),

/* CHECK FOR MISSING QUOTES */
ifresultrem = SUCCESE)

Error{"MISSING QUOTES IN THE CLIPS RULE BASE.", NONE, "n"),
7 CHECK IF A SIZE OF mule_base ARRAY IS TOO SMA ,LL */
ifirule size »>= hmit)

Errot("RULE SIZE, " RULE_SIZE, *, BYTES IS TOO SMALL. 'n"),
/* CHECK TF A SIZE OF fact_base nRRA’Y IS TOO SMALL ™Y
} ififact size >=FACT BIZE-D)

} Brror(*FACT SIZE, ",FACT SIZE, ", BYTES I8 TOO SMALL. "),

| /% CHECK IF A SIZE OF field ARRAY I3 TOO SMALL ™/

| ifffield_size >= FIELD SIZE-2)

{ Error("FIELD SIZE,".FIELD_ SIZE,", BYTES IS TOO SMALL. \n"};
|

!

!

/* CHECK IF A SIZE OF variable ARRAY IS TOO SMALL */
if{{variable count™(field size + fact_size)) >= VARIABLE SIZE-2)
Error("VARIABLE SIZE, ", VARIABLE_SIZE,”, BYTES IS TOO SMALL. "),

Step 5.5.: The computer will display a "no error” message and initialize a done value 1o a
DEFRULE. However, if the rule base array is a deffacts construct (fact is TRUE),

_the computer will set done to DEFFACTS.

; Message("\n** DOES NOT DETECT ANY ERROR IN READING PROCESS **" -1,"0™);
| done = DEFRULE;

‘ /% CHECK IF IT IS A DEFFACTS CONSTRUCT */

|

|

|

|

if{facth
done = DEFFACTS,
1
|
3

Step 6.: The ReadRuleAndFactFromWorkingFile will return to the Main function with
a done value (DEFRULE, DEFFACTS, or, NONE).

return{done); - N?
1
3 5

ot
o
Lad

8y ConveriRulebaseToGraptoolFormat function

Sub-funclion

ConvertCondition Totraptioolformat

ConvertAssertAndRetract ToGraptoolformat

ConvertDelTacts ToGraptooiFormat

WriteFormatToWorkFile

Purpose: A ConvertRulebaseToGraptoolFormat function will convert a defrule

construct or a deffacts construct in the rule _base array into Graptool format.
The CLIPS defruile, deffacts, assert, and retract commands will be replaced by
DEFRULE, DEFFACTS, ASSERT, and RETRACT characters, respectively.

Open and closed parentheses will be used as the determiner for the beginning

and end of each block, and as a name of that rule-based construct. Each rule
condition begins with a CONDITION character followed by &, |, and ~, to

represent the logical operator of each condition. The end of each defrule and

deffacts construct will be marked by an ENDRF character, for separating one

congiruct from another.

Prototype:

2 void ConvertRulebaseToGraptoolFormat(int rulebase_type)
(

7
i

A rulebase_type is an integer variable which contains the rule-based construct in the
rule_base array. The value of rulebase _type (NONE, DEFFACTS, or DEFRULE.) 1s the
returning value of the Read RuleAndFactFromWorking¥File function.

114

]

!
l
1

Pseudo-code:

Step 1.: The compuier will check for the value of rulebase_type. I rulebase_type is
not NONE (negative one), the computer will search for the beginning and end of the
rule-based construct name, and add an open and closed parentheses around it. The
computer will then perform either step 1.1 or step 1.2 based on the value of
rulebase_iype. However, if rulebase_type is NONE, the computer will go to step

tWo.

A CHECK IF ITIS NOT NONE */

iffmlebase type I=NONE)
/* SEARCH FOR THE BEGINNING OF RULE-BASED CONSTRUCT */
[WAME AND REPLACE IT WITH AN OPEN PARENTHESIS */
temptr = strohritule_base, SPACE),
*temptr = O_PARENTHES;
/* SEARCH FOR THE END OF RULE-BASED CONSTRUCT ¥/
S NAME AND REPLACE ITWITH A CLOSED PARENTHESIS ™/
rilebase ptr = shrehr(temptr, SPACE),
*rilebase pir=C PARENTHES,
rulebase pler+;

Step 1.1.: If the rulebase_type is a DEFRULE character, a rule_flag variable will be set
to TRUE and the following functions will be called in sequential order:
The WriteFormatToWorkingFile function is called to write the name of defrule

construct into the Graprool rul Hile.
The ConvertCondition ToGraptoolFormat function 15 called to convert the LHS of

the rule mto Graptool format.

The ConvertAssertAndRetract ToGrapteelFormat Tunction is called to convert the

assert block and retract block of the rule into Graptool format.

The computer will go to step two.

PP CHBECK IFITIS A DEFRULE CONSTRUCT %/

ifirulebase type == DEFRULE)

1
nile flag ="TRUE;
M WRITE A DEFRULE CONSTRUCT NAME TO Graptoolrud */
WriteFormatToWorkingFille(DEFRULE, temptr, rptr);

J CONVERT RULE LHS INTO GRAFTOOL FORMAT */
ConvertConditionToCraptoolFormat(rulebase _pir),

J* CONVERT ASSERT AND RETRACT BLOCKS INTO GRAFTOOL FORMAT */
ConvertAssertAndRetractToGraptoolFormat{rulebase pir),

)

[l
[ES
LAy

Step 1.2.: If the rulebase_type is a DEFFACTS character, the computer will call the
following functions in sequential order:

The WriteFormatToWorkingFile function is called o write the name of deffacts

construct to the Grapiool. fac ile.
The ConvertDeffacts ToGraptooiFormat function is called o convert the fact blocks

in deffacts construct into Graptool format.

The computer will go to step two.

else
A CHBECKIFITIS A DEFFACTS CONSTRUCT */
iflrulebase type == DEFFACTE)

£
g

/% WRITE A DEFFACTS CONSTRUCT NAME TO Graptool.fac ™/
WriteFormatToWorkingFile(DEFFACTS, temptr, optr;

J* CONVERT FACT BLOCKS TO GRAPTOOL FORMATY
ConvertDeffactsToGraptoolFormat{rulebase ptr);

3

5

y
E

Step 2.: The ConvertRulebaseToGraptoolFormat will return to the Main function.

I
|3

8.1) ConvertConditionToGrapioolFormat function Sub-tunction

Message

WriteFormat ToWorkingFile

GetAField

Purpose: A ConvertConditionToGraptoolFormat function will convert condition

blocks from the LHS of the rule in the rule _base array into Graptool format.

This conversion will be stored in Grapiool rul file.

Prototype: B
void ConvertCondiionToGraptoolFormat(char *rulebase_pir)
K |

A rulebase_ptr is a characier pointer variable which contains the address of the first

condition block of the rule.

Pseudo-code:
Step 1.: The computer will initialize parenthes_count to 1, set condition_flag to
~ FALSE, and display a starting processing message.
o INITIALIZE VARIABLES */
narenthes count= 1
| condition flag = FALSE;
} Message{"\n Converting condition to Graptool format...”, NONE, ENDARRAY);

-

Step 2.: The computer will check the condition of the while loop which is a *rulebase_ptr
value. If the *rulebase_ptr value is not a LHSRHS character (it is not the end of LHS
rule), the compuier will do step three. Otherwise, the computer will go to step five.

[DO THE RULE CONDITION CONVERTING PROCESS */
| while(*rulebase ptr = LHSRHS)

j—y
fa—y
-

Step 3.: The computer will first check the value of parenthes_count. If the condition
block is not inside any logical pattern block (parenthes count is TRUE), the
compuier will assign an explicit and to a condition block (assign LOGI AND 1o
fogical variable). After that, the computer will check if the rulebase_ptr contains the
beginning address of block. If *rulebase_plr is an open parenthesis (rulebase_pir
contains the beginning address), the compuier will do sub-step three. Otherwise, the
computer will do step four.

H
M CHECK IF A CONDITION BLOCK 1S NOT INSIDE ANY LOGICAL BLOCK ™/
fiparenthes count == TRUE}
logical = LOGI_AND;
J¥ CHECK IF IT IS THE BEGINNING OF A BLOCK */
if{*rulebase ptr==0 PARENTHES)

Step 3.1.: The computer will add 1 to parenthes_count (because *rulebase_ptr is an
open parenthesis) and assign FALSE 1o good_fact variable. The computer will then
call the GetAField function to get the first field in a block. This first field will be
stored in @_field arrav and its ending address will be stored in a rulebase character
pointer variable. The computer will check if the “rulebase value is a space. If
*rulebase is a space {this block has more than one field), the computer will search for
the next open or closed parenthesis. The address of the next open or closed parenthesis
will be stored in rulebase.

£

M UPDATE A PARENTHESIS COUNTER */
parenthes count++;
M RE-INITIALIZE VALUE OF good fact */
good fact=FALRE,
/7 GET THE FIRST FIELD OF A BLOCE ™/
rulebase = GetAFieldirulebase pir, a_field, ¬last);
P CHECK IF THE END OF FIRSTFIELD IS A SPACE */
il *rulebase == SPACE)
/
/& SEARCH FOR THE BEGINNING OF ANY SUB-BLOCK %/
while((*rulebase =0 PARENTHER) && *rulebase (=C PARENTHES))
rlebaset+;

1

Step 3.2.: The computer will first check the “rufebase value (open or closed parentheses).
If the “rufebase is not an open parenthesis (there is no sub-block in the block), the
computer will set good_fact to TRUE and assign rulebase_pir value to rulebase.
However, if “rufebase is an open parenthesis, the computer adds 1 fo
parenthes_count and sets new_jogical to a space. The computer will then check if
a_field is one of three logical operators. If a field 15 "or", "and", or "not", the
computer will replace the new fogical value with LOGI OR, LOGI AND, or
LOGI NOT characters respectively. After that, the compute will check the
new _logical value. If new _jogical is not a space, the computer will set good_fact to
TRUE and assign the new _fogical value to the fogical variable.

/* CHECK IF THERE IS NO SUB-BLOCK */
it*rulebase = O PARENTHES)

i,

sood fact =TRUE,
rulebase = rulebase_pir;
N
/A BLOCK HAS S8UB-BLOCK */
else
{
7 UPDATE A PARENTHESIS COUNTER ™/
parenthes countt++;
£ IMNITIALIZE new logical VALUE */
new logical = SPACE,
A CHECK IF A FIRST FIELD IS LOGICAL OPERATOR QR */
if{strempla field, "or'" == SUCCESS)
new logical = LOGI OR;
slse
/A CHECK IF A FIRST PIELD I8 LOGICAL OPERATOR AND */
iffstremp(a_field, "and") == SUCCESS)
new logical = LOGI AND:
else
P CHECK IF A FIRST FIELD IS LOGICAL OPERATCOR MOT */
if strompiafield, "not") == SUCCESS)
new logical = LOGI NOT,
/TP LOGICAL OPERATOR EXISTS, UPDATE THE logical */
/* VALUE AND SET good_fact TO TRUE */
ifinew logical 1= SPACE)
f

s

good_fact=TRUE,
logical = new logical;

i
}

tep 3.3.: If a good_fact value is TRUE, the computer will set condition_flag 1o TRUE

and call the WriteFormat ToWorkingFile function to add fact block and its logical

operator 1o a Graprool.rul file. Otherwise, the computer will search for the end of the
block, cover the whole block with warning messages, and then ask the end user to
confirm continuation of the LHS rule conversion process. If the user does not enter
Y or "v" fo confirm continuation of the process, the computer will call the Error

function 1o display a message.

MACHBCK IFITIS A GOOD FACT BLOCK */
iffgood fact)
f
S
condition flag =TRUE;
/* SET A LOGICAL OPERATOR TO THE BEGINNING OF FACT BLOCK ™/
/* AND THEN WRITE THAT FACT BLOCK TO A Craptoolrul FILE */
*(--rulebase) = logical;
rulebase ptr= "WiiteFormatToWorkingFile{ CONDITION, rulebase, 1ptr),
1

i
else
IS
SEIFIT IS NOT A FACT BLOCK, A COMPUTER SEARCH FOR THE END */
do
.
i
rulebaset+;

i *rulebase == O _PARENTHES)
parenthes count+,
else
1 *mlebase = C_PARENTHER)
parenthes count--;
£
£
while(parenthes count i= 1},
ch = *{++rulebasey,
*rulebagse = ENDARRAY,
/* DISPLAY A DETAIL OF A FACT BLOCK */
Message("n"”, NONE, rulebase ptr);
Message("n TUNIDENTIFIED FACT BLOCK HAS BEEN ELIMINATED 1Y -1,
rulebase ptr--;
*rulebase ptr= COMMENT,
% DO AN ELIMINATE "<-" PROCESS */
while(*rlebase pir I=ENDARRAY)
i *rulebase phr==RE POINTD) && (*(++rulebase piry=—=RE POINTZ)
*rilebase ptr=COMMENT;
rulebase phr
3
*rulebase = chy;,
rulebase ptr=rulebase;
f ASK AUSER TO CONFIRM PROCESS CONTINUATION */
Message("A GRAPTOOL PROGRAM MAY NOT GIVE THE CORRECT RESULT " -1},
Message("ENTER ¥ TO CONTINUE THE PROCESS..» " NONE, ENDARRAY),
geta(ans),
M CHECK IJF AN ANSWER IS NO ¥/
il{(stremplans, "Y" 1= SUCCESE) && (stromplans, "y") i= SUCCESS)
Error{ "n An user decide to not continue a program execution.” ,NONE, ENDARRAYY,

e
b
Gt

Step 4.: The computer will update a parenthes_count value, increment rulebase_ptr by

one, and then go back fo step two.

M CHECKIFITIS A CLOSED PARENTHESIS */
if*rulebase ptr == PARENTHES)

parenthes count--;
mlebase plire+;

)
;s

N

|

l

Step 5.: The computer will check if a rule has any conditions. If a rule does not have any
conditions (condition_flag is TALSE), the computer will set nocondition_flag to
TRUE and add the special fact block to the Graptool rul. This special fact block will
allow the RHS of this mle to be performed one time, it and only if the fmitial-fact)

exists in the fact base.

M CHECK THE EXISTENCE OF LHS RULE %/
il leondition flag)
f
3
nocondition_flag = TRUE;
Message("nl U NG CONDITION IN THIS RULE. (U, NONE, ENDAREAYY,
/¥ INSERT THE SPECIAL FACT BLOCK TO GRAPTOOL RUL ™/
putc(CONIDITION, tptry;
fprintfirptr, "S{initial-fact)™;
putc{CONDITION, mpir),
forintfrptr, "&ipt-NoCondition-TFY),
/ INSERT THE RETRACTION OF SPECIAL FACT BLOCK TO GRAPTOOL RUL %/
putcl RETRACT, ptry;
fprintf{rpts,"(pt-NoCondition- TPy,
/* CALCULATE THE TOTAL FACT BASE SIZE */
fact base size = fact base size + 15;

)
(

Step 6.: The ConvertConditionToGraptoolFormat function will return to

ConveriRulebase ToGraptoolFormat function.

the

Mo

8.2) ConvertAssertAndRetract ToGraptoolFormat function

Sub-function

VariableSearch

fWiessage

WriteFormatToWorkingFile

GetATield

Purpose: A ConvertAssertAndRetractToGrapteolFormat function will convert the

assert block and retract block of the rule base into Graptool format.

Prototype:

Fa{.ﬂd ConvertAssertAndRetract ToGraptoolFormat(char *rulebase pir)
Iy

)
Pk

A rulebase_pir is a character pointer variable which contains the address of the first
condition block of rule.

Pseudo-code:

Step 1. The computer will assign rulebase_pir value to rulebase, set assert_flag,
retract_flag, and flag to FALSE, and then search for the beginning of the RHS of the
rule. The RHS beginning address will be stored in rulebase_ptr.

P PR INITIALIZE VARIABLES VALUE */

! rulebase = rulebase pir;

| assert flag=retract flag = flag = PALSE;

l Message!{"n Convert assert and refract to Graptoo! format. " NONE, ENDARRAY Y,
(/* SEARCH FOR THE BEGINNING OF RHS */

| rulebase ptr=strchr(rulebase pir, LHSRHE),

Step 2.: The computer will check the condition of the while Joop which is a "rulebase_ptr
value. If *rulebase_ptr is not an ENDARRAY character (the computer dose not reach
the end of rede base array), the computer will do step three. Otherwise, the computer

will go to step six.

7 DO THE ACTION BLOCK CONVERSION */
while(*rulebase pir = ENDARRAY)

Step 3.: The computer will check the value of “rulebase_ptr. If *rulebase pir is an
open parenthesis (the beginming of an action block), the computer will call the
GetAField function o get the first field of an action block (this first field is stored in
a_field array and its ending address is stored in rulebase_ptr). The computer will then
check the value of @_field. If a_field matches "assert” or "retract”, the computer will do
the sub-step three. Otherwise, the computer will do step four. However, if

*rulebase_pir is not an open parenthesis, the computer will go to step five.

¢

[
‘[A CHECK IF ITIS THE BEGINNING OF AN ACTION BLOCK */
i if*rulebase ptr==0 PARENTHES)
i
{ M GETTHE FIRST FIELD OF AN ACTION BLOCK ™/
s rulebase pir = GetAField(rulebase pir, a field, ¬last),
[& CHECK IF AN ACTION I8 ASSERTOR RETRACT BLOCK */
| ifi (stromp(afield, "assert”y = SUCCESS)
| I} (strompla_field, "retract”)y == SUCCESS))

Step 3.1.: The computer will initialize the variables value based on the a_fiefd value. If the
a_field value is "assert”, the computer will increment the rulebase_pir value bv 1,
assign ASSERT character to flag, and set assert_flag to TRUE. Otherwise, the

computer will assign RETRACT character to flag and set refract _flag to TRUE.
{
/% SETTHE VARIABLES FOR ASSERT BLOCK */
iflstromp(a field, "assert”) == SUCCESS)
{

nilebase ptr+;
flag = ASSERT;
assert flag = TRUE,

i

f

else
[SET THE VARIABLES FOR RETRACT BLOCK */
(

fiag = RETRACT,
retract flag = TRIJE;

1

i s

Step 3.2.: The computer will do the variable searching process by calling the GetAField
function to get a field of action block (stored in a_field array). The computer will then
check if a field 15 a single-field variable. If it is, the computer will call the
VariableSearch function to scarch for a_field based on the type of action block (fag
value). However; if the action block is an assert block (flag is ASSERT character)
and @ _field is a multifield variable, the VariableSearch will also be called 1o search
for an a_field. However, if the action block is a retract block (flag is RETRACT

character), the computer will call Error function to display a warning message because

every field besides the first field in retract block must be a single-field variable. The

procedures in this step will continue until no more field is left in the action block.

pir=tulebase_pir
DO THE VARIABLE SEARCHING PROCESS */
do
!
M GET A FIELD FROM THE ACTION BLOCK */
rulebase ptr= GetAField(lebase pir, a fleld, ¬last),
PCHECK BEXISTENCE OF VARTABLE FIELD [F IT IS SINGLE-FIELD VARIABLE */
ifffa field[0]==8 WILDCARD) &4& (strlenfa_field) > 1))
VarableSearch(flag, a_fiald, mlebase);
else
{* CHECK BEXISTENCE OF VARIABLE FIELD IF IT CAME FROM AN
/™ ASBERT BLOCK AND ITIS A MULTIFIELD VARIABLE */
iff(flag == ASSERT) && (2 _field[0] =M WILDCARD) &&
(a_field[1]==5 WILDCARD) && (strlenfa field) > 21
VarableSearch{ASSERT, a_field, nulebase),
else
/¥ CHECK IFITIS A RETRACT BLOCK AND NO SINGLE-FIELD VARIABLE */
if{flag == RETRACT)
Error"RETRACT INDEX CANNOT BE MULTIPLE WILDCARD VARIABLE." -1\,
while{notlasty,

Step 3.3.: If the action block passes step 3.2 testing and the flag value is an ASSERT

character, the computer will call the WriteFormatToWorkingFile function to write the

assert block to the Grapiool rul file.

/# CHECK IF ACTION BLOCK IS AN ASSERT BLOCK */

ifi flag == ASSERT)

J*ADD ASSERT FACT STRING INTO THE GRAPTOCOL RUL FILE */
plir = WiteFormatToWorking Fille(ASSERT, ptr, rptr);

|

124

Step 4.: The computer will search for the end of action block whose address 18 stored in
the rulebase_pir variable.
/* SEARCH FOR THE ENDING OF THE ACTION BLOCK ™/

rulebase ptr = strchrtrulebase ptr, C PARENTHES),
it

Step 5.: The computer will increment the rulebase_ptr value by 1 and then go back to
step tWo.

rulebase ptrtt;

)
£

Step 6.: After the computer has done the conversion process, the computer will check the
assert_flag and refract_flag values. It assert_flag or refract_flag are FALSE, the
computer will display warning messages. The computer will then add an ENDRF
character to the Grapfool. rul file 1o separate one rule from another.

|/ CHECK IF RULE HAS ANY ASSERT BLOCK */
| ifftassert_flag)
|

4 CHECK IF RULE HAS ANY RETRACT BLOCK */
i lretract flag)

Message("nlHHHNO RETRACT IN THIS RULE. HITHIHP NONE, ENDARRAY),
| pute(ENDRF, rptr);

Step 7.: The ConvertAssertAndRetractToGraptoolFormat function will return to the
ConvertRulebase ToGraptoclFormat function.

[
i
L%

8.2.1) YariableSearch function function Sub-function

Error

WriteFormat ToWorkingFile

GetAField

Purpose: A VariableSearch function will search the left hand side (LHS) of the rule in

rule base array for the existence of the retract index and assert variable.

Prototype:

void VariableSearchiint variable type, char variablel}, char *rulebase pir)

{
|

A variable_type is an integer variable which contains a type of action block If
variable_type is a RETRACT character, the computer will search for the retract index.
However, if the variable_type is an ASSERT character, the computer will search for the
variable field.

A variable is a character array which containg a searching variable.

A rulebase_pir is a character pointer variable which contains the beginning address of the

frst rule condifion,

Pseudo-code:

Step 1.: The computer will check the condition of the while Joop which 1s the
*rulebase_ptr value. If the “rulebase_ptr is not a LHSRHS character (it 1s not the
end of LHS rule), the computer will do step two. Otherwise, the computer will go to

step five.

) /* DO THE VARIABLE SEARCHING PROCESRS *#/
| while(*rulebase_ptr = LHSRHS)

Step 2.: The computer will compare the first character of variable to the “rulebase_ptr
value (the first character of a field from LHS). If there is a maich, the computer will
first decrement rulebase _ptr by 1 and then call the GetAField function to get the field
of that first matching character (stored in a_field array). After that, the computer will
do sub-step two. However, if the first character of variable does not match the
*rulebase_ptr value, the computer will go to step three.

{

MACHECK IF THE FIRST CHARACTER OF varniable™/

/7 MATCHES THE PIRST CHARACTER OF LHS FIELD™/
ifflvariable{0] == *rulebase_ptry

i
13

f
|
|
l
(.
\ rulebase pir—;

7 GET A PIELD FROM THE LEFT HAND SIDE OF THE RULE ™/

rilebase ptr = GetAField(ulebase ptr, a_fleld, ¬lasty,

Step 2.1.: The computer will check the value of variable_type. If the variable_type is
ASSERT character, the computer will assume that the variable is a variable field from
assert block. The computer will then check for the logical field in a_field. If a_field
has any logical fields, the computer will delete it from the a_field array before the
variable field comparison. The computer will do the comparison between a_field and
variable. If thev match, the computer will set the found variable to TRUE.
Otherwise, found will remain FALSE. The computer will then go to step four.
However, if the variable_type is not an ASSERT character, the computer will go to

step 2.2

/* CHECK TF variable_type IS AN ASSERT CHARACTER */
ifivariable tvpe == ASSERT)
.
M CHECK IF AN a_field CONTAINS ANY LOGICAL FIELD */
i (ptr = strchefa_field, LOGI_AND) 1= ENDARRAY)
/* BLIMINATE LOGICAL FIELD */
“oir=ENIDARRAY,
/% CHECK IF a_field MATCHES variabls
Hi(strompia_field, vadable) = SUCCESS) && {parenthes_count > 1))
found = TRUE;

Step 2.2.: The computer will check the variable_type value. If the variable type is a
RETRACT character, the computer will look for a retract index (a field which is
followed by <~} that matches the variable. If the a jfield is that retract index, the
computer will set found to TRUE and call the WriteFormatToWorkingFile function

to add a removing block to the Grapiool.rul file. After that, the computer will go to
step four. However, if the variable_type is not a RETRACT character, the computer

will also go to step Tour.

l else
P CHECK IF variable tvpe IS A RETRACT CHARACTER */

iflvaniable fvpe == RETRACT)

kS

/% CHECK FOR THE EXISTENCE OF vanable ™/
E pir = rulebase_pir;
’ Hi(stremp(a_feld, variable) == SUCCESS) && (*{++piry == RE_POINT1)
&& (*(++ptr) == RE_POINT?) && (*(++ptr) I= COMMENT))

{

found = TRUE;

parenthes_count+;

/% SEARCH FOR THE END OF BRETRACT FACT */

rilebase pir = stichr(tulebase pir, O PARENTHES),

M ADD RETRACT FACT TO THE Grapioolml PILE */

rulebase ptr = WrtteFormat ToWorkingFile(RETRACT, rulebase_ptr, rptr);

Step 3.: The computer will perform this step if the first character of variable does not
match the *rulebase_pir value. The computer will then check if the *rulebase__ptr is
a quotation mark. If it is TRUE, the computer will search for the other quotation mark
and that quote address will be saved in rulebase_pir.

y
SIRC 7

| if*rulebase_ptr — QUOTE) {
i

rulebase plr = strehr{-+Hilebase pir, QUOTE),

H

Step 4.: The computer will update the parenthes_count value by adding 1 to
parenthes_count if “rulebase_ptr is an open parenthesis, or subtracting 1 from
parenthes_count if *rulebase_plr is a closed parenthesis. The computer will also
increment rulebase_ptr by 1, and then go back to step one.

ifi*ridebase ptr==0 PARENTHES)
parenthes_count++;

else

ifi *rulebase ptr==C PARENTHES)
parenthes _count--

rulebase plr++;

!

3

s
b
oo

Step 5.: It the found value is FALSE, the compuier will display an error message.

U ound)
Error{variable, NONE, " CANNOT BE FOUND IN THIS RULE. "),

Step 6. The VariableSearch function will return o
ConvertAsseriAnd Retract ToGrapioolFormat function.

-

8.3) ConvertDeffacisToGraptoolFormat function Sub-function

Message

WriteFormal ToWorkingFile

etAFact

CheckTheFieldSyntax

Purpose: A ConvertDeffactsToGraptoolFormat function will convert the deffacts

construct in the rule base array into Graptool format. The result of this

function will be saved in the Graptool fac file.

Prototype:]
,\ void ConvertDeffactsToGraptoolFormat{char *rulebase pir)

I |

A rulebase_ptr is a character pointer variable which contains the beginning address of the

first fact block in the rule_base array.

Pseudo-code:
Step 1.: The computer will set parenthes_count 1o 1, set deffacts_flag to FALSE, and
display a process message.
[S INITIALIZE THE VARIABLES */
parenthes count = 1,
] deffacts flag= FALSE;
| Message("\n Convert deffacts to Graptool format........ " NONE, ENDARRAYY, |

Step 2.: This is the beginning of the deffacts construct converting process. The computer
will begin by checking the while loop condition which is a rulebase_ptr value. If the
“rulebase_pfr is not an ENDARRAY character, the computer will search for the
beginning of the fact block (an open parenthesis) and do the next siep of the procedure.

 Otherwise, the computer will go to step four.
1 /D0 THE DEFFACTS CONSTRUCT CONVERTING PROCESS */
t while(*rulebase ptr 1= ENDARRAY)
.
Pt
| rulebase pir= strob(rulebase ptr, O PARENTHES),

Step 3.: If the computer finds an open parenthesis, (*rulebase_pir is an open parenthesis)
it will do sub-step three. Otherwise, the computer will go back 1o step two.

/% CHECK IF IT IS THE BEGINNING OF FACT */
ift*rulebase_ptr==0O_PARENTHES)

Step 3.1.: The computer will assign zero to /, increment parenthes_count by 1, set the
tirst character of a_fact array to an open parenthesis, and assign the rulebase_pir
value to fact_ptr.

|
i M INITIALIZE THE VARIABLE */
|i=0
I parenthes count++;
fact pir=rulebase pir;
i a_fact[0]= O _PARENTHES;

Step 3.2.: The computer will read a block from the rule_base array to a_fact. Any time
the computer reads a closed parenthesis, parenthes_count will be subtracted by 1. If
the computer finds an open parenthesis, parenthes_count will be added by 1. The
procedures in this step will continue until the computer finds a closed parenthesis

~ ("rulebase_ptr is a closed parenthesis).

i # READ AFTACT FROM nile base ARRAY INTO a_fact ARRAY ™/
[do
o
[18
’ +
r rulebase ptr++;
¥ SUBTRACTONE IFITIS A CLOSED PARENTHESIS */
if *rulebase pir==C PARENTHES)

parenthes _count-;
else
FEADD ONE IFITIS AN OPEN PARENTHESIS #/
if*milebase pir==0 PARENTHER)

parenthes count++;

7 ADD FACT INTO a_fact ARRAY */

a_facti] = *rulebase pir;

i3
a

while{ *rulebase pir = PARENTHES);
a fact++1]=ENDARRAY;

Step 3.3.0 The computer will check the value of parenthes count. I the
parenthes_count value is TRUE (one), meaning that there is no sub-block in the
block being read {(a_fact arrav), the computer will do step 3.4. Otherwise, the computer
will do step 3.5.

" M CHECK IF FACT BEING READ HAS ANY SUB-BLOCK */ h
‘i il parenthes count==TRUE)

o
Lad
R

Step 3.4.: The computer will call CheckTheFieldSvntax function to check the syntax of

cach field in a_fact. If the CheckTheFieldSyntax does not find any error (good_fact
is TRUE), the computer will set fact_flag and deffacts_flag to TRUE, and then call

the WriteFormatToWorkingFile function to write the a fact array mto the

Graptool, fac file. However, if the CheckTheFieldSvyntax finds an error (good_fact is

FALSE), the computer will display a warning message. After the computer has done

step 3.4, it will go back to step two,
{
/A CHECK THE FIELD SYNTAX ERROR */
good fact = CheckTheFieldSvntax{a_fact),
/* CHECKIF ITIS A GOOD FACT */
iffgood fact)
1)
3
fact flag = deffacts flag = TRUE;
& ADD A GOOD FACT TO THE Graptool.fac FILE */
WriteFormatToWorkingFile(CONDITION, a_fact, opir),
i
else
Wiessage"n", NONE, a_fact),
Message{"\n Warning THE ABOVE FACT HAS SYNTAX ERROR." -1, ENDARRAY),
)

4

Step 3.5 .: The computer will search for the end of the block being read, which may
contain many sub-blocks. It will then display that block with a warning message. The
computer will go back to step two in which rulebase_ptr contains the ending address
of the block being read.

slge

“ SEARCH FOR THE END OF THE BLOCK BEING READ */
while(parenthes count {= TRUE}
/
rilebase plr;
ifi*rulebase ptr==0 PARENTHES}
parenthes count++,
else
i rulebase pir=C PARENTHES)
parenthes count--;
)
£
ch=*{++rulebase plry,
*rulebase pir=ENDARRAY,
Message("n", NONE, fact_phr);
Wessage("n THE UNIDENTIFIED FACT HAS BEEN ELIMINATED.", NONE, ENDARRAY),
*rulebase ptr=ch;

b

-

Step 4.: The computer will check for the existence of any fact block by checking the value
of deffacts_flag. If deffacts_flag is not TRUE (the compuier does not find any fact
block), the computer will display a warning message. Otherwise, the compuier will add
an ENDRF character to the Grapiool fac file.

[A CHECK IF IT HAS NO INITIAL FACT */
if{tdeffacts Hag)

{
L else
| puts(ENDRF, cpti);

Step 5.: The ConvertDeffactsToGraptoolFormat function will return to the

ConvertRulebase ToGrantoolFormat function.

9) PreparelnitialFacts function Sub-function

Read ThelnitiaiFacts

GetConditionInstruction

ReadTheRulebaseInToWorkingFile

ReadRuleAndFactFormWorkingFile

ConvertRulebase ToGraptooiFormat

Message

CheckTheFieldSyntax

FactlsInTheCondition

Purpose: A PreparelnitialFacts fonction will prepare the initial facts (fact blocks) for the
rule-based structure tfesting process. If initial facts already exist in the
Graptool fac file, the computer will read that initial facts into the fact base
array. The end user may also add exira facts by kevboard. However, il initial
facts do not exist, the end user has two choices: to enter the name of the file

which has the initial facts, or to enter all the facts by hand.

Prototype:

¥ void PreparelnitialFacts{void)
iy

|

There is no prototype m this function.

Pseudo-code:

Step 1.: The computer will check for the existence of initial facts. If the initial fact does
not exist (fact_flag is FALSE), the computer will do sub-step one. Otherwise the
computer will go to step two.

S CHECK IFINITIAL FACTS ALREADY BXIST */
| ifitfact_flag) §

)

Step 1.1.: The computer will ask the end user to either press enter (select to enter all imitial
facts by hand) or to enter the name of a file which has the inifial facts. The end user’s

answer will be stored in the deffacts_file array.

,

printf Mot THE INITIAL FACT DOES NOT EXIST HHHHH"),

printf"n 1 I vou want to enter facts by hand, press ender "),

printf{"n | otherwise enter the deffacts file name.......... fn"y;

prntf{"n PATH AND FILE NAME CANNOT BE LONGER THAN %d BYTES." PATH SIZE)
print " Enter the deffacts file name -> "),

/* GET THE END USER SELECTION */

gets(deffacts file);

Step 1.2.: The computer will open the deffacts_file file. If the file is successtully opened,
the Read TheRulebaselnToWorking¥File, the ReadRuleAndFactFromWorkingFile,
and the ConvertRulebaseToGraptoolFormat functions will be called o perform error

checking and o convert deffacts construct into Graptool format. The fact_flag will be
set to TRUE by the ConveriRulebaseToGraptoolFormat function and the computer

will then go to step two. However, if the computer cannot open the file for any reason

(fopen{deffacts file, "'r'") returns null), the computer will go to step two.

M CHECK IF THE SELECTED FILE CAN BE OFENED */
i {fptr = fopen(deffacts file, "r") = NULL)}
p

| Message("n@@@@ THE FACT FILE I8 ", NONE, deffacts_file),
ipir = fopen{iname, "wt+"},
EesadTheRulebaseInToWorkingFile();
/% DO GRAPTOOL FORMAT CONVERSION FROCESS ¥/
whgle{ ! feoflipt))
i
P
{ done = ReadRule AndFactFromWorkingFile(DEFFACTS),
M CHECK IF IT IS A DEFFACTS CONSTRUCT */
ifidone == DEFFACTS)
ConvertRulebaseToGraptoolFormat{doney,

%
K
j

y

Step 2.: The computer will prepare the fuct_base array for its mitialization by checking the
value of nocondition_flag. If nocondition_flag is TRUE (some rule has no
condition), the computer will copy a special fact block "(pt-NoCondition-TP)" to the
fact base. Otherwise, the computer will add an ENDARRAY character to the
beginning of fact _base (clear all the values in the array).

/A CHECK IF ANY OF THE RULES HAVE NO CONDITION */
iftnocondition flag)
[COPY A SPECIAL FACT BLOCK TO FACT BASE ¥/
strepy{fact_base, "(pt-NoCondiion-TP)",
else
/* CLEAR ALL THE VALUES IN THE FACT BASE %/
fact base[0] = ENDARRAY,

Step 3.: The computer will check the fact_flag value. If fact_flag is TRUE, the computer
will call the ReadThelnitialFacts function to vead all the intial facts from the

Graptool fac file into the fuct_base. Tt will also store the ending address of fact base
to con_ptr variable. The computer will allow the user to enter extra facts by entering
"Y" or "y" which is stored in ans array. However, it fact_flag is sull FALSE, the
computer will copy Y to the ans, get the corrent ending address of fact _base (siore in

con_ptrvanable), and display a warning message.

| /% CHECK IF INITIAL FACTS ALREADY EXIST *

ifffact flag)

{

/M READ INITIAL FACTS INTO THE FACT BASE %/
con_pir = ReadThelmtialFacts(),
printf("wn Do vou want to add the exira facts to fact base(Ny¥ ");
gets(ansy,

)

S THE INITIAL FACT DOES NOT EXIST %/

else

{
strepy(ans, "Y");
/* GET THE ENDING ADDRESS OF fact_base ARRAY */
con pir = strlen{Tact basel,
Message("n\n YOU WILL ENTER ALL THE INITIAL FACTS BY HAND.” NONE, "n");

b
i

Step 4.: This step is the beginning of entering initial facts by hand. The purpose of this

loop is to give the end user a second chance to re-enter all initial facts (previous entering
of initial facts will be erased). The computer will first check the while loop condition
which is the ams value, If ams is "Y" or "v", the computer will assign con_pir value to
the { variable, assign TRUE to the nofdone variable, set fimit value to CON_SIZE
minus two, and assign an ENDARRAY character to a fact_base array address j (all
values after the i address will be deleted). Then, the computer will call the
GetConditionInstruction function o display the rule and instructions for entering

facts, and do sub-step four. However, if ans does not equal "Y" or "y", the computer

will go to step five.

f

}
|
|
(

/* DO THE ENTERING INITIAL FACTS BY HAND PROCESE */
Mme((stmmp{ﬁl\ Yy == BUCCESS) || (strompians, "'y == SUCCESS))
l
*INITIALIZE THE PROCESSING VARIABLE

= pon_pir,
notdone = TRUE;
Lt = CON_SIZE - 25
ma& baseli] = ENDARRAY,
GetConditonInstructiond);

Step 4.1.: This step is the beginning of the other while /oop. This loop will continue until
the notdone value is FALSE. When the end user has finished or decided to stop
entering the initial facts, he will not enter an open parenthesis after a "Enter the nitial
fact....... " message. The computer will go to step 4.4 after it gets out from the while
loop. However, if notdone is TRUE, the computer will set fact_len to FACT SIZE
minus two, initlalize parenthes_count, fact _plr, quote _count, and resuitrem to
SUCCESS, and then go to step 4.2 to do the getting initial fact process.

/% DO THE GETTING AND CONVERTING INITIAL FACT PROCESS */
Whﬂ@(ﬁetd@ﬂe}

|
;I /"“ INITIALIZE THE PRUCL&SENu VARIABLES ¥/

| fact_lon=FACT_SIZE -

| parenthes_count = £ wfaptr = quote count = result.rem = SUCCESS,
i printff"n!! FACT STRING CANNOT BE LONGER THAN %d BYTES. 1" FACT _SIZE),
) printfl "nl EAC AN %d BYTES. W FIELD SIZE)
| printfl"in** You have %d bytes left in the fact_base array. **" lumit-i),

| printfi"n Enter the fact string ... N

I promtf M\ 23456 7890123456 7800123456 78201 2345678901 2345678001 23436 7800™),

| printfl”1234367890123456789\n";

Step 4.2.: The computer will read the initial facts one character at a time from the
keyboard (stored it in the ¢h variable}, and check for errors at the same time. Like the
processes in the ReadTheRulebaselnToWorkingFile function and the

ReadRuleAndFactFromWorkingFile function, the computer will eiminate a space

after some characters, add a space in front of others, ignore some characters, etc. If the
computer accepts the entered character (acceptable lefter is TRUE), it will add ch
value to the fact array and display it on the screen. This process will continue until the
end user presses enfer (.J), or the fact array size is in excess.

S GET AN INITIAL FACT FROM THE KEYBOARD */
while({fact_ptr < fact leny && ((ch = geteh()) ="}
{
acceptable letter=TRUE,
[/* ENTER THE UNPRINTABLE CHARACTER ¥/
il tisprint(ch))
acceptable letter = FALSE,
else
A CHECK IF ch IS A BSPACE ¥/
if{ch == SPACE)
i
«”" ELIMINATE SPACES AFTER SPACE ™/
ifl fact{fact pir-1]== SPACE)
acceptable letter = FALSE;
else
BELIMINATE SPACES AFTER FIRST QUOTE */
;tirmuhm pir-1} == QUOTE) && tresult.rem = TRUE))
acceptable letter = FALBE,

else
£ ELIMINATE SPACES AFTER OPEN PARENTHESIS OUTSIDE THE QUOTE */
if{(factifact_pir-1]== 0 _PARENTHES) && (result.rem == SUCCESS)

acceptable letter = FALSE;

f* CHECK IF ¢h IS A QUOTE */

if(ch = QUOTE)

/
/* CALCULATE THE QUOTE ANID ch POSITION %/
result = div({(++quote_count}, 2);

/% BLIMINATE SPACE AFTER THE SECOND QUOTE */
i tresult rern == SUCCESS) && (fact[fact ptr-1] == SPACE})
fact plr--
clse
/* ADD A SPACE IN FRONT OF THE FIRST QUOTE IF IT DOSE */
S NOT FOLLOW AN OPEN PARENTHESIS AND A SPACE ™/
f{resultrem == TRUE) &&
{fact{fact ptr-1] 1= SPACE) && (fact{fact_ptr-11 =0 PARENTHES)

{

fact{fact ptr}= SPACE,
printf"%e", SPACEY,
fact_ptr++;
)
b

else
/* BLIMINATE A SPACE AFTER THE CLOSED PARENTHESIS CUTSIDE THE QUOTE */
if{{ch==C PARENTHES) &&
(resultrem == SUCCESS) && (fhet{fact ptr-1] == SPACE}}
fact_pir-;
else
2 ADD A SPACE AFTER THE SECOND QUOTE IFIT IS */
= NOTFOLLOWED BY A CLOSED PARENTHESIS AND A SPACE™
if{{ch 1= SPACE) && (ch i=C PARENTHES) &&
(result rem == SUCCERS) && (fact]fact pir-1] == QUOTED

I

8
fact[fact pir] = SPACE;
printft"vec”, SPACE),
fact plr++;

R—

O UPDATE THE PARENTHESIS COUNTER */
if{{({ch==0 PARENTHES})||
{ch==(C PARENTHES) && (result.rem == SUCCESSY)
parenthes count++;
M CHECK IF ¢h IS AN ACCEPTARLE CHARACTER */
if{acceptable lefter)

i
3

2 ADD ch TO THE fact ARRAY AND DISPLAY IT ON THE SCREEN */
tact{fact pir]= (charjch;

printf"%c”, chi;

fact plr+;

I3

%
i

factlfact ptrl=ENDARRAY,

Step 4.3.: After the computer finishes getting initial fact from the keyboard process, it will
check the first character in the facr arrav. It the first character is not an open
parenthesis, the computer will assume that the user wanis to stop entering initial facts.
The computer will then assign FALSE to nofdone and go back to step 4.1. Otherwise,
it will do sub-step 4.3.

/% CHECK IF THE FIRST CHARACTER IN fact IS AN OPEN PARENTHESIS */

f
| ifffact]0] 1= O_PARENTHES)
{ notdone = FALSE,

Step 4.3.1.: The computer will check for general errors in a fact block such as missing
quotation marks, missing closed parentheses, etc. If it detects any errors, the error

message will be displayed and the computer will go back to step 4.1,

f else
| 7
1 i
Message(™nt Processing mnitial fact is...\n" ,NONE, facty;
faw £
fact len = sulenifact) - 1;

/* CHECK IF THE INITIAL FACT 18 MISSING A QUOTE */
if{result rem = SUCCESS)
Message("n ERROR.. MISSING QUOTE IN THE INITIAL FACT." NONE, "n");
alse
/% CHECK TF THE INITIAL FACT 1S MISSING CLOSED PARENTHESIS */
ifi factfact len] I=C_PARENTHES)
Message("\n ERROR.. MISSING CLOSED PARENTHESIS AT THE END." ,NONE, "n");
else
J CHECK TF INTTIAL FACT HAS A SUB-FACT */
iff parenthes_count = 2)
Message("\n ERROR..H UNIDENTIFIED INITIAL FACT [HI" NONE, "n");
alse

M CHECK THE INTTIAL FACT SIZE */

Message("n ERROR.. FACT IS TOO LONG FOR THE FACT BASE ARRAY."-1,"n");

o,
faid
el

Step 4.3.2.: The computer will replace all spaces, open parentheses, and closed parentheses
between quotes with Q SPACE, O PAREN, and C_PAREN characters. It will then
calculate the size of the biggest field and store that calculation in field_size in the fact
array. If that size exceeds the initialize field size (field_size is greater than
FIELD SIZE minus two), the computer will display an error message and go back to

step 4.1.

clse
{
gquote_gount = resultrem = SUCCESS;
/* T30 THE REPLACING CHARACTER PROCESE
for(fact_ptr=0; fact_pir <= fact_len; fact_pir++)

i
3

A CHECK IF ITIS A QUOTE */
if{fact{fact pir] = QUOTE)
/* UPDATE THE CHARACTER POSITION */
result = divi(++quote_count), 2},
S CHECK IF A CHARACTER IS BETWEEN QUOTES */
if{result rem == TRUE)

i
%

* REPLACE SPACES WITH _SPACE CHARACTER ¥/
i{fact[fact_pty] == SPACE}
tact{fact_pirj=0_SPACE,
else
/* REPLACE OPEN PARENTHESIS WITH O_PAREN CHARACTER */
iff fact{fact_ptr}=0 PARENTHES)
fact{fact pir]=0 PAREN,
else
/* REPLACE CLOSED PARENTHESIS WITH C_PAREN CHARACTER */
i fact[fact ptr]==C_PARENTHES}
fact{fact ptri=C _PAREN,
h
} P
space_count = field_start = field_size = result.rem = SUCCESS;
/* CALCULATE THE MAXIMUM FIELD SIZE OF THE GIVEN FACT */
for(fact_pir=0; fact_ptr <= fact_len; fact_pir++)

£
A

if{ch == SPACE)
Arasufit = div{{++space _count), 2},
iffresult.rem == TRUE)
field start = fact_pir,
glse
if{ field size < (fact_ptr- field start+ 1}
field size = fact ptr - feld start+ 1,
: ;
i field size == SUCCERSE)
field size = fact len-+ 1
/* CHECK IF IT EXCEEDS AN INTTIALIZE FIELD SIZE */
iifield size >=FIELD SIZE-12)
Message{"\n ERROR.. FIELD I8 TOO BIG FOR THE FIELD ARRAY.",-1,"n")

Step 4.3.3.: The computer will call CheckTheFieldSvntax function to check the fields
syntax in faet array. If the CheckTheFieldSyntax finds any error field (good_fact is
FALSE), the computer will display an error message and go back to step 4.1.

! else

| '

(/ CHECK FOR THE FIELD SYNTAX ERROR */

i good fact = CheckTheFieldSyntax(fact),

| A CHECK IFITIS AN ERROR FIELD */

| ifllgood fact)

| Messaget"n ERROR.. GIVEN FACT HAS SYNTAX ERROR.", NONE, "n");

Step 4.4.4.: The computer will call FactIsInTheFactbase function to check for duplicated
initial facts (from fact arrav) in the fiect base array. I the FactisinTheFactbase finds

that initial fact (good _fact is TRUE), the computer will display an error message and
go back to step 4.1. Otherwise, the computer will add this initial fact to the fact base

and then go back to step 4.1.

else
.
kY

M CHECK FOR THE EXISTENCE OF INITIAL FACT IN THE FACT BASE ¥/
FactisinTheFactbase(fact, &good fact),
A CHECK IF FIELD EMISTS IN THE FACT BASE */
iflgood_fact)
Message("n", NONE, "ALREADY EXISTS. <ii>n"),
else
M ADD THE INITIAL FACT INTO THE fact base ARRAY %/
Message("n", NONE, "HAS BEEN ACCEPTED. <>},
streatifact base, fact),
i= strlen({fact base);

fanst
i
fomnad

Step 4.4.: The computer will ask the end user to confirm the accuracy of the initial facts
entered by kevboard. If the end user wishes to change any of the initial facts, he must
re-enter all the initial facts again. The user can delete all entered mitial facts by simply

answering "Y" or "v" to the question. The computer will go back to step four.

| printf{"n\n @@@ ALL INPUT FACTS WILL BE DELETED IF YOU SELECT 'Y @@@'n");
T printf "Do you want to re-enter the facts m fact bass(N)? "),
1
l
}

gets{ans),

Y
£

Step 5.: The computer will consider the fact base 1o have initial facts if ifs size is greater
than zero and it contains any fact blocks excluding the "(pt-NoCondition-PT)". The
computer will then assign TRUE to the fact_flag variable. Otherwise, the fact_flag
remains FALSE.

. iy B . .
| ift{strlen(fact_base) > 0)

| & (strernplfact base,"(pt-NoCondition-TP)") 1= SUCCESE)
% fact flag =TRUE;

Step 6.: The PreparelnitialFacts will refurn to the Main function.

}
\

oo

142

9.1) Read ThelnitialFacts function Sub-dunction

Message

FactisinTheCondition

Purpose: A ReadThelnitialFacts function will read the fact blocks (initial facts) from the

Grapiool.fac file into the fact base array.

Prototype:

lint ReadThelnitialFacts{void)

3

There is no prototype in this function.

Pseudo-code:

Step 1.: The computer will display a processing message and set the Grapioolfac file
pointer to the beginning of the file. The computer will find the current ending address
of fact_base array and store it in con_ptr variable.

Message("in<<<< Start reading facts from Graptool.fac >>>>\n" -1, ENDARRAY},
/* SET Graptool fac FILE POINTER TO THE BEGINNING */

rewind(cptr);

/7 GET & CURRENT ENDING OF fact base ARRAY ¥/

con_pir = strden(fact_basey,

Step 2.: The computer will start the initial fact reading process by checking the condition of
the while loop which is the returning value of feof(cptr). If the end of Grapiool.fac has
been reached (feof(cpir) returns TRUE), the computer will do step three. Otherwise,
the computer will do sub-step two.

{ S DO THE INITIAL FACT READING PROCESS */
| while(Heoffoptr))

Step 2.1.: The computer will read a character from the Grapfool fac and this character will
be stared in a b variable. If ¢h is a DEFFACTS character (indicate the beginning of a
initial fact set), the computer will do step 2.2. Otherwise, the computer will go back to

step two.
§
%

/¥ CHECK IF IT IS THE BEGINNING OF INITIAL FACT BET %/

s d} = geto(optr),
!
| ifich = DEFFACTS)

et
=
Lubd

Step 2.2.: The computer will first get the name of the initial fact set being read, and store it
in the deffacts name array. The computer will then read the initial facts from the
Graptool.fac file into the fact base arvay. After that, the computer will display the

name of the initial fact set and go back to step two.

{
1=
ch = getclepte);
/* GET THE NAME OF THE INITIAL FACT SET*/

while({ch = gete(epti)) = C_PARENTHES)
!

I8
deffhcts namefi] = ch;
+

deffacts namefi] = ENDARRAY,
7 10 THE READ INITIAL FACT INTO fact_base ARRAY */
while({{ch = getcloptry) t= ENDRF) && (Ifeoficpt))

{
iffch 1= CONDITION)
1
L8
/* READ THE INITIAL FACTS INTO THE FACT _BASE ARRAY */
fact_base[con_ptr]=ch;
con_pirtt,
}
"y

i

/% CHECK TF IT IS THE END OF INITIAL FACT SET */

ifich == ENDRF)

/* DISPLAY THE NAME OF INITIAL FACT SET */

Message("\n FINISH READING DEFFACTS...", NONE, deffacts_name);

)
'}

i fact base[con pirl = ENDARRAY,

Step 3.: The computer will close the Grapiool.fac and call the FactisinTheFactbase

function to check for the existence of "(initial-fact)” in the faes base array. The result
of FactIsInTheFactbase will be stored in the found variable,

[CLOSE THE Graptool fac FILE */
feloseleptr);
FactlsinTheFactbase("(initial-fact)”, &found),

Step 4.: If "(initial-fact) is not found in the fact_base (found is FALSE), the computer will
add the "(initial-fact)” to the end of the fact base array.

j f* CHECK TF (initial-fact) IS NOT IN fact_base ARRAY ¥/

} iff lfound)

| /* ADD (initial-fact) TO THE END OF fact_base ARRAY */
i streat(fact base,"{initial-fact)y");

Step 5.: The computer will display the ending process message, and re-calculate the ending

address of facf _base array.

[

| Message"n'n<<<< End reading facts from the Graptool.fac »>>>\q" -1,"0")
g J* RE-CALCULATE THE END ADDRESS OF fact_base ARRAY */

| con_pir= strien(fact base);

Step 6.. The ReadThelnitialFacts will return to the PreparelnitialFacts function with

con_ptr value.

|
¥

[. .
2 returnfcon plr;

9.2) GetConditionInstruction function

Purpose: A GetConditionInstruction function will provide instruciions on how fo enter

initial facts by kevboard to the Grapiool software.

Pseudo-code:

-

void GetConditioninstruction{void)

s

pﬁngﬁﬂ\ﬂxﬂe*#ﬂkﬁwm&**a&w:&m*** IMPORTANT INSTRUCTIONS x******mwm*»«**#***me);
print"n The size of the fact_base array 1s %d bytes. ",CON_SIZE};

printf™n EVERY INITIAL FACT MUST START AND END WITH A PARENTHEBES ")
printf{"\n Otherwise the computer will not accept the given fact.");

printf™n PRESS RETURMN(ENTER) AFTER FINISHING INPUT INTO INITIAL FACT."),
printf{Mn Otherwise the computer will not start the fact process.");

prntf{"n The computer will accept GNLY ONE FACT AT A TIME."),

printf{"n The syntax of the fact is the SAME as the fact of CLIPE."),
pmﬁﬁ:"\ﬂ******’5‘"‘k*****"ﬁ***********3§€’*****Bfﬂé“éwéc*************************\ﬂﬂ);

Y
k]

146

10) ReadRuelbaseFromWorkFile function

Purpose: A ReadRulebaseFromWorkingFile function will read the rule bases from the

Graptool.rul file into the rule_base array.

Prototype:]
void ReadRulebasePromWorkingFile(void)

5
3

There is no profotype in this function.

Psendo-code:
Step 1.: The computer will set the Graptool. rul file and the information file pointers to the
_beginning of each file.

| /* SET GraptooLrul FILE POINTER TO THE BEGINNING */
rewind(rpiry;,
S SET INFORMATION FILE POINTER TO THE BEGINNING */
rewindptr),
printf{"\n Rule mumber 0 is the initial-state. 0"},
| fprntflipty, "Rule number 0 is the initial-state. \n");

ey

Step 2.: The computer will start the rule base reading process by checking the condition of
the while foop (which is the returned value of feof(rptr)). If the end of Graptoolrul
has been reached (feof(rptr) returns TRUE), the computer will do step three.

Oiherwise, the computer will do sub-step two.

f /7 DO THE RULE BASE READING PROCESS */
|
|
,

while([feof{tptr))

Step 2.1.: The computer will read a character from the Grapiool.rul and store itin a ch
variable. If ¢h is a DEFRULE character {indicating the beginning of a rule base), the
computer will do step 2.2. Otherwise, the computer will go back to step two.

_computer will do step 2.2, Otherwise, the Somtpuler Wi g0 DAk D TP 0 —— o
K

| ch=gefe(rpir);

| /*CHECK IF IT I8 THE BEGINNING OF RULE */

| ifich==DEFRULE)

Step 2.2.: The computer will read the next character from the Graptool.ru/ (stored in the

ch variable) and display a number with a name of the rule being read on the screen. It
will also save that display in the information file.

I

1

{

ch = gete(rpte);

/* DISPLAY THE NUMBER OF RULES */
printf"Rule munber %d is the ", ule_counter);
fprintfiiptr ,"Rule number %d is the ", rule_counter);
[GET AWND DISPLAY RULE BASE NAME */
while({ch = geto(rptry) 1= C_PARENTHES)

f
1

printf("%c", chy;

fprintfliptr, "%c" ,ch);

\

)
rale baseli] = DEFRULE;
printf(" \n");

fprintf{iptr, "0y,

Step 2.3.: The computer will read a rule base from the Grapioolrul to the rule_base

array. After the computer finishes the reading process, the computer will increment the
value of rule_counter (rule number) by 1 and then go back to step two.

+;
/* DO THE READING RULE PROCESS ¥/

while({ch = geto(rptr)) 1= ENDRF)

P
|8

/% WRITE A RULE INTO THE rule_base ARRAY */
mile basefi] = ch;

j

rule basefil = ENDRF,
rule base[++i] = ENDARRAY,
/* INCREMENT THE RULE NUMBER BY ONE */
rule countert+;
i
)

]

Step 3.: The computer will assign the rule_counter value to the total_rule variable and

close the Grapiool rul file,

/4 GETTHE TOTAL NUMBER OF RULES ¥/
total rule = rule_counter,
7 CLOSE THE Graptoolrul FILE #/

felose(rplry;

Step 4.: The ReadRulebaseFromWorkingFile will return to the Main function.

i
J

148

11} SearchForTheWorkingRule funciion Sub-function

GetAFact

FactisinTheCondition

Purpose: A SearchForTheWorkingRule function will search for a rule in the rule_base
array whose conditions have been satisfied by the fact_base array. This rule will

be called a working rule.

Prototype:
i char *SearchForTheWorkingRule(int *found_rule)

¥
LY

A found_rule is an integer variable. The found_rule will be TRUE if the working rule is
found. Otherwise, the found_rule will be FALSE.

Pseudo-code:

Step 1.: The computer will first check the condition of while loop which are the values of
notdone and rufe_ptr. If searching for the working rule process has not been done
{(notdone is still TRUE) and the searching does nof reach the end of rufe_base (the
rule _ptrvalue does not equal ENDARRAY character), the computer will do step two.
Otherwise, the computer will go to step seven.

J* D0 SEARCHING FOR THE WORKING RULE PROCESS */ Al
while((notdone) && (*rule_plr 1= ENDARRAY)) %

Step 2.: The computer will initialize the value of and_result to TRUE, and the value of
found, or_count, and or_resuft to FALSE. The computer will then search for the
beginning of the new rule in the rufe base, which is indicated by the DEFRULE
character. The address of this rule will be stored in the ride_ptr.

«E&

/* INITIALIZE THE VARIABLES */

and_result =TRUE;

found = or_count = or_yesult = FALSE;

/¥ SEARCH FOR THE BEGINNING Of A RULE */
rule ptr = strehr{rude_pir, DEFRULE},

Step 3.: If the computer find a new rule (*rufe_plr value is DEFRULE character), the
computer will increment the rule_counter value (rule number) by 1, assign the
rufe_pftr value to the right_rule, and clear all variable array values by assigning the
ENDARRAY character to its beginning. However, if the computer does not find the
new rule, the computer will go back to step one.

/* CHECK IF IT IS THE BEGINNING OF THE RULE */
if*rule ptr==DEFRULE)

i

/* UPDATE THE RULE NUMBER */

mile countertt,
/* ASSIGN THE RULE ADDRESS TO right_rule */

right rule = yule_pir,

% CLEAR ALL THE VALUE INSIDE variable ARRAY */
| variable[0]= ENDARRAY;

Step 4.: The computer does the pattern matching process by calling the GetAWact
function to get a rule condition (stored in the rufe_condition array) from the rule_base.
Tt will then do sub-step four. Otherwise {no more rule conditions or GetAFact returned
~ ENDRF character), the computer will go 1o step five.
[[DO THE PATTERN MATCHING PROCESS */
while(*{rule ptr = GetAFact{rule ptr, CONDITION,
f ride condiliony) I= (chanENDRTE)

Step 4.1.: The computer will separate the logical operator of that rule condition and store it
in the Jogical variable. The FactlsInTheFactbase function will be called to check the
existence of rule_condition in the fact_base array, the result of which, will be siored in

the match variable. If this rule condition has a NOT operator (Jogical value equal to

LOGI NOT character), the computer will invert the value of match and assign a
LOGI _AND character to fogfcal.

{

/* SEPARATE THE LOGICAL OPERATOR FROM THE RULE CONDITION */
logical = rule_condition[0};
strepy(&rule condition]0], &mule condition{1]},
SACHECK THE EXISTENCE OF THE CONDITION IN THE FACT BASE %/
FactlsInTheFactbase(mle condition, &mateh},
/ CHECK IF RULE CONDITION HAS A NOT OPERATOR */
iflogical === LOGI_NOT)
I3
S INVERTS THE match VALUE */
match = lmatch;
Iogical = LOGLAND;,

Y
f
H

Step 4.2.: If the rule condition has an OR operator (fogical equal to LOGI_OR character),
the computer will increment the value of or_counf by 1 and then perform an inclusive
Or between maich and or_result (contains the result of previous perform inclusive
Or). If cither or_result or match is TRUE, the or_result will be set to TRUE and
then goes to step four. Otherwise, the or_resuit will be set to FALSE and then go to
step four. B
/F CHECK IF RULE CONDITION HAS AN OR OPERATOR */
illogical == LOGL OR)

i

or_counttt,
J* DO INCLUSIVE OR BETWEEN CURRENT AND PREVIOUS OR CONDITION */
iffor result || match)
or_result = TRUE;
else
or result= FALSE:

3
s

Step 4.3.: If the rule condition has an AND operator (fogical equal to LOGI_AND
character), the computer will perform an explicit and between mafch and and_result
{(contains the result of previous performed explicit and). If both and_result and
match are TRUE, the and_result will be set to TRUE and then goes to step four.
Otherwise, the and_result will be set to FALSE and the computer will go to step four.

else
M CHECK IF RULE CONDITION HAS THE AND OPERATOR */
iflogical == LOGL_AND)
s
7% DO EXPLICIT AND BETWEEN CURRENT AND PREVIOUS AND CONDITION */
iffand result && rmateh)
and result= TRUE;
else
and result= FALRE,
}
L
| F

Step 5.: If the computer has not performed any inclusive Or (or_count value is zero), the
computer will set an or_resuff to TRUE. It will do the logical operator between the
logical and condition group and logical or condition group. If both groups have been
satisfied by fact base (both and _result and or_resuit are TRUE), the found will be
set to TRUE. Otherwise, found will remain FALSE.

{ M CHBCK TP ANY INCLUBIVE OR HAS BEEN PERFORMED ¥/

| iffer_count=={)

l or_result=TRUE,

i /% CHECK IF BOTH LOGICAL GROUPS HAVE BEEN SATISFIED */
| Hiand result && or result)

{ found = TRUE;

Step 6.: If the working rule is found (the found value is TRUE), the computer will set

nofdone 1o FALSE. The computer will go back to step one.
S CHECK IF THE WORKING RULE I8 FOUND ¥/
ifffound)

notdone = FALSE;

3
¥
3
i

Step 7.: The computer will assign found value (TRUE or FALSE) to the *found_rule
variable.

{ *found _rule = found, i

Step 8.: The SearchForTheWorkingRule will return to the Main function with the value
of right_rule (address of the working rule or the address of the ending rule base

array).
% return{right_rule);
L)

[,
(JF
tod

T

12) AssertNewCondition function Sub-function

GetAFact

FactlsinTheCondition

ReplaceVariableWithValue

Purpose: An AssertNewFact function will add a unique Tact block into the fact dase

array.

Prototype:
[

i void AssertMNewFact(char *nght rule)
|

¢
i

A right_rule is a character pointer variable which contains the address of the working

rule,

Pseudo-code:

Step 1.: The computer will call GetAFact function to get a new block from the working
rule and store it in the mew condifion arrav. I the computer reaches the end of the
working rule {GetAFact return an ENDRF character), it will go fo step three.
Otherwise, the computer will call the ReplaceVariableWithValue function to replace

every variable field in mew comdifion with its wvalue. The result of
ReplaceVariableWithValue function will be stored in the work s&r aray. The

compuier will then call the FactlsInTheFactbase function fo search for the fact block
in_fact_base which will match a new block. If the matching fact block is found, found
will be set to TRUE.

! /DO THE ASSERTION PROCESE */
| while(*right rule = GetAFact(right rule, ASSERT, new _condition)) = (char)ENDRF)
I

LA

Replace VariableWithValue(new condifion, work sty

FactlsinTheFactbase(work str, &foundy;

i
i
i

Step 2.: If found is not TRUE, the computer will copy a work(_str to the end of fact_base
arrav and then go back to step one. Otherwise, the computer will go back to step one

without doing anything,

M CHECK IF ANEW FACT IS NOT FOUND IN THE FACT BARSE */
i found)

[ADD ANEW FACT TO THE FACT BASE ¥/

streat(fact base, work sty
}

Step 3.: The AssertNewFact will return to the Main function.

i
|}

13) RetractCondition function Sub-function

GetATact

FactlsinTheCondition

ReplaceVariableWithValue

' Purpose: A RetractOldFact function will remove a fact block (maiches a removing
block) from the fact base array.
Prototype:
) ; void RetractOldFact{char *night rule)
K
A right_rule is a character pointer variable which contains the address of the working
rule.
)
Pseudo-code:
Step 1.: The computer will call GetAFact function to get a removing block from the
working rule and store it in the re_condifion array. I the computer reaches the end of
) the working rule (GetAFaci return an ENDRF character), the computer will go to step
three. Otherwise, the computer will call the ReplaceVariableWithValue function to
replace every variable field in re condifion with its value. The result of
ReplaceVariableWithValue function will be stored in the werk str array. The
computer will then call the FactIsInTheFactbase function to search for the fact block
g in fact_base which will match a removing block. If the matching fact block is found,
its address will be stored in the mafch_ptr pointer variable, and found will be set to
TRUE.
| /* DO THE RETRACTION PROCESS */
] } while{*{right rule = GetAFact{night rule, RETRACT, re_condition)) = (charlENDRF)
% g.:Replac:e‘%Jaﬁable‘\?v'iﬂﬂ’ajue{r&yoaﬁhti@ﬂ, work_str); i
match ptr = FactlsinTheFactbase{work str, &found), ‘
)
|

154

Step 2.: If the matching fact block is found (the found value is TRUE), the computer will
search for the end of the matching fact block in the facf base array. The computer will
then do step 2.1 and then go back fo step one. Otherwise, the computer will go back to
step one.

f CHECK IF THE RETRACTING FACT IS FOUND */
Hfound)

1
|
|
|
1

o, b

/* SEARCH FOR THE END OF RETRACTING FACT IN THE FACT BASE */
next pir = strehr{(match ptr), C PARENTHES),

Step 2.1.: If the end of maiching fact blocks is a closed parenthesis {(end of a block), the
computer will remove the matching fact block by coping everything after that closed
parenthesis to the beginning of the matching fact block (an address is stored in the
mafch_ptr). However, if the end of matching fact block is the end of fuct base array,
the computer will set the beginning of maiching fact block to be the end of fact_base.

* REMOVE THE RETRACT FACT FROM THE FACT BASE %/
H{*next ptr==_C PARENTHES)

strepyimateh phr, +next pir);
else

*match ptr=ENDARRAY;

1
i

}
Step 3.: The RetractOldFact will go back to the Main function.
- L
U é

e
L
L

14y NodeGenerator function Sub-function

GetAFact

FactisInTheCondition

Purpose: A NodeGenerator function will generate nodes which are a result of applving
the logical path algorithm to test the rule-based structure. The structure of a

node has already been defined in the beginning of Graptool as follows:

struct nods
{

nt rude mum;
it con_nwn,
char condition setfCON SIZEY,
struct node *plmext;
struct node *worknode;

struct node *duphicate;

k!
S

A rule_num is an integer variable which identifies the rule whose condition have been
satisfied by the fact base array.

A con_num is an integer variable which identifies the node condition set. The con_num
will always be zero unless a different condition set exists with the same rule. The
combination of rule_num with con_num is used for node identifiers which are called the
node number.

A condifion_setf array contains a set of fact blocks which comes from the fact_base array.
A pirnext is a structure pointer variable which contains the address of the next connecting
node. At the last node (no connecting node), the ptrnext contains the nowhere value.

A worknode is a structure pointer variable. It contains the address of the node from which
the current node was generated,

A duplicate is a structure pointer variable. If contains an existing node address which is a

duplicate of the current node.

156

Prototvpe:
[void N odeGenerator(void)

{

There is no prototype in this function.

Pseudo-code:

Step 1.: The computer will first assign a nowhere value to the dupi pointer variable, set
the condition_counter variable to zero, and then generate a new node (its address 15
stored in the ptrnew pointer variable). If the new node is the first node (ptriirst equals
nowhere), the computer will assign the value of ptrnew to ptrfirst, ptrwork, and
pirlast and then go to step three. Otherwise, the computer will do step two.

/* INITIALIZE VARIABLES VALUE */

dupi = nowhere;

condition _counter = 0,

/* GENERATE THE NEW NODE */

pimew = {struct node *ymalloc(sizeciistruct nodej);

/# CHECK IF THE NEW NODE I8 THE FIRST NODE IN THE CHAIN %/

if{ptrfirst == nowherej
piefirst = ptrwork = pirlast = plinew,

Step 2.: The computer will assign ptriirst value (address of the first node) to the check
pointer variable and then do sub-step two.

else

I8

L
check = pirfirst,

Step 2.1.: The computer will check if the rule of the new node (rule number s stored in the
rule_counter variable) has been used in the other nodes by checking the rule_num
value of the existence node. If the rule _counter equals the rule_num wvalue of
existence node (its address is check value), the computer will set match to TRUE and

go to step 2.2. Otherwise, the computer will go to step 2.3

/DO THE NEW NODE CHECKING PROCESS */
do

¥

1X B
/¥ CHECK IF RULE OF NEW NODE HAS BEEN USED IN THE OTHER NODE */
iff{mle counter == check-»rule mam)
&& (condition_counter <= check-eondition_counter))

.

!

match = TRUE;

¢ _ptr = check->condifion_set;

Step 2.2.: The computer will compare the condition set of the existing node to the fact
blocks in the fact base. If the condition set of that existence node is the same as the
fact blocks, the computer will assign ptrwork value to the diupi. Otherwise (condition
set of existence node is not the same as the fact blocks), the computer will set the

condition_counter to the con_num value of that existence node plus 1.

(

M CHECK THE MATCHING BETWEEN CONDITION SET AND FACT BASE ¥/
while{(match) &&
(*{c_ptr= GetAFact{c_ptr, DEFFACTS, work str)) I= {char;ENDARRAYY)
FactisinTheFactbase{work str, &match),
A CHECK IF CONDITION SET IS THE SAME AS THE FACT BABE
if{(roatchy && (stilen(fact_base) == strlen(check->condiion_set))}
dupi = ptrwork;
else
condition_counter = checlk->con_num + 1;

T
5

Step 2.3.: The computer will assign an address of the next node to check. If the check
value does not equal nowhere (it is not the end of the node chain) and dupi value
equals nowhere (the duplicate condition set has not been found), the computer will go
back to perform step 2.1. Otherwise, the computer will assign the value of pltrew to
the ptriast->pirnew and ptriast and then go 1o step three.

/* GET AN ADDRESS OF THE NEXT CONNECTING NODE */
check = check->ptrnext;
s
g
while{(check = nowhere; && {dupi == nowhere));
ptidast = ptrlast->ptmext = ptmew,

i
J

Step 3.: The computer will initialize values of the new node components.

S INITIALIZE THE NEW NODE COMPONENTS VALUE #/
pimew->rule num =rule counter;

prmew->con num = condition counder;
strepy{ptmew->condition. set, fact _base);

prmew->pimext = nowhere;

phmew->worknode = pliwork;

ptmew->duplicate = dupi;

Step 4.: The NodeGenerator will return to the Main function.

E

15) DisplayTestResult function

Purpose: A DisplavTestResult function will create the node connection hist. This list

includes the node number, node condition set, and the comnection between
nodes.

Psendo-code:

The computer will display the node connection list on the screen and siore it in the

information file. The DisplayTestResult will then go back to the Main function.
void DisplayTestResult(void)

i
k)

mi =0, letter = NONE;
striuct node *plrmame;
if{display == nowhers)
pirnaine = phwori;
else
{
/5 GET THE CONNECTING ADDRESS */
ificlp flag)
§

i
1

ﬁfmamﬁ = pirlast;
clp_flag = FALSE;
j
else

‘ pirmame = nowhere;

'y

s

iffptmame = nowherg)

printf{"n"y;
forintf(ipte, "a");
1 éfz’i:djspla}’ === fiowhere)
dalay{DELAY LOOP),
printfl"Working "y,
forintfipt, "Working ")
}
printf"NODE(%d, %d)\n", ptrame->rule_mun, pirmame->con_num},
fprintfliptr, "NODE(%d, %d)\n", ptmame->rule_num, plname->001_num};
iftdisplay == nowhere}
{
printf"If's condition setis. \n"),
fprintfipty, "it's condition setis..\n"y;
N

SADISPLAY NODE CONDITION SET */
while{ptrname->condition_setfi] = ENDARRAY)
{

letter = ptmame->condition_setfi];
iflletter == Q SPACE)

letter = SPACE,;

else

iffletter = O PAREN)

letter = O PARENTHES,

else
iffletter == PAREN}
letier =C PARENTHES,

printt”%ec”, letter),
fprintf(iptr, "%%60”, letter),
ifiprmame->condition setfi] == C PARENTHES)

{
printf{n",
forintlliptr, "),

T S

>

—?

if{display = nowhere}

=t

s

display = ptrwork;
printil"._and conmect to the following nodes: 'n"y;

)
S
y
5
eise

X
printf("nn TERMINATION NODE"),
fprintfiptr, "n TERMINATION NODE");

§
£

%

forintfiptr,” . and connect to the following nodes: \n"y,

i

160

16) FinalAnalysis function

Purpose: A FinalAnalysis function will do a simple rule base analysis from the node

gonnection list,

Psepdo-code:

The computer will check how many times each rule has been used, how many nodes have

been generated from each rule, and how many generated nodes were duplicated. The

result of this analysis will be displaved on the screen and stored in the information file.

The FinalAnalysis will then go back to the Main funciion.

£

Y
J

void FinalAnalysis(void)

mt dup count, node _count;

rule counter =0,

“* DISPLAY A PROCESS MESSAGE ¥/

printfMaip xR ekoloR Rulebase Structural Analysis *HFRHEFFFEEFL Ty
fprintflipty, Mnipeckssosoet Rulebase Structural Analysis fHREREER LTy
D0 THE RULE BASE ANALYSIS PROCESSING */

whilefrule counter < fotal rule)

{

/* GET THE ADDRESS OF THE FIRST NODE */
display = ptriirst;
dup_count=rnode count= 0,

£ DO NODE SEARCHING WHILE IT I8 NOT THE END OF NODE LISTING */

while(display = nowhere)
i
/* CHECK IF NODE CAME FORM THE CURRENT RULE */
iffdisplay->rule_mumn == rule_counter)
.
/* UPDATE THE NODE COUNTER */
node_count++;
/* CHECK IF THIS NODE I8 A DUPLICATE NODE */
if{display->duphicate 1= nowhere)
M UPDATE THE DUPLICATE NODE COUNTER %/
dup _counttt

1
£

7 GET AN ADDRESS OF THE NEXT NODE */

display = display->phmext;

)
/* DISPLAY AND SAVE THE RULE BASE ANALYSIS RESULT ™/
printf{ "n Rule NUMBER. - %4d", rule_counter);
printf{"n NUMBER OF NODES - %d", node_count};,
prntf{"n NUMBER OF DUPLICATE NODES - %d \n", dap_count);
tfprintfiptr, "n RULE NUMBER - %d", rule_counter;
fprintfiptr, "in NUMBER OF NODES - %d", node_county,
fprintfliptr, "“n NUMBER OF DUPLICATE NODES - %d \n”, dup_count};
delay(DELAY LOGP),
/* UPDATE THE RULE NUMBER */
rule countert+,

5

J

tpﬂﬂ{tﬁp‘t% 1 s e e i ke ofe sfe 20 s >4 536 ot st St ok w e she sk sk ol sk ol ofe ol ok Do sl e DI B oK ot e o e ofe o B S I o e o ok ofe ok o R ke ,\‘nﬁ}_‘

B

161

12. APPENDIX C.: GRAPTOOL SOFTWARE SOURCE CODE

f L ool ke X defede FRAFEE AR RS R R R A hb oA R oo drdededo R R R R R R R R R R HhEE whekE ke kR dok bk dedrdh

* GRAPTOOL SOURCE CODE *
* BY MRE. PIYAPATTANA TEMCHAREON *
* OBJECTIVE.: Graptool is a computer tool based on the logical path graph *
* algorithm. Graptool will read the CLIPS rule bases as ASCH ¥
* text and convert it fo Graptool format. After the conversion *#
* is finished, Grapiool will apply the logical path graph method *

to the Graptool format for testing of rule-based structure. *

The resuits of this computer tool include the following:
1. Graptool wri which contains the CLIPS rule bases after the *
Graptool has eliminated unnecessary functions or commands®
. Graptool rul which contains rules in Graplool format. *

. Graptool fac that contains initial facts in Graptool format
4. Graptool.err {option} which contains process and arror
messages during software execution.

£ An informalion file that contains resulls of the rule-based
structure testing.

* % % ¥ ¥ # B = * % ¥ @
EE NN GA IR]

NOTE -= 1. All five files will be saved in the selected working directory.

2. Graptool will automatically stop the execution and return to
DOS operating system if it detects any error.

nnnnnnnnn Hk g Fofededodokodiokok AR dedohkolohodok ol ok kdok bRk kb kb v Rk Hkd * fokel ddkdok Bh & J

FFTURBO C++ INCLUDING FILES ¥/

#include<dir h>

#include<dos.h>

#include=<ctype h>

#include<conio h>

#include=stdio.h>

#include<stdiib h>

#include<string.h>

#

w
%
E)
k3
%
"
*
k3
o

#*

/* DEFINE REPLACING CHARACTERS %

#define DEFRULE 14
#define ASSERT 15
#define RETRACT 16

#define CONDITION 17
#define DEFFACTS 18

#define Q_SPACE 19
#define LHSRHS 20
#define O_PAREN 21
#tdefine C_PAREN 22
#define ENDRF 158

162

* DEFINE CLIPS RULE-BASED SYMBOLS ¥/
#define QUOTE
#dsfine SPACE o
#define ENDLHS =t
#dafine COMMENT i
#define LOGIL OF T
#define LOGI_NOT ot

#define LOGIL AND ‘&

#define ENDARRAY W

#oefine STARTRHS £

#define NEXTLINE W

#define RE_POINTA <

#define RE_POINTZ2 B

#define S_WILDCARD e

#idefine M_WILDCARD $

#define O PARENTHES '

#define C_PARENTHES 8

* DEFINE THE SIZE OF THE ARRAYS ¥

#define CON_SIZE 500 7 MINIMIUM SIZE 500 BYTES ¥/
#define RULE_SIZE 1024 £ MINIMUB SIZE 1024 BYTES %/
#define FACT_SIZE 20 £ MINIMUM SIZE 80 BYTES ¥/
#define PATH_SIZE 30 7 MINIMUM SIZE 30 BYTES ¥
#define FIELD_SIZE 80 7 MINIMIUM SIZE 80 BYTES ¥
#define VARIABLE _SIZE 2000 £ WMINIMUM SIZE 10240 BYTES ¥/
* DEFINE THE ACCESSORIES SYMBOLS %

#define NONE =1

#define TRUE 1

#define FALSE 0

#define SUCCESS 0

#define DELAY_LOOP 2000

jresFmirmpEnsppigaiieeenEtt FLE POINTERD #rismeesisrbiiiibtiars]

FiLE *fpir; * CLIPS RULEBASE FILE *f

FILE *rptr; 7 GRAPTOOL FORMAT RULE *f

FILE *cptr; 7 GRAPTOOL FORMAT FACT _BASE ¥/

FILE ®wptr; FF GRAPTOOL RULEBASE ¥

FILE *iptr; F* STRUCTURAL TESTING RESULT ¥

FILE *eptr; 7 PROGRAM ERROR FILE *f

}ﬂ ke Gk P e e e i e i iR R R R e T el o e e e e e el # o e dp nnnmﬁf

7 DEFINE ARRAYS AND PQINTER ¥/

char *rule_ptr; S RULE ARRAY POINTER 7

char iname[PATH_SIZE]; I INFORMATION FILE NAME */

char rule_base[RULE _SIZEL /* DEFINE RULE ARRAY ¥

char fact_base[COMN_SIZEL * DEFINE FACT BASE ARRAY ¥

char variable[VARIABLE_SIZE]; * DEFINE VARIABLE ARRAY */
163

£ DEFINE THE STRUCTURE OF THE NODE ¥/
struct node

{
int rule_num; £ THE RULE NUMBER *
int con_num; # THE CONDITION NUMBER %
char condition_set{CON_BIZE]; # THE CONDITION SET i
struct node *ptrnext; #* NEXT NODE ADDRESS *
struct node *worknods; 7 PARENTS NODE ADDRESS Y/
struct node *duplicate; 7 DUPLICATE NODE ADDRESS %/
\

e
struct node *phrfirst, "ptrew, "display, *ptrwork, *pirlast, *nowhere;
int nocondition_flag, rule_counter, condition_counter, error_file_open;
int fact_base_size, rule_size, clp_flag, rule_flag, fact_flag, totai_rule;

JrEwRE FrarEkass: FUNCTION PROTOTYPRESD #rrsswserissimssbees
£ 1.0 * void Programintroduction(void};

/2.0 * void InitialValue(void},

7* 3.0 * void SetWorkingDirectory{char®),

3.9 * void CurrentWorkingDirectoryls{char®);

£ 4.0 % void OpenTheFiles(char™),

I 4.1 *f void Programinformation(char®, char®, char®);
5.0 * void ReadTheRulebaselnToWorkingFite{void);
/* 6.0 * int ReadRulsAndFactFromWorkingFile{int};
7.0 * void ConvertRulebaseToGrapicolFormat{int);

7.1 * void ConverConditionToGraptoolFormat{char*};
#* 7.2 *f void ConvertAssertAndRetractToGrapioolFormat{char*),
7.2 *void VariableSearchiint, char]], char™);

7 7.3 * void ConverDeffactsToGraptoolFormat{char*y;
1* 8.0 *f void PreparelnitialFacts{void);

8.1 % int ReadThelnitialFacts{void);

* 8.2 * void GetConditioninstruction(void);

#* 9.0 *f void ReadRulebaseFromWorkingFile{void),

I 10.0 * char *SearchForTheWorkingRule{(int*);

*11.0 ¥/ void AsseriNewFact{char,

7 12.0 %/ void RetractOldFact{char®);

3.0 % void NodeGenerator{void);

* 14.0 % void DisplayTesiResult{void);

15.0 */ void FinalAnalysis{void);

160 * char "WriteFormatToWorkingFile(int, char®, FILE®);
f#17.0 % char *FactlsinTheFactbase(char]], int®);

497 1 % int FieldUnification{char(], char(]},

47 1.1 % int LogicalOperation{char]], char[]};

i*18.0 * int CheckTheFieldSyntax{char),

#19.0 ¥ void ReplaceVariableWithValue{charll, charll};
/* 20.0 % char *GetAField{char®, char]], int*);

1¥ 210 7% char *GetAFact{char®, int, charl]);

f* 220 % void Error{char®, int, char®);

/*23.0 * void Message(char®, int, char®};

Rtk hR ek weRR W R EERRET RN AR EE dedrd R dodrd nvwﬁn»ﬂf

proswesrersrerreeerreeooss). MAIN FUNCTION #esssmmssssssmo et es

* The Main function can be divided into four sections:

* o Initialize section is used for preparing the program. Function include
* foliowing:

To give a brief description of the Graptool to the end user.

To initialize the important variables.

To set up the working directory.

* 4. To open the CLIPS rule-based file, the information file, and *
* the working files.

* Calling functions in this section are!

W =

* 4. void Programintroduction{void) *
* 2. void InitialValus{void) *
* 3. void SetWorkingDirsctory{char”) *
* 4. void OpenThelFiles{char®) *

* by, Conversion section will standardize and convert the CLIPS rule bases *to
* Graptool format. Function include following:

* 1. To read and standardize the CLIPS rule bases. *
* 2. To check possible critical error. *
* 3. To convert the rule bases into Graptool format. *
¥ Calling functions in this section are: *
* 1. void ReadTheRulebaseinToWorkingFile{void) *
* 2. int ReadRuleAndFactFromWorkingFilelint) ¥
* 3, void ConvertRulebaseToGraptoolFormat{ing *

* ¢. Preparation section is used to prepare the Graptoo! for the rule-based
* gtructure testing. Funclions include following:

* 1. To read the initial facts into the fact base array. *
* 2. To read the rules into the rule array. *
* Calling functions in this section are: *
* 1. void PrepareinitialFacts{void) ¥
¥ 2. void ReadRulebaseFromWorkingFile{void) *

d. Application section will apply the logical path graph algorithm to test
* rule-based structure. Function include the following:

* 1. To search for the working rule. *
* 2. To update the fact base array. *
* 3. To Generate nodes and its condition set. ¥
* 4. To display the list of node connection. N
* 5. To do a simple rule base analysis. *
* alling function in this section are: *
¥ 1. char *SearchForTheWorkingRule(int™) *
* 2. void AssartNewFact{char®} *
* 3. void RetractOldFact{char®} *
* 4. void NodeGenerator{void) *
* 5. void DisplayTestResult{ivoid) *
* 5. void FinalAnalysis{void) *
* The accessory functions are: *
* ’E void Error{char®, int, char®) *
* zso:d Message(ehar int, char *
163

void main{void)
{
char path{PATH_SIZE], ans[2], *right_rule;
int notdone = TRUE, found, found_ptr, done, assert_first, connect;
A INITIALIZATION SECTION **7
FProgramintroduction(};
InftiaValue();
SetWorkingDirectory{path},
OpenTheFiles(path),
o COMNYERSION SECTION %/
ReadTheRulebaseinToWorkingFile();
* DISPLAY A PROCESS MESSAGE ¥/
Message(\min®" Converting rule bases into Graptool format.”, -1, ENDARRAYY;
D0 GRAPTOOL FORMAT CONVERTING PROCESS ¥/
while{feof{iptr))
{
done = ReadRuleAndFaciFromWorkingFile(DEFRULE),
ConvertRulebaseToGraptooiFormat{done),
delay(DELAY _LOGPR2),

}

f* CHECK FOR THE EXISTENCE OF RULE BASE ¥/
ifrule_flag == FALSE]

Error{"CANNOT FIND ANY RULES IN THIS RULE BASE.", NONE, "in™;
Message{\nin™* Converting process is finished.”, NONE, "\,
o PREPARATION SECTION ***%/
PreparelnitialFacts();
M CHECK FOR THE EXISTENCE OF INITIAL FACT */
ifffact_flag == FALSE}

Message("Wni I THE INITIAL FACTS DO NOT BEXIST. =l 4 "'y,
glse

Message{"int™ I EVERYTHING 1S READY FOR TESTING. H***H" .1, "n™y;
/* DECIDE WHETHER OR NOT TO START THE TESTING PROCESS ¥/
printf"in®* Enter ¥ 1o start the rule-based testing process. >)
gets{ans),
f CHECK IF AN USER WANTS TO CONTINUE THE PROCESSES ™
if{{strempians, "y == SUCCESS) |] (stremplans, "Y'} == SUCCESS)

{

cirser(),

assert_first = TRUE;

#GET THE APPLYING ORDER OF ASSERTION AND RETRACTION */

printf("Enter N if you want (FACT BASE - RETRACT U ASSERT), W™

printf{"or anyvthing else (FACT BASE U ASSERT - RETRACT).. =",

gets{ans);

£ CHECK IF THE USER WANTS TO APPLY THE RETRACTION FIRST %/

f{{stromplans, "n"} == SUCCESS) || (stremplans, "N} == SUCCESS))
assert_first = FALSE;

Message("'\n™" Starting ruls base test """, NONE, ENDARRAY);

ReadRulebaseFromWorkingFila{);

166

A WRITE USER SELECTION TO THE INFORMATION FILE ™/
if(assert_first
forintf(iptr, "\n** FACT BASE SET UNION ASSERT MINUS RETRACT ™n");
glse
fprintf(iptr, "n** FACT BASE SET MINUS RETRACT UNION ASSERT "™n");
preses ADPLICATION SECTION ****%
SINITIALIZE THE RULE-BASED TESTING VARIABLES ¥/
notdone = TRUE,
display = nowhere;
pirwork = pirfirst;
rile_ptr = rule_base;
connect = rule_counter = fact_flag = clp_flag = SUCCESS;
MNodeGenerator(},
DisplayTestResult(},
D0 THE TESTING RULE-BASED STRUCTURE PROCESS ¥/
while(notdone)
{
FINITALIZE THE FACTS OF FACT BASE Y/
strepy{fact_base, ptrwork->condition_set),;
right_rule = SearchForTheWorkingRule{&found);
CHECK IF RULE LHS 15 SATISFIED */
iftfound)
{
connect = ¢lp_flag = TRUE;
P CHECK THE ORDER CF ASSERTION AND RETRACTION ¥/
iflassert first)
s
i
AsseriNewFact({right_rule});
RetractOldFact{right_rulej;
1
else

RetractOldFact{right_rule);
AssertNewFact{nght_rule};
}
hNodeGenerator(};

Ise
{
PFOHECK IF WORKING NODE CONNECTS TO ANY NODE ¥/
if{lconnect)
{
printf("inil No CONNECTING NODE HHhn");
Fprintffptr, "ntll No CONNECTING NODE HHin";

¥

ptmcrk = ptrwork->pirnext;

D

167

3
J

slse

Message{"\in-- Computer processing has been terminated. -, -1, "n

SEARCH FOR THE NEXT WORKING NODE %/
while{{ptrwork->duplicate |= nowhere) && (ptrwork 1= nowhere))

pirwork = pirwork->pirnext;
if{ptrwork 1= nowhere)

1
display = nowhere;
rule_pir = rule_base;
connect = rule_counter = fact_flag = SUCCESS;
¥
else

notdone = FALSE;
Y
A

DisplayTestResult(),
¥
7 DISPLAY AN ENDING PROCESS MESSAGE ¥/

Message"\min™* Rule base test is finished *** NONE, ENDARRAYY,

FinalAnalysis(),

feloseall();

}

['%
e

{ e fede e 3 kel LES L E Lk o oesde e e o Fedede ik i ook deded de ol e ke v e e ok ek

1.0 Programintroduction function *

* Purpose: A Programintroduction function will give a general description of *
* the Graptool software to the and user, *
* Calling function: NONE *

Fedrdkdehodokhond % FRE R R R R f FodddoR FhEREEERE AR e Fedkok % *E fek ok f un,ny.f

void Programintroduction{void)
s
{

int i

clrscr();

forli=0; <79, t++} putch(205);

printf{"n FERmEEE GRAPTOOL.C #*** "0,
printf"PROGRAM OBJECTIVE.: Graptoo! is a software tool based on the ");
printf{"logical path graph algonthm. This software will read the CLIPS ™),
printf{*rule base and convert it into\nGraptool format. After the),
printf("conversion is finished, the program will apply the\nlogical path ™),
printf{"graph algorithm o the Graptool format for testing of rule-basedin™);
orintf{"structure. The results of this tool are the following:\n™);

printf(*1. GRAPTOOL WRK contains the CLIPS rule base after Graptool has "),
printi"eliminated theln unnecessary funclions or commands from the ™);
printf(“original rule base \n"};

printf("2. GRAPTOGL RUL contains rules from the rule base in Graptool ');
printf("format.in™};

printf("3. GRAPTOOL FAC contains initial facts from the rule base in "},
printf{"Graptool format.\n’},

printf{"4. GRAPTOOL. ERR (option) contains process and error messages '),
printf{"during softwars\n execution.\n™);

printf{"5. Tha information file contains the results of rule base testing.”);
printf{" An user can\n select any file name except the CLIPS rule base "),
printf{*file name, and the file\n extension cannot be " CLP. the "),
printf{"end user makes an invaiid name selection, Graptool will select 8"},
printf(” unigue file name which starts with 1.in\n");

printf"FINAL NOTE: All five files will be saved in the selected working ™,
printf("directory.\in"};

prntf("WARNING. . COMPUTER WILL AUTOMATICALLY STOP EXECUTION IF IT FIND "
orintf("ANY ERRORAN,

for{i=0; i<79; i++) putch{205);

printf{"inminPress any key to continue...... X

getch{);

clrscr();

}

T # # ' b e o e ? e dek et el e B ok e o e e s dede e e e

*

2.0 InitalValue function

e v e

* Purpose: An initiaiValue function initializes values of the important
* variables such as the nowhere fact_base_size, rule_size, etc.

b

* Calling function: NONE

e ded Kk FF FEEEAEEFR ARSI AR AT R b d s bbb edhdd Eh kbR R AE

void InitialValue{void)

1

nowhere = (struct node *}NULL,;

rule counter = condition_counter = TRUE;

error_file_open = facl_base_size = rnule_size = SUCCESS;
rule_flag = fact_flag = clp_flag = nocondition_flag = FALSE;
h

170

e d el el e o b e e e e i FhERhd SRR e TR b # i e e e ik *R e e ol e e el e o e e de e de o

3.0 setWorkingDirectory function #
* Purpose: A SetWorkingDirectory function sllows the user to select a working”®
directory which will be used to store the working files.

E I e

CIE S

Calling functions: 1. void CurrentWorkingDirectoryls{char®) ¥
2. void Message{char®, int, char®) *

e e e o e o o e ol R Fk # ¥ FREREELE Rkl R & de i # # Fofe el Rede e i e oy e el e e e ,nnuu;
void SetWorkingDirectory{char *path)
{
int disk;
char drivel2], ans[2], *dptr;
7 DO SET WORKING DIRECTORY PROCESSES */
do
{
/A GET A CURRENT DIRECTORY %
CurrentWorkingDirectoryls{path};
#* DECIDE WHETHER OR NOT TG CHANGE A WORKING DIRECTORY ¥/
printf{"nDo you want o change the working directory (N}7 ")
gets(ans);
* CHECK iIF USER WANTS TO CHANGE THE WORKING DIRECTORY ¥/
if{{stremplans, "y} == SUCCESS) || {strompfans, "Y") == SUCCESS))

orintf("int MAXIMUM PATH INCLUDING FILE NAME 15 %d BYTES " PATH_SIZE),
*GET A NEW WORKING DIRECTORY DRIVE Y

printf("\nEnter the drive of new working direciory (A, B, C, stc.): ™)
gets{drive),

 GET A NEW WORKING DIRECTORY PATH ¥/

printf{"Enter the path of new working directory {\ for root):),
gets{path),

dptr = strupr{drive};

disk = (intj*dplr - 65,

setdisk{disk);

* CHECK FOR THE EXISTENCE OF THE GIVEN DRIVE AND PATH ¥/
if{{disk 1= getdisk(}} I] {chdir{path) I= SUCCESS))

{

Message(\n\Warning.. GIVEN DRIVE OR PATH DOES NOT EXIST.”, -1, "\n");
chdir("W");
}

¥

¥
7 DO PROCESSES WHILE THE USER WANTS TO CHANGE A WORKING DIRECTORY ¥/

while{{stremp(ans, "y == SUCCESS) || (stremplans, *Y") == SUCCESS));
¥

e skt F A vk g Fode e Fode dedededededefede oA ok e e e e ol A e R

e
E.
E.
%
%
%
E:
E

*

3.1 CurrentorkingDirectoryls function *
* Purpose: A CurrentWorkingDirectoryls function will get the current
* directory information.

%

ki

* Calling function: NONE

Wi Lk W ek Rokok ® Rk & FEF ok etk EERR Fh kR

EE .

TRk R RERkRR j
void CurrentWorlingDirectorvis{char *path)

{ .
strepy{path, XN

pathi0] = 'A' + getdisk(};

getcurdir(0, path + 3};

orintf("n® THE CURRENT WORKING DIRECTORY -= %s \n", path);
}

172

Jhe g i o e E e e et h e Fr e dedede o Fdeddediod # e e e Al ek e e ek

* 4.0 OpenTheFiles function *
* Purpose: The OpenThelFiles function will open a CLIPS rule-based file, an *
N information file, an error file, and working files,

#

* Calling functions: 1. void Programinformation{char®, char®, char®)
* 2. void Error{char®, int, char®)

R L T S e LT R FEERERERREREEETERT TR DB ke R R Y s L 1)

E I S S

void OpenTheFiles{char *"path)

it

int length;

char *ifile = "DOOOOOY, *wname, ans[d], cname[PATH_SIZE]
FGET CLIPS RULE-BASE FILE */

printf(inknter the name of CLIPS rule base file -> '),
gets{cname);

FGET INFORMATION FILE */

printf("Enter the name of information file (option) -> ™},
gets{inamej,

* DECIDE WHETHER OR NOT TO OPEN AN ERROR FILE */
printf("Do vou want to open the error file (MN)? ™);

gets{ans);

CONVERT FILE NAME TO CAPITAL LETTERS ¥/
strepy{cname, strupr{cname}),

strepy(iname, strupr{iname));

I CHECK FOR THE EXISTENCE OF CLIPS RULE-BASED FILE ¥/
if{{fplr = fopen{cname, "r') == NULL)

Error("CANNOT OPEN THE CLIPS RULE BASE.", NONE, "',
/F CHECK IF SELECTED INFORMATION FILE 18 VALID ¥/
length = strlen{iname};
if{{strcmpl{cname, iname) == SUCCESS) ||

{stremp{&inameflength-4]," CLP") == SUCCESS] ||
{iptr = fopen{iname, "wi+")} == NULL)

£
i

Message{ \nERRORI INVALID NAME FOR THE INFORMATION FILE." -1, "\n'™);
Message{"COMPUTER SELECTS AN UNIQUE NAME FOR INFORMATION FILE " -1,
7 GET A UNIQUE INFORMATION FILE NAME */

wname = mktemp(ifile);

RE-OPEN THE INFORMATION FILE */

iptr = fopen{wname, "wi+");

strepy{iname, whame);

¥

OPEMN ALL THE WORKING FILES ¥/

wplr = fopen{"GRAPTOOL WRK", "wi+"):

rotr = fopen("GRAPTOOL. RULY "wi+");

cplr = fopen{"GRAPTOOL FACY, "wi+"y;

7 CHECK IF USER WANTS TO OPEN AN ERROR FILE */
if{{strernplans, YY) == SUCCESS) || (stremplans, Y™ == SUCCESS))

{

error_file_open = TRUE,
£ OPEN AN ERROR FILE ¥/
eptr = fopen("GRAPTOOL ERR", "wit';

¥

Programinformation{path, cname, iname};

i
3

173

il ool e e e ol e o e e e e e e e e e e

g

4.1 Programinformation function
Purpose: A Programinformation function provides information about Graptool *
software initialization such as the size of the fact array, st *

I

&

EE

*

Calling Function: void Message({char®, int, char®)

WHEHEEEAEIEFR TR TN AR e iRt diod LR R R ok S ik FHREE HRRERER ik FhNRAE * wirj

void Programinformation{char *path, char *cname, char *inamej
{
M%Sﬁagegi\’%n*************** ?:)ROGRAM SETUP ***%**********I‘ZFQQNEX ll\\ﬂﬂ};
Message({" The fact string size is ", FACT_SIZE, " bytes.");
Message[in The field string size is ©, FIELD _SIZE, " bytes "},
Message("\n The rule array size 18", RULE_SIZE " byies "),
Message("\n The fact_base array size 1s ", CON_SIZE " bytes."),
Message("n The variable array size is " VARIABLE_SIZE" bytes.",
Message("\n The selected working directory is ¥, NONE, strupr{path});
Message{\n The CLIPS rule base file is ", NONE, cname);
Message("\n The information file is " NONE, iname);
* CHECK IF THE ERROR FILE 1S ORPENED ¥/
iflerror_file_open;

Messagel\n The error file is GRAPTOOL ERR.”, NONE, ENDARRAYY;

Message(intrrivimemsiiesisw e FREmERvsveest . NONE, "n'");
printf{"inPress any key fo continue. . Y
getch{);
clrser{);
¥
174

e g o i R o vhE R # b kx b & Lk g L e e o * Foo e AR T e

~~~~~~~~~~~~~~~~~~~~~~~ 5.0 ReadTheRulebaseinToWorkingFile function ———eeeee e *

H
* Purpose: A ReadTheRulsbaseinToWorkingFile function wili read the CLIPS *
* rule-based expert system program eliminating unprintable charact- *
* ers, exira spaces and comments. it will also adjust the rule *
* bases, and check for critical syntax errors. The results of this *
* function will be stored in an information file which will also be *
* used as the Graptoo! working file. *
* Calling funclions: 1. void Error{char®, int, char®} *
* 2. void Message(char®, int, char) *

ek deohd ol & RO R RO R R R R R R Rk Rl e Ao g e W e kR kR * FhEFER R AR E Wk ok w R T E ﬁﬂf
void ReadTheRulebaselnToWorkingFile{vold)
{

div_tresult;

int ch, previous_ch=5SPACE, acceptable lstter, parenthes_count, quote count;
Message(\n_-_ Read CLIPS rule base into the working file - -1, 0™,

£ RESET INFORMATION FILE POINTER TO THE BEGINNING OF FILE %/
rewind{iptr);
£ SEARCH FOR THE FIRST OPEN PARENTHESIS OF THE CLIPS FILE */
while({ifeof(fptn)) && {(ch = getc(fptr)) I= O_PARENTHES));
M CHECK IF T IS AN OPEN PARENTHESIS ¥/
if{ch I= O_PARENTHES)
Error"CANNOT FIND THE BEGINNING OF THE CLIPS RULE BASE.", NONE, "in"™;
MINITIALIZE VARIABLES VALUE %/
result.rem = parenthes_count = quote_count = SUCCESS:
DO THE ADJUSTMENT AND CHECK SYNTAX ERROR PROCESS */
while{Hfeof{fptr))
{
FINITIALIZE acceptable letter TO TRUE */
accepiable lstter = TRUE;
/4 ELIMINATE AN UNPRINTABLE CHARACTER */
if{lisprint{ch})
acceplable letter = FALSE;
aise
FCHECKIFITIS A SPACE ¥/
if{ch == SPACE)
i
 ELIMINATE A SPACE AFTER ANY SPACE ¥/
if(previous_ch == SPACE)
accepiable_lstter = FALSE;
else
M ELIMINATE A SPACE AFTER THE FIRST QUOTE %/
if{{previous_ch == QUOTE) && (result.rem == TRUE))
acceptable letter = FALSE;
else
P OHECK IFIT IS QUTSIDE THE QUOTE ¥/
ifresultrem == SUCCEESS)
{
# ELIMINATE A SPACE AFTER ALL THESE CHARACTERS ¥/
if{{previous_ch == LOGI_OR) |} (previous_ch == LOGIL_AND) ||
{previous_ch == LOGI_NOT} |] (previous_ch == O_PARENTHES))
acceptable letler = FALSE;



else
if{{{previous_ch == S WILDCARD) || {previous_ch == RE_POINT1) |i
{previous_ch == ENDLHS)) && {parenthes_count == TRUE})
acceptable letter = FALSE;
¥
}

slea

f* CHECK IF T I8 THE BEGINNING OF THE COMMENT */

if{{ch == COMMENT) && (result rem == SUCCESS)
* SEARCH FOR THE END OF A COMMENT */
while{{lfecf{fptr)) && ((ch = getc{fotn)) 1= NEXTLINE));
acceptable letter = FALSE;

}

else
FOHECKIFIT IS A COMMENT AFTER THE RULE-BASED CONSTRUCT NAME ¥/
if{{ch == QUOTE) && (parenthes_count == TRUE})}
{
J* SEARCH FOR THE END OF COMMENT ¥/
while{(Hfeof(fptr}} && ((ch = getc{fptr)) 1= QUOTE));
acceptable letter = FALSE;
h
else
FCHECKIFITIS A QUOTE INSIDE A BLOCK ¥
if{ich == QUOTE) && {parenthes_count > 1))
{
result = div{(++quote_count), 2);
FADD A SPACE TO WORKING FILE IF T IS A FIRST QUOTE AND */
" AFTER A CHARACTER BESIDE AN OPEN PARENTHESIS AND A SPACE 7/
f{{result rem == TRUE) &&
{previous_ch i= O_PARENTHES) && {previous_ch I= SPACE))
putc{SPACE, iptr);
}K
else
7 ADD A SPACE IN FRONT OF THESE CHARACTERS IF IT 1S OUTSIDE FACT BLOCK */
if{{{ch == &_WILDCARD] || {ch == ENDLHS)} || {ch == RE_POINT1}) &&
{previous_ch = SPACE)} && (parenthes_count == TRUE))
putc{SPACE, iptr);
else
/ CHECKIF IT IS AN OPEN PARENTHESIS OUTSIDE THE QUOTES */
if{ich == O_PARENTHES) && {result.rem == SUCCESS))
g
"«.
parenthes_couni++;
/ ADD A SPACE IN FRONT OF AN OPEN PARENTHESIS */
if{{previous_ch 1= SPACE) && (previocus_ch I= O_PARENTHES))
putc{SPACE, iptr);

e

slse
£ SUBTRACT ONE FROM parenthes_count FOR CLOSE PARENTHESIS */
iff{ch == C_PARENTHES) && (resuit.rem == SUCCESSE))

parenthes _count-



eise
f* CHECK IF 1T IS AN UNIDENTIFIED CHARACTER ¥/
if{{parenthes_count == SUCCESS) && (ch I= O_PARENTHES) && (ch I= SPACE}
Error{“FIND UNIDENTIFIED CHARACTERS IN THE CLIPS RULE BASE”, -1, ")
FWRITE AN ACCEPTABLE CHARACTER INTO THE INFORMATION FILE 7/
ifacceptable letter)
{
putc{ch, iptr);
previous_ch = ch;
¥
J* GET A NEW CHARACTER FROM CLIPS FILE ¥/
ch = geto{fptr);
kS
#* CHECK FOR MISSING PARENTHESIS ¥/
if{parenthes_count I= SUCCESS)
Error"MISSING THE PARENTHESIS IN THE CLIPS RULE BASE ", NONE, "\n"};
 CLOGING A CLIPS FILE ¥/
felosel{fptr);
# SET THE POINTER OF INFORMATION FILE TO THE BEGINNING ¥/
rewind(iptr);
Message(n\n _- - - Complete the reading _-_-_- ", NONE, "n"};
¥



W Fod o diede® ¥ ok i Bk doEAohd e e o LA e oy e o e e e e ol e e o e e o e Bk kol ok 4 Fdl

/ , :
e 6.0 ReadRuleAndFactFromWorkingFile function ——---emmeecmmmceee- *
* Purpose: A ReadRuleAndFactFromWorkingFile function will read one rule or *
* initial facts set at a time from the information file into a rule *
* array. The computer will make adjustmenis and check for critical *
% errors which it did not do in the ReadTheRulebaseinToWorkingFile
* function. The computer also compares Graptool's software config-
* uration with its needs. If the configuration does not match its *
* need or any errors have been detecled, an appropriate error mess-
* age will be displayed on the screen. The result of this function ¥
* will be siored in the Graptool wrk file and rule array.
k4

Calling functions: 1. void Error{char®, int, char”)
2. void Message(char®, int, char®)

FHk e de e e ek O ¥ Sede ek Fe Feode el R FE R e e e e BB el I e Ao o ek i

int ReadRuleAndFactFromWorkingFile{int type)
{
div_t result;
char *templr, *eurrptr,
int done, imit, fact, therhs, ch, errer, rule_plr;
int parenthes_count, guote_count, variable_couni, space_count
int fact_size, field_size, fact_star, fleld_start, space_start;
MHINITIALIZE VARIABLES VALUE %/
currptr = rule_base;
limit = RULE_SIZE - 2;
rule_ptr = parenthes_count = quote_count = resultrem = done = SUCCESS;
/5 SEARCH FOR THE BEGINNING OF RULE-BASED CONSTRUCT ¥/
while{{Ifeci{iptr)} &8& {{ch = gelcliptr)} = O_PARENTHES)),
* CHECK IF IT IS AN OPEN PARENTHESIS (BEGINNING OF CONSTRUCT) ¥/
if{ch == 0 _PARENTHES)
{
DO READING OF A RULE-BASED CONSTRUCT PROCESS ¥/
do
{
# CHECK IF ch (BEING READ CHARACTER) 1S OUTSIDE QUOTES ¥/
ifresult.rem == SUCCESS)

1

* ADD ONE TO parenthes_count FOR AN OPEN PARENTHESIS ¥/
iffch == O_PARENTHES]
parenthes_couni++;
alse
* SUBTRACT ONE FROM parenthes_count FOR A CLOSED PARENTHESIS ¥
if{ch == C_PARENTHES)
parenthes_count--;
F ADD A SPACE BEHIND LAST QUCTE ¥/

if{{ch 1= SPACE) &&
{ch l= C_PARENTHES) && (rule_basefrule_pir-1] == QUOTE))
F)
rule_baselrule pli] = SPACE;
rule_pir++;

%
4




* ADD A SPACE IN FRONT OF "< %/
if{{rule_baselrule_ptr-1] == RE_POINT1} &&
{ch == RE_POINTZ) && (rule_basefrule_pir-2] I= SPACE))
i

rule _baselrule ptr-1] = SPACE;,
rule_basefrule_ptr] = RE_POINTT,
rule pir++;
%
§
# DELETE SPACE BEFORE A CLOSE PARENTHESIS AND LOGICAL OPERATORS ¥/
f{{{ch == C_PARENTHES} || (ch == LOGL_ AND) || {(ch == LOGI_OR})) &&
{rule_baselrule ptr-1] == SPACEY)
rule_ptr--;
* REPLACE A CLIPS ARROW WITH A LHSRHS CHARACTER ¥/
if{{parenthes_count == TRUE) && (ch == STARTRHS) &&
{rule_baselrule_ptr-1] == ENDLHS))
{

rule_pir--;
ch = LHERHS:
¥
3
glse

# CHECK IF ch IS BETWEEN QUOTES ¥
if(result.rem == TRUE)

{
F REPLACE SPACE WITH (0_SPACE CHARACTER */
iflch == SPACE)
ch =0 _SPACE;
else
* REPLACE OPEN PARENTHESIS WITH O_PAREN CHARACTER®/
ifich == O_PARENTHES)
ch =0 PAREN;
else
* REPLACE CLOSED PARENTHESIS WITH C_PAREN CHARACTER */
if{ch == C_PARENTHES)
ch=C_PAREN
¢
P CHECK IF ch IS5 A QUOTE %/
if{ch == QUOTE]
g
3
M RE-CALCULATE result. rem VALUE */
resull = div{(++quote_count}, 2);
# ELIMINATE A SPACE BEFORE THE LAST QUOTE ¥/
if{{result.rem == SUCCESS) 8& (rule_baselrule_ptr-1] == _SPACE}))
rule_ptr--;
¥
FWRITE ch VALUE TO rule_base ARRAY ¥/
rule_baselrule ptr] = ch;
M GET A NEXT CHARACTER */
ch = geteliptry,;
£ INCREMENT rule_ptr VALUE BY ONE ¥/
rufe_pir++;
}
while{(Ifeof(iptr}] && (parenthes_count I= SUCCESS) && (rule_ptr < limit});
rule_basefrule_plr] = ENDARRAY,

179



* CHECK IF THE END OF RULE-BASED CONSTRUCT HAS NOT BEEN READ */
if{parenthes_count 1= SUCCESS)
Error{("THE RULE ARRAY IS TOO SMALL ", NONE, "n");
* SEARCH FOR THE END OF THE FIRST FIELD ¥/
currptr = strehr{rule_base, SPACE),
# CHECK FOR THE EXISTENCE OF THE FIRST FIELD ¥/
if(*currptr == ENDARRAY)
Error{*CANNOT FIND ANYTHING IN THE CLIPS RULE BASE.", NONE, "\n"};
*ourrptr = ENDARRAY,
/A CHECKIFIT IS A DEFRULE CONSTRUCT ¥
ifistremp(&rule_base[1], "defrule™) == SBUCCESS)
fact = FALSE;
else
/F CHECKIFIT IS A DEFFACTS CONSTRUCT ¥
if(stromp(&rule_base[t], "deffacts”) == SUCCESS)
fact = TRUE;
else
Error("CANNOT FIND DEFRULE OR DEFFACTS IN THE RULE BASE", NONE, "',
/* CHECK IF COMPUTER READS THE RIGHT CONSTRUCT ¥/
if{(type == DEFFACTS) 8& (Hfact)
done = NONE;
else
{
*ourrplr = SPACE;
temptr = ++ourrptr;
f* SEARCH FOR THE ENDING OF rule_base ARRAY NAME %/
while{("currptr 1= LHSRHS) & (*currplr 1= O_PARENTHES) &&
Fourrptr 1= SPACE) && (Fourrptr 1= S_WILDCARD]} && Pcurrplr 1= 130)
currptr++;
 CHECK FOR THE EXISTENCE OF rule_base ARRAY NAME ™/
if{({currptr == tempts) || Fourrplr == ENDARRAYY)
Error{"CANNOT FIND DEFRULE NAME OR DEFFACTS NAME. ", NONE, "n");
ch = *currptr,
*ourrptr = ENDARRAY,
* DISPLAY A rule_base ARRAY NAME WITH ITS TYPE ¥/
Message("in\nFINISH READING....." NONE, &rule_bass[1]};
*ourrplr = ¢h;
# CHECKIFIT IS A DEFRULE CONSTRUCT */
if{ifact)
rule_size = rule_size + rule_ptr;
M INITIALIZE VARIABLES VALUE ¥/
guote_count = space_count = variable_count = SUCCESS;
rule_ptr = thsrhs = resultrem = facl_size = field_size = SUCCESS;
* DO A CHECKING CONFIGURATION AND SYNTAX ERROR PROCESS ¥/
while(rule _baselrule_ptrl 1= ENDARRAY)
{
FOHECKIFITIS A SPACE ¥
if{rule_baselrule_ptr] == SPACE)
i
FOWRITE A SPACE TO Graptoolwrk FILE
putc(SPACE, wptr);
 CALCULATE THE SPACE POSITION */
resuft = div({(++space_count}, 2},

3

180



F CHECKIF A SPACE IS IN FRONT OF AFIELD %/
if{result.rem == TRUE])
field_start = rule_pftr,
else
I CALCULATE THE MAXIMUM SIZE OF FIELD */
if{field_size < {rule_ptr - field_start + 1))
field _size = rule_plr - field_start + 1;
}
elsa
P OHECK IFITIS A QUOTE ™
ifirule_baselrule_ptr] == QUOTE)

1

/ ADD ONE TO quote _count VALUE %/
guote_count++,

/* ADD A QUOTE TO Graptool wrk */
putc{QUOTE, wptr);
¥

else
*CHECK IF ITIS A PART OF VARIABLE FIELD ™
ifirule_baselrule_ptr] == S _WILDCARD;

{
FCHECKIFIT IS A PART OF RETRACT VARIABLE %/
if{{varenthes_count == 1) && (rule_basefrule_pir-2] 1= C_PARENTHES))
{
ADD A LINEFEED AND A SPACE TO Graptoolwrk FILE */
pulc(NEXTLINE, wptr);
putc{SPACE, wolr),
}
FUPDATE A NUMBER OF VARIABLE FIELD ¥/
variable_count++,
M ADD A QUESTION MARK TO Graptool wrk FILE */
putc(S_WILDCARD, wplr);
}
else
* CHECK IF IT 15 AN OPEN PARENTHESIS */
iFHrule baselrule ptr] == O _PARENTHES])
{
# ADD ONE TO parenthes_count ™/
parenthes _count++;
fact_starf = rule_pir;
JF CHECK IF IT IS THE BEGINNING OF FACT BLOCK ™
if{{parenthes_count == 2) && {rule_baselrule_ptr-2] I= RE_POINTZ}
&& (rule_basefrule_ptr-2] I= C_PARENTHES))
{
i ADD A LINEFEED AND A SPACE TO Graptoolwrk FILE *f
putc{NEXTLINE, wptr);
putc{SPACE, wplr);
h
7 ADD AN OFEN PARENTHESIS TO Graptool wrk ¥/
nutc{O_PARENTHES, wplr);
}



else
 CHECKIF ITIS A CLOSED PARENTHESIS ¥/
if{rule_base[rule_ptr] == C_PARENTHES)
{
parenthes_count--;
putc{C PARENTHES, wptr);
FRE-CALCULATE THE MAXIMUM FACT SIZE ¥/
ifffact_size < {rule_pir - fact_start + 1))
fact_size = rule_ptr - fact_start + 1,
# CHECK IF IT IS FOLLOWED 8Y ANOTHER CLOSED PARENTHESIS ¥/
if(rule_baselrule_ptr + 1] I= C_ PARENTHES)
£ ADD A LINEFEED TO Graptool wrk */
putciNEXTLINE, wpth);
1

else
/FREPLACE A LHSRHS CHARACTER WITH == IN Graptoolwrk®/
HLHSRHS == rule_basefrule_ptr})
thsrhs = TRUE;
putc{ENDLHS, wptr);
putc(STARTRHS, wptr);
¥
slse
FREPLACE A Q_SPACE WITH A SPACE IN Grapioolwrk */
if(rule_hasefrule_plr] == Q_SPACE]
putc{SPACE, wptr);
else
FREPLACE AN O_PAREN WITH AN OPEN PARENTHESIS IN Graptoolwrk */
iffrule_baselrule_ptr] == G_PAREN)
putc{O PARENTHES, wptr);
else
FPREPLACE AC_PAREN WITH A CLOSED PARENTHESIS IN Graptoclwrk */
it(rule_basefrule_pti] == C_FPAREN]
putc{C_PARENTHES, wotr);
else
FOWRITE A CHARACTER BEING READ INTO Graptoolwrk */
putc{rule_basefrule_ptr], wplr);
 INCREMENT A rule_pir BY ONE ¥/
rule_pirt+;
¥
M ADD A LINEFEED TO GRAPTOOLWRK */
putc(NEXTLINE, wptr);
FCHECK IF AN ARROW 1S IN DEFFACTS CONSTRUCT ¥/
itffact && ihsrhs)
Error("FIND => IN THE DEFFACTS.” NCGNE, "\n");
/# CHECK IF THERE IS NO ARRCW IN DEFRULE CONSTRUCT */
if{Ifact && lihsrhs)
Error{"CANNOT == IN THE DEFRULE.", NONE, "in");
resull = diviquote_count, 2);
/* CHECK FOR MISSING QUOTES ¥/
if{result.rem I= SUCCESS)
Error{"MISSING QUOTES IN THE CLIPS RULE BASE.", NONE, "n");



St

# CHECK IF A SIZE OF rule_base ARRAY 18 TOO SMALL Y
itfrule_size »= limit}
Error{"RULE_SIZE, " RULE_SIZE, " BYTES IS TOO SMALL. \n");
# CHECK IF A SIZE OF fact_base ARRAY 15 TOO SMALL ¥/
if(fact_size == FACT_SIZE-2)
Eror("FACT_SIZE, " FACT_SIZE, ", BYTES IS TOO SMALL. \n");
#OHECK IF A SIZE OF field ARRAY IS TOO SMALL ¥/
ifffield_size »= FIELD_SIZE-2)
Error("FIELD_SIZE, " FIELD_SIZE, ", BYTES I8 TOO SMALL. W),
£ CHECK IF A SIZE OF variable ARRAY 1S TOO SMALL ¥/
if((variable_count*{field_size + fact_size)) »= VARIABLE _SIZE-2)
Errer"VARIABLE_SIZE, " VARIABLE SIZE", BYTES 15 TOO SMALL. W'},
Message("\n** DOES NOT DETECT ANY ERROR IN READING PROCESS ™™ -1 0",
done = DEFRULE;
FFCHECKIFIT IS A DEFFACTS CONSTRUCT ¥/
H{fact)
done = DEFFACTS;
}
s
return{done},

183




;nn £ R o e e e o A # ooy Feode el ekl R e ok Fede fe ik FdhRd o d e el ok il R e R R dok Bk ok e b e bR

e e e 7.0 ConvertRulebaseToGraptooiFormat funclion -——meeemeememeen *
* Purpose: A ConvertRulebaseToGraptoolFormat function will convert a defrule ™

* construct or a deffacts construct in the rule_base array info the ¥
* Graptool format, The CLIPS defrule, deffacts, assert and retract 7
* commands will be replaced by DEFRULE, DEFFACTS, ASSERT,
* RETRACT characters, respectively. Open and closed parentheses *
* will be used as the determiner for the beginning and end of 2ach *

block, and as a name of that rule-based construct. Each rule

* condition begins with a CONDITION character followed by &, |, or

* -~ 0 represent the logical operator of each condition. The end ™

* vf each defrule and deffacts construct will be marked by an ENSRF *
* character, for separating one construct from another.

&% #

* Calling functions: 1. void ConveriConditionToGraptoolFormat{char”) *

* 2“ void ConvertAssertAndRetractToGraptoolFormat{char®} *
* 3. void ConvenDeffactsToGraptoolFormat{char®) *

* 4 char *WriteFormatToWorkingFile{int, char®, FILE®) *

fed R doRhR R FRTRERERRR wHE Feokede TRk RR Fh& * FehERERATERINERE wREH Hefe FekdieE * §

e
void ConvertRulebaseToGraptoolFormat(int rulebase_type}
{
char *rulebase_ptr, “templr,
if(rulebase_type 1= NONE)

{
/¥ SEARCH FOR THE BEGINNING OF RULE-BASED CONSTRUCT #/
P NAME AND REPLACE IT WITH AN OPEN PARENTHESIS ¥/
tamptr = strehr{rule_base, SPACE);
*emptr = O_PARENTHES;
/* SEARCH FOR THE END OF RULE-BASED CONSTRUCT %/
M NAME ARND REPLACE ITWITH A CLOSED PARENTHESIZ ™/
rulebase_ptr = strchritemptr, SPACE);
*rulebase ptr= C_PARENTHES;
rulebase plr+;
f# CHECK IF TS A DEFRULE CONSTRUCT ¥/
iflrulebase_type == DEFRULE)
{
rule_flag = TRUE;
FWRITE A DEFRULE CONSTRUCT NAME TCQ Graptool.rul */
WiriteFormatToWorkingFile(DEFRULE, ternptr, rplr};
7 CONVERT RULE LHS INTO GRAPTOOL FORMAT ¥/
ConverConditionToGraptoolFormat{rulebase_ptr);
7 CONVERT ASSERT AND RETRACT BLOCKS INTO GRAPTOOL FORMAT */
ConvertAssertAndRetractToGraptoolFormatirulebase_ptr};

¥
else
#{rulebase type == DEFFACTS)

{

FOWRITE A DEFFACTS CONSTRUCT NAME TO Graptool.fac *f

WiteFormatToWorkingFile(DEFFACTS, templr, cplr};

¥ CONVERT FACT BLOCKS TO GRAPTOOL FORMAT %/

ConvertDeffactsToGraptoolFormat{rulebase_plr);

1
¥

¥

184




el # e e e et ol e gl ke de ok wekded okl EL3 ode e e e e S e e iR g e e e e e e o e e

~~~~~~~~~~~~~~~~~~~ 7.1 ConvertConditionToGraptooiFormat function *
* Purpose: A ConvertConditionToGraptoolFormat function will convert the con- *

* dition blocks from the LHS of the rule in the rule_base arraytc
" Graptool format. This conversion will be stored in Graptool.rul ~
* file. *
* Calling functions: 1. void Message(char®, inl, char) *
* 2. char *WriteFormatToWorkingFile(int, char®, FILE"} *
* 3. char *GetAField{char®, char]}, int") *

W TR P USSR A Lt a s b ek ke Ll ks

void ConverntConditionToGraptociFormat{char *rulebase_plr}
{
int condition_flag, parenthes_count, good_fact, notlast, ch;
char ans[2], a_field[FIELD_SIZE] logical, new_logical;
char *rulebase, “search_ptr,
FINITIALIZE VARIABLES ¥/
parenthes_count = 1;
condition_flag = FALSE;
Message("\nConverting condition to Graptool format. ", NONE, ENDARRAY},
DO THE RULE CONDITION CONVERTING PROCESS ¥/
while[*rulebase plr I= LHSRHES)
P
L
A OHECK IE A CONDITION BLOCK IS NOT INSIDE ANY LOGICAL BLOCK ¥/
if{parenthes_count == TRUE])
togical = LOGI_AND,
P CHECK IF T 18 THE BEGINNING OF A BLOCK ™
it rulebase _plr == O_PARENTHES)

{;‘* UPDATE A PARENTHESIS COUNTER ¥/
parenthes_couni++
A RE-INITIALIZE VALUE OF good_fact %/
good fact = FALSE,
£ GET THE FIRST FIELD OF A BLOCK ¥
rulebase = GetAField{rulebase_plr, a_field, ¬last);
P CHECK IF THE END OF FIRST FIELD 13 A SPACE Y/
if("rulebase == SPACE])
{
* SEARCH FOR THE BEGINNING OF ANY SUB-BLOCK ¥/
while{(*rulebase = O_PARENTHES) && (*rulebase i= C_PARENTHES)
rulebase++;

¥
7 CHECK IF THERE IS NO SUB-BLOCK ¥/
f*rulebase I= O_PARENTHES)
{
good_fact = TRUE;
ruiebase = rulebase_ptr;
ks
2o b BLOCK HAS SUB-BLOCK ¥/
else
{
FUPDATE A PARENTHESIS COUNTER %/
parenthes _countt+,

£ INITIALIZE new_logical VALUE ™
naw_logical = SPACE;

FCHECK IF A FIRST FIELD 1S LOGICAL OPERATOR OR ¥/
if{stromp(a_field, "or"} == SUCCESS)

new_logical = LOGI_OR,
else

CHECK IF A FIRST FIELD 1S LOGICAL OPERATOR AND ¥/
f{stromp(a_field, "and"} == SUCCESS)

new_logical = LOGI_AND;
else

7* CHECK IF A FIRST FIELD 1S LOGICAL OPERATOR NOT ¥/
if(strempla_field, "not"} == SUCCESS)

new_logical = LOGE NOT,
SR LOGICAL OPERATOR EXISTS, UPDATE THE logical ¥/
FVALUE AND SET good_fact TO TRUE ¥
Hnew logical I= SPACE;

good_fact = TRUE;
logical = new_logical;

}

b

;‘i“ CHECKIFITIS A GOOD FACT BLOCK ¥/
i{good_fact)

{

condition_flag = TRUE;

/* SET A LOGICAL OPERATOR TO THE BEGINNING OF FACT BLOCK ¥/
7~ AND THEN WRITE THAT FACT BLOCK TO A Graptoolrul FILE
*(-rulebase) = logical,

rulebase oty = WiiteFormatToWorkingFile{CONDITION, rulebase, rptr);

D

se

o

FIFITIS NOT A FACT BLOCK, A COMPUTER SEARCH FOR THE END %/
do

4
rulehaset+;

if(*rulebase == O_PARENTHES)
parenthes_countt+;

elss

f*rulebase == C_PARENTHES)
parenthes_count--;

while{parenthes_count 1= 1);

ch = *[++rulebase);

*rulebase = ENDARRAY,

/DISPLAY A DETAIL OF A FACT BLOCK ¥
Message("in", NONE, rulebase ptr),

Message("n! UNIDENTIFIED FACT BLOCK HAS BEEN ELIMINATED. I"-1,"\n");
rulebase_plr--

*rulebase plr = COMMENT,;

186

£ DO AN ELIMINATE "< PROCESS */
while{*rulebase_ptr I= ENDARRAY)
{
if((*rulebase_ptr == RE_POINT1) && (*(++rulebase_ptr) == RE_POINTZ))
*rulebase ptr = COMMENT,
rulebase plr++;
1
*rulebase = ch;
rulebase_plr = rulebase,
/* ASK A USER TO CONFIRM PROCESS CONTINUATION ¥/
Message("A GRAPTOOL PROGRAM MAY NOT GIVE THE CORRECT RESULT."-1,"\n");
Message("ENTER Y TO CONTINUE THE PROCESS.. > " NONE, ENDARRAY);
gets{ans},
#* CHECK IF AN ANSWER (S NG %/
if{(stremp(ans, "Y") I= SUCCESS) && (stremplans, "y} 1= SUCCESS))
Error("User decide to stop a program execution.” , NONE, ENDARRAY);
¥
¥
#CHECK IFITIS A CLOSED PARENTHESIS %/
if(*rulebase _ptr == C_PARENTHES])
parenthes_count--;
rulebase pire+,
%
/¥ CHECK THE EXISTENCE OF LHS RULE ™Y
if{icondition_flag}
{
nocondition_flag = TRUE;

JINSERT THE SPECIAL FACT BLOCK TO GRAPTCOL RUL ¥/
putc(CONDITION, rptr);
fprintf{rptr, "&{initial-fact)");

putc(CONDITION, rptry;

fprintf{rptr, "&(pt-MoCondition-TF}"};

A INSERT THE RETRACTION OF SPECIAL FACT BLOCK TC GRAPTOOL.RUL
nutc(RETHACT, rofr};

forinti{rptr " {pt-NoCondition- T},

i CALCULATE THE TOTAL FACT_BASE SIZE ¥

fact_base size = fact_base_size + 15;

%

187

2 o o e e e o RS e R RRA AR Pk kke e R AR #* b de o el e e e o ¥ wfe Ry efrdede e R

~~~~~~~~~~~~~ 7.2 ConvertAssersndRetraciToGraptoolFormat function ~--eemememeer
Purpose; A ConvertAssenAndRetractToGraptoolFormat function will convert *
the assert block and retract block of the rule base info Graptool  *

IS
#
#
*
#
k3
*

format. *

Calling funclions: 1. void VariableSearch{int, charfl, char® *
* 2. void Message{char®, int, char®} *
¥ 3. char *“WriteFormatToWorkingFilelint, char®, FILE™) *
¥ 4. char *GetAField{char™, charll, int") *

HRRE R AR SRR * §

void ConvertAssentAndRetractToGraptoolFormatichar “rulebase_plr}
{
char a_fleldFIELD_SIZE] *rulebase, "pir,
int notlast, assert_flag, retract_flag, flag;
FINITIALIZE VARIABLES VALUE %
rulebase = rulebase_pir,
assert_flag = retract_flag = flag = FALSE;
Message("\nConvert assert and retract to Graptool format. ", -1, ENDARRAYY;
/* SEARCH FOR THE BEGINNING OF RHE
rulebase plr = sirchr{rulebase_ptr, LHSRHE];
D0 THE ACTION BLOCK CONVERSION */
while{*rulebase _plr I= ENDARRAY)
g
P CHECK IF 1T IS THE BEGINNING OF AN ACTION BLOCK ™/
if{*rulebase_plr == {_PARENTHES)

* GET THE FIRST FIELD OF aN ACTION BLOCK ™
rulebase_pir = GetAFisld(rulebase ptr, a_field, &notlast);
#* CHECK IF AN ACTION IS ASSERT OR RETRACT BLOCK */
if{{strempla_field, "assert”) == SUCCESS)

il (strempla_fisld, “retract”} == SUCCESS))

7 SET THE VARIABRLES FOR ASSERT BLOCK ¥
if(strompla_field, "assert") == SUCCESS)

rulebase_plr++;
flag = ASSERT,
assert_Hag = TRUE,
3
elss
7 SET THE VARIABLES FOR RETRACT BLOCK ¥/
{
flag = RETRACT,
retract_flag = TRUE,
i)

J
ptr = rulebase_plr;




D0 THE VARIABLE SEARCHING PROCESS ¥/
do

{
f* GET A FIELD FROM THE ACTION BLOCK ™/
rulebase _pir = GetAField{rulebase_ptr, a_field, &notlasi);
FOHECKIF IT IS SINGLE-FIELD VARIABLE ™/
if({a_field[0] == S_WILDCARD; && (strlen{a_field) > 1}}
VariableSearch{flag, a_field, rulebase);
eise
FCHECK IF TS A MULTIFIELD VARIABLE FROM AN ASSERT BLOCK ¥/
if({flag == ASSERT) && {a_field[0] == M_WILDCARD) &&
(a_field[1] == S_WILDCARD) && (strlen{a_field} > 2})
VariableSearch(ASSERT, a_field, rulebase);
else
7 CHECK IF IT 1S A RETRACT BLOCK AND NO SINGLE-FIELD VARIABLE ¥/
if{flag == RETRACT)
Error("RETRACT INDEX CANNCT BE MULTIFIELD VARIABLE.", -1, ENDARRAY);
Y
while{notlasi),
£ CHECK IF ACTION BLOCK 13 AN ASSERT BLOCK ¥/
if(flag == ASSERT]
5o ADD ASSERT FACT STRING INTO THE GRAPTOOL.RUL FILE Y
ptr = WiiteFormatToWorkingFile(ASSERT, plr, rptr);
ht
I
/M SEARCH FOR THE ENDING OF THE ACTION BLOCK */
rufebase pir = strehr(rulebase _plr, ©_PARENTHES);
}
rulebase plr++;
}
7 CHECK IF RULE HAS ANY ASSERT BLOCK ¥/
if{lassert_flag)
Message("intHHH NO ASSERT IN THIS RULE. HIIIHY, NONE, ENDARRAY],
 CHECK IF RULE HAS ANY RETRACT BLOCK ¥
if{iretract_flag)
Message(niH1H NO RETRACT IN THIS RULE. IHHHHY, NONE, ENDARRAY),
putc{ENDRF, ot

189




ol e o e b % ok dbed Hek il ed e e e do ey e oo e b e e e e b et e R e e e

7.2.1 VariableSearch function *
Purpose: A VariableSearch function will search the left hand side (LHS) of ¥
the rule in rule array for the sxistence of the retract index and
assert variable.

Calling functions: 1. void Error{char®, int, char®)
2. char “WriteFormatToWorkingFilis(int, char®, FILE™)
3. char *GetAField{char®, charl], int%)

&Rk Rk Hoodede Bk kadekh ik kbR Rk ekoh b dh ek wF RN wdokoRk Lk kR Rk RkhRRkd ;‘

EE I 2 T T S -

void VariableSearch{int variable_type, char variable[], char *rulebase_ptr}
i

char a_field[FIELD_SIZE], "pir;

int found = FALSE parenthes_count = 1, notlast;

DO THE VARIABLE SEARCHING PROCESS ¥

while{*rulebase_plr I= LHSRHS}

g
L

P CHECK IF FIRST LETTER OF variable MATCHES FIRST LETTER OF LHS FIELD ¥/
iffvariable{0] == “rulebase_plr}
{
rulebase plr-;
#GET A FIELD FROM THE LEFT HAND SIDE OF THE RULE ™
rulebase_ptr = GetAField{rulebase_ptr, 2_fleld, &notlasty;
7 CHECK IF variable_type IS AN ASSERT CHARACTER */
if(variable_type == ASSERT)
%
7 CHECK IR AN a_field CONTAINS ANY LOGICAL FIELD ™
ifliptr = strehr(z_field, LOGIL_AND)} 1= ENDARRAY)
# ELIMINATE LOGICAL FIELD ¥/
*pir = ENDARRAY,
f* CHECK IF a_field MATCHES variable */
if{{stremp(a_field, variable} == SUCCESS) && (parenthes_count > 1}
found = TRUE;
h

alsa
* CHECKIF variabls_type 15 A RETRACT CHARACTER %/
if{variable type == RETRACT)
1
7 CHECK FOR THE EXISTENCE OF variable */
plr = ruiebase plr;
if((stromp(a_field, variable) == SUCCESS) && ("(++ptr} == RE_POINTT)
&& (*(++ptr) == RE_POINTZ) && (*(++ptr) 1= COMMENT})

£

found = TRUE,

parenthes _count++,

F SEARCH FOR THE END OF RETRACT FACT %

rulebase _ptr = strehr{rulebase_ptr, O_PARENTHES),

i ADD RETRACT FACT TO THE Graptool.rul FILE ™/

rulebase_ptr = WriteFormatToWorkingFile(RETRACT, rulebase_ptr, rptr};
1

190



else

f*rulebase_plr == QUOTE]}
rulebase_plr = strchr{(++rulebase_plr, QUOTEY,

Frrulebase _ptr == O_PARENTHES)
parenthes_counttt,

else

if*rulebase_pir == C_PARENTHES)
parenthes_count--;

rulebase pir++,

)

if{found}
Error{variable, NONE, " CANNOT BE FOUND IN THIS RULE BASE. '}




JoddeEk He e e W o w ok AR # o e e ek g # ki Tt e & ol ol e Rk e Fdedeok B e deodedk bRk
E

B e 7.3 ConvertDeffactsToGraptooiFormat funclion «----mmememmmeemmenn *
* Purpose: A ConvertDeffactsToGraptoolFormat funclion will convert the deff-  *

* acts construct in the rule_base array into Graptool format. The  ©
* result of this funciion will be saved in the Graplool fac file *
* '
* Zalling functions: 1. void Messagelchar®, int, char®) *
* 2. char "“WrriteFormatToWorkingFile{int, char”, FILE™) *
¥ 3. char *GetAFact{char®, int, charl}) *
# 4 int Che#kThe‘: eldSyntax{char®) *

¥ kR Fhk vekvek Sk ke ke k ks Rk okt Fhfdok * P de o & ok E *f

void ConvertDeflactsToGraptoolFormat{char *rulebase_plr}
;

char a_factiFACT_SIZE], *fact_ptr, ch;
int good_fact, deffacts_flag = FALSE, |, parenthes_count;
MINITIALIZE THE VARIABLES ¥/
parenthes_count = 1;
deffacts flag = FALSE;
Message("\nConvert deffacts to Graptoo! format.. . " NONE, ENDARRAY),
DO THE DEFFACTS CONSTRUCT CONVERTING PROCESS ™/
while(*rulebase_ptr I= ENDARRAY)
{
rulebase_plr = strehr(rulebase_ptr, O_PARENTHES),
FFCHECKIFIT IS THE BEGINNING OF FACT
if{(*rulebase_pir == O _PARENTHES)
{
M INITIALIZE THE VARIABLE %/
=0
parenthes _count++,
fact_ptr = rulebase _pir;
a_fact0] = C_PARENTHES;
* READ A FACT FROM rule_base ARRAY INTO o_fact ARRAY */
do
{
+;
rulebaseplre+;
* SUBTRACT ONE IFIT IS A CLOSED PARENTHESIS ¥/
if(*rulebase_plr==C_PARENTHES)
parenthes_count--;
elsa
7 ADD ONE IF 1T IS AN OPEN PARENTHESIZ *
f(*rulebase_plr== 0_PARENTHES)
parenthes _count++;
M ADD FACT INTO a_fact ARRAY %/
a_fact{ij = "rulebase_ptr;
3
4
while{*rulebase_ptr I= C_PARENTHES);
a_fact{++i] = ENDARRAY,
/* CHECK IF FACT BEING READ HAS ANY SUB-BLOCK ¥/
it{parenthes_count == TRUE)
{
M CHECK THE FIELD SYNTAX ERROR ¥/
good_tact = CheckTheFieldSyntax{a_fact);

192



7 CHECKIFITIS A GOOD FACT ¥/
if{oood_fact)
{

fact_flag = deffacts_flag = TRUE;
# ADD A GOOQD FACT TO THE Graptool.fac FILE Y/
winteFormatToWorkingFile(CONDITION, a_fact, eptr);
},
else
Message("\n", NONE, a_fact);

Message("\nWarning THE ABOVE FACT HAS SYNTAX ERROR",-1, ENDARRAY},
h

[

&0

iy

/* SEARCH FOR THE END OF THE BLOCK BEING READ */
while{parenthes_count I= TRUE)
{

rulebase plr++;

if(*rulebase _ptr == O_PARENTHES)
parenthes_count++;
alse

if(*rulebase_phr == C_PARENTHES)
parenthes_count--;
¥
ch = *{++rulebase_ pt);
*rutebhase pltr = ENDARRAY,
Message("\n", NONE, fact_ptr),

Message("\nTHE UNIDENTIFIED FACT HAS BEEN ELIMINATED.", -1, ENDARRAY),
*rulebase_ptr = chy;

N

Y

}

1

J
7 CHECKIF [T HAS NO INITIAL FACT ¥
if{ldeffacts_flag)

Message(\nllHH NO GOOD INITIAL FACT IN THIS DEFFACTS. HIHY, 1 'y,
aslse

putc{ENDREF, oplir);
i
4

193



Foded e e e kR dededed ok R Rl de ek ok ek ® o e e e e e v e o ¥

o
E
E.
E:
5
E

8.0 PreparelnitialFacts function

Purpose: A PreparelnitiaiFacts function will prepare the initial facts for
the rule-based structure testing process. If initial facts alre-
ady exist in the Graptool.fac file, the computer will read that
initial facts into the fact_base array. The end user may aiso
add extra facts by keyboard. Howsver, if initial facts do not
exist, the end user has two choices: to enter the name of the
file which has the initial facts, or to enter all the facts by
hand.

* E

Calling functions: 1. int ReadThelnitiaiFacts{void]
2. woid GetConditioninstruction{void}
. void ReadTheRulebassinToWorkingFile{void)
. int ReadRuleAndFactFromWorkingFile{int)
void ConvenRulebaseToGraptoolFormat{int}
. woid Message(char®, int, char’}
. int CheckTheField Syntax(char)
. char *FactisinTheFactbase{char]], int®)

BT Fodpdedekdeobokeok SR e ot e de Rk el d e fo ool WRETREEERRRY & el b b e e e

=}

* & % k& & & % F % % % ¥ ¥ % % 4k #F

% % % % ¥ % % @& ®H ¥ ¥ % #* % ¥ &

00~ @ O g W D

E
ks
ks

e

void PreparelnitialFacts{void)

{

div_t result;

int i, notdone, limit, fact_len, fact_plr, ch;

int space_count, field_start, good_fact, parenthes_gount,

int con_ptr, done, quote_count, acceptable_letter, field_size;
char faclFACT_SIZE], deffacts_file[PATH_SIZE], ans[2];

£ CHECKIF INITIAL FACTS ALREADY EXIST ¥
if(ifact_flag)

{

printf(\n I THE INITIAL FACT DOES NOT EXIST iy,
printf"in! If you want to enter facts by hand, press enter 1)
printf("\n! otherwise enter the deffacts file name...........1Wn"Y;

printf(“\nPATH AND FILE NAME CANNOT BE LONGER THAN %d BYTES" | PATH_SIZE);
printf"inEnter the deffacts file name >
f* GET THE END USER SELECTION ¥/
gets{geffacis_file),
# CHECK IF THE SELECTED FILE CAN BE OPENED *f
if{(fotr = fopen{deffacts_file, "r")) 1= NULL)
L
Message("\n@EE@E@ THE FACT FILE IS ", NONE, deffacts_file;
intr = fopen{iname, "wi+");
ReadTheRulebaseinToWorkingFile(),
£ DO GRAPTOOL FORMAT CONVERSION PROCESS ¥/
while(lfecf{ipir})
{
done = ReadRulsAndFactFromWorkingFile(DEFFACTS);
FCHECKIFIT IS A DEFFACTS CONSTRUCT ¥/
if(done == DEFFACTS)
ConvertRulebaseToGraptoolFormatidons),
}
¥

}




7 CHECK IF ANY OF THE RULES HAVE NGO CONDITION */
if{nocondition_flag)
f*COPY A SPECIAL FACT BLOCK TO FACT BASE ¥
stropy{fact_base, “(pt-NoCondition-TP)™):
slse
A OLEAR ALL THE VALUES IN THE FACT BASE */
fact_base[(] = ENDARRAY,
* CHECKIF INITIAL FACTS ALREADY EXIST ¥
if{fact_flag)
{
7 READ INITIAL FACTS INTO THE FACT BASE */
con_ptr = ReadThelnitiaiFacts();
printi"inDo you want to add the extra facts fo fact base (N7 ")
getslans),
%
i
£ THE INITIAL FACT DOES NOT EXIST */
else
{
strepy{ans, ™Y,
/M GET THE ENDING ADDRESS OF fact_base ARRAY */
corn_pir = strlen{faci_base);
Message(\ninYOU WILL ENTER ALL THE INITIAL FACTS BY HAND." NONE, “\in");
R

b
DO THE ENTERING INITIAL FACTS BY HAND PROCESS *f
while{(stremp(ans, "Y") == SUCCESS) || (strempians, "y") == SUCCESS))
{
S INITIALIZE THE PROCESSING VARIABLES ¥/
i = con_ptr,
notdone = TRUE;
imit = CON_SIZE - 2;
fact_baselil = ENDARRAY:
GetConditioninstruction();
7 DO THE GETTING AND CONVERTING INITIAL FACT PROCESS ¥/
whilelnotdone)
FANITIALIZE THE PROCESSING VARIABLES %
fact_len = FACT_SIZE - 2
parenthes_count = fact_ptr = quote_count = resultrem = SUCCESS:
printf("in!l FACT STRING CANNCT BE LONGER THAN %d BYTES. 1" FACT _SIZE)
printf(nll EACH FIELD CANNOT BE LONGER THAN %d BYTES. I FiELD_EEEz;E}
printf("\n™* You have %d bytes left in the fact_base array. **" limit-i};
printf{"\nEnter the fact string ... "
printf("\n123456789012345678901234567890123456789012345678901234567890";
pa’ int{"1234567800123456730\n';
7 GET AN INITIAL FACT FROM THE KEYROARD */
le{{fact_ptr < fact_len) && ((ch = getch(}) 1= )
.
!
aoceptable lstter = TRUE;
M ENTER THE UNPRINTABLE CHARACTER */
(! is‘prin’f{ch“}‘
acceptable letler = FALSE;
e}se

[
e
L




F CHECK IF ch 1S A SPACE ¥
iflch == SPACE)
{
7 ELIMINATE SPACES AFTER SPACE Y/
ifffact[fact_ptr-1] == SPACE]}
acceptable_letter = FALSE;
alse
 ELIMINATE SPACES AFTER FIRST QUOTE ™
if{(factffact_ptr-1] == QUOTE]) && {result.rem == TRUE})
acceptable lefter = FALSE;
else
£ ELIMINATE SPACES AFTER OPEN PARENTHESIS OUTSIDE THE QUOTE Y
if({factffact_ptr-1] == O_PARENTHES) && {(resuit.rem == SUCCESS})
acceptable lefter = FALSE;
¥
else
 CHECKIF eh 18 A QUOTE ¥/
if{ch == QUOTE}
{
f CALCULATE THE QUOTE AND ch POSITION ¥/
result = div{(++quote_count), 2,
# ELIMINATE SPACE AFTER THE SECOND QGUOTE ¥/
iH{(result rem == SUCCESS) && {fact[fact_pir-1] == SPACE))
fact pir--;
else
M ADD A SPACE IN FRONT OF THE FIRST QUOTE IF [T DOBE */
7 NCOT FOLLOW AN OPEN PARENTHESIS AND A SPACE Y
f{lresult rem == TRUE} &&
(fact[fact_pir-1] 1= SPACE) && (factffact_pir-1] 1= O_PARENTHES))

factfact plrl = SPACE,;
printf{*%c”, SPACE);
fact_plr++,

}

else
7 ELIMINATE A SPACE AFTER THE CLOSED PARENTHESIS OUTSIDE THE QUOTE Y/
if{{ch == C_PARENTHES) &&
{result.rem == SUCCESS) && (fact{fact_plr-1] == SPACE))

fact_ptr--;
alse
/# ADD A SPACE AFTER THE SECOND QUOTE IR [T IS ™
£ NOT FOLLOWED BY A CLOSED PARENTHESIS AND A SPACE Y
if{{ch I= SPACE] && (ch I= C_PARENTHES) &&

(result.rem == SUCCESS) && {fact{fact_ptr-1] == QUOTE})

{

factifact_otr] = SPACE;

printf("%c”, SPACE),

fact plr,

|

i
i UPDATE THE PARENTHESIS COUNTER */
Hilch == O_PARENTHES) |

{ch == C_PARENTHES)) && (result.rem == SUCCESS))
parenthes_counit+,

196



L6l

NIHvd O = [nd 0edioe]

N (STHINIHV © == [3d oeioegy
/» HALOVHYHO NIHVYd O HLAM SISTHINTHYd NIADO IOV 1d3d
2319

TOVAS O = [nd oefion)
(FOVdS == [ud 1081084
7o HALOVHYHD 30VdS O HUAM S30VdS 307 1d3H w
ENYL == warynsaiy
/e SELOND NIIALTE SI HILOVHYHO W 4 MO3HD o
{z ‘funco gionbe+)Iap = ynsed
L NOLLISOd ¥310vEYHD 3HL 31vddn
FLoND == nd 0ejoepy
f» ALOND ¥ SI LI I MOTHD of

(++0d7108) ‘usl el => d I0Es 0 = nd ool
v SSTN0OHA HALDVHYHD ONIOY 43 IHL 00 «f
'CEIOONS = Walnssal = wnoa sionb
¥
e
Uy 1 38YE LoV IHL HO4 ONOT O0L 81 10V idOodyaw, Jebessey
(i =< {ue| 108 + [
fo IZ1S 1OV TVILINI SHL MO3HD o
osie
(U, INON T L0V TYILING GIIUNIAIND (i JoY¥3aw, jebessaiy
{7 <wnoo sauyusiedy
L LOVAEINS V SYH 1OV TVILING JE HDTHD &
osie
(UG L OND IHL LY SISTHINTNYL a3S0T10 SNISSIN idOHy3W, Jebessajy
(SaHINTHYL D =i [ue|1oBjloeg)
/« SISTHINIHY L O3S0 ONISSIA SI L0V TYILING IHL 1 HO03HO o
EEE
LUy, INON' W LOVH TYILING 3HL NE 3LOND DONISSIN iHOMHaw, Jebessaiy
(SSTDONS =i Werynssy
1 FLOND ¥ ONISSIALSI L0V TYLLINI SHL 4L HOFHO o
- (elusiis = Ue| 108l
TAVHEVANT FGNON W 108} (BRiu Buissso0iduy, jobesseiy
}
o
Gy - = suopIoU
(STHINTHYL O =i [ohoel
/+ SISTHLINTHVYd NIDO NY S1108) NI 43L0VHYHD 1SHid IHL 1 MOZFHD
AVHHYANT = Eﬁ%%m%
{
Cpid 0B
(Uo 2%, hutid
‘yolreuo) = [d weilioey
Jo NITHOS THL NO U AYIdSIA ONY AYHEY 128 3HL OL 4o Qv

1
J

(ienel eeideooely
fo MALOYHYHD ITEVLIZOOV NY STUD A1 HOFHD «f



}

}.

else

* REPLACE CLOSED PARENTHESIS WITH C_PAREN CHARACTER ¥/

ifffactifact_ptr}l == C_PARENTHES)

factffact_ptrl = C_PAREN;

1
space_count = field_start = field_size = result.rem = SUCCESS;
 CALCULATE THE MAXIMUM FIELD SIZE OF THE GIVEN FACT ¥/
forffact_ptr = 0; fact_plr <= facl_len; fact_pir++)

1
if(ch == SPACE)
{

result = div({(++space_couni}, 2;
if{result.rem == TRUE)
field_start = fact_pir;
alee
if(field_size < (fact_plr - field_start + 1})
field size = fact_pir - field_start + 1,
}

1
i

if{field_size == SUCCESS)
fisld_size = fact_len + 1;
 CHECK IF IT EXCEEDS AN INITIALIZE FIELD SIZE Y
ifffield size »= FIELD SIZE -2}
Message("nERROR! FIELD IS TOO BIG FOR THE FIELD ARRAY ., -1,"\n");
slse
{
7 CHECK FOR THE FIELD SYNTAX ERROR ¥/
good_fact = CheckTheFieldSyntax(fact);
fF CHECK IF IT IS AN ERROR FIELD %/
if{igood_fact)
Message(\nERROR! GIVEN FACT HAS SYNTAX ERRCR.”, NONE, "n");
else
{
* CHECK FOR THE EXISTENCE OF INITIAL FACT IN THE FACT BASE ™/
FactisinTheFactbase(fact, &good_fact);
* CHECK IF FIELD EXISTS IN THE FACT BASE ™
if{good_fact)
Message("\n", NONE, "ALREADY EXISTS. <li=wn");
slse
{
£ ADD THE INITIAL FACT INTC THE fact_base ARRAY ¥/
Message(n", NONE, "HAS BEEN ACCEPTED. <*>\n"};
streat{fact_base, fact);
i = strlen{fact_basej,
h
'}.
h
¥



printf(wnin€@@ ALL INPUT FACTS WILL BE DELETED IF YOU SELECT Y. @@a\n';
orintf{" Do you want to re-enter the facts in fact base (N)7 "),
gets{ans),

h

if{(strien{faci_base) » ()

&8& (stremp(fact_base,"{pt-NoCondition-TP)") 1= SUCCESS))
fact_flag = TRUE;
h

199



H ol e e B w Fw e oy o e ol o e R o e e e e o dede ok ok el el deofe e okl R E L # e e

* 8.1 ReadThelnitlaiFacts function *
* Purpose: A ReadThelnilialFacts function will read the initial facts from
* the Graptool fac file into the fact_base array.

k3

* Caliing functions: 1. void Message({char®, int, char®)
* 2. char *FactisinTheFactbase(char[], int™)

e dedodod o R Aok o o e ok R TR bh b Rieb &k EE b kit ok dek e o o ek Feole ol ol R Rl o e R e #R

int ReadThelnitialFacis{void)
{
int ch, found, con_pir, ©;
char deffacts _namse[FACT SIZE];
Message(\n<<<< Start reading facts from Graptool fac >>=>\n" -1, ENDARRAY);
¥ SET Graptool fac FILE POINTER TO THE BEGINNING */
rewind{cptr);
* GET A CURRENT ENDING OF fact_base ARRAY */
con_plr = strien(fact_base);
/DO THE INITIAL FACT READING PROCESS ¥/
while{feof(cptn)
{
ch = getcl{cpln;
£ CHECKIF T IS THE BEGINNING OF INITIAL FACT SET ¥/
iffch == DEFFACTS)
{
=0
ch = getei{cptr);
* GET THE NAME OF THE INITIAL FACT SET ¥/
while{{ch = getc{cptn)} 1= C_PARENTHES)

{

deffacts_name[i] = ch;
+:
}
deffacts_namell] = ENDARRAY,
DO THE READ INITIAL FACT INTO fact_base ARRAY ¥/

while(((ch = getc(cptr)) = ENDRF) && (tfeof{cptr)))

{
if{ch = CONDITION)
{
* READ THE INITIAL FACTS INTO THE FACT_BASE ARRAY ¥/
fact_baselcon_ptr] = ch;
con_pire+,
}

%
M CHECK IR IT IS THE END OF INITIAL FACT SET */
if{ch == ENDRF)

 DISPLAY THE NAME OF INITIAL FACT SET Y

Message{ " nWFINISH READING DEFFACTS. ", NONE, deffacts_name);

}
}

fact_base[con_plr] = ENDARRAY;

## CLOSE THE Graplool fac FILE ¥/
folosel(optr);
FactisinTheFactbase("{initial-fact)”, &found);

200



I CHECK IF {initial-fact) 13 NOT IN fact_base ARRAY */

if{Hfound)

I ADD {initial-fact) TO THE END OF fact_base ARRAY ¥/

streat{fact_base “(initial-fact)™;

Message(\n\n<<<< End reading facts from the Graptool fag »>>>\n" -1 0"
# RE-CALCULATE THE END ADDRESS OF fact_base ARRAY ¥/

con_ptr = strien{fact_basse);

return{con_ptr},

201



Jridkk e e e e ke d Ak R 3 FRdEh R i E e R R hdd ik Rl b ek o e e e e e de e e e e oo ol e

* 8.2 GetConditioninstruction function

* Purpose: A GetCsndition%nstrucE'om function will provide instructions on
* now to enter initial facts by kevboard to the Graptool software. *

Calling function: NONE

R L T LR bR e etk BEEE e * KEBEERT LN ]

void GetConditioninstruction{void)

{

pr"nﬁ{ﬂllﬂ’kkw*k*%‘k*‘k%**#*‘k* ”\‘APQRTANT gNSTRUCTlQNS ﬁ**ﬁ*&'&‘k*%‘**#*ﬁkw***“};
printi("n The size of the fact_base array is %d bytes. ", CON_SIZE);

print{"n EVERY INITIAL FACT MUST START AND END WITH A PARENTHESES.™;
printi{in Otherwise the computer will not accept the given fact.”);

orintf"n PRESS RETURN (ENTER) AFTER FINISHING INPUT A INITIAL FACT ")
printf{"\n Otherwise the computer will not start the fact process.");

printf("in The computer will accept ONLY ONE INITIAL FACT AT A TIME.";
orinif("n The syntax of the fact is the SAME as ihe fact of CLIPS.™;

[oTriatal Vs R bk b i A n");

L



flrren e i ol B e e e LR SR T E L LR b #* EEE A FE

9.0 ReadRulebaseFromWorkingFile function —-eeeomeeeammnee
* Purpose: A ReadRulebaseFromWorkingFile function will read the rule bases *
* from the Graptool.rul file into the rule_base array. *

&

*

w

* Calling function: NONE *

R ¥ FEERRIAERRE AR R R by o kix i A FHETRFRRE

void ReadRulebaseFromWorkingFile{void)

.

int ch, i=0;

7 SET Graptool.rul FILE POINTER TO THE BEGINNING */
rewind{rptr};

7 SET INFORMATION FILE POINTER TO THE BEGINNING
rewind(iptr);

printf{"inRule number 0 is the initial-state. \n");

fprintf(iptr, "RHule number 0 is the initial-stats. \n');

DO THE RULE BASE READING PROCESS */
while{Ifeof{rotr)}

f

ch = getc{rotr);
FCOHECK IF T IS THE BEGINNING OF RULE */
if{ch == DEFRULE}
{
ch = getc(rptry;
7 DISPLAY THE NUMBER OF RULES %
printf{"Rule number %d is the ", rule_counter);
fprintf(iptr ,"Rule number %d is the ", rule_counter);
 GET AND DISPLAY RULE BASE NAME *f
while{(ch = gete(rpln)} 1= C_PARENTHES)
{
printf{"%c", ch);
forintf{iotr, "%c", chy;
}
rule_basefi++] = DEFRULE;
prirtf(" "
forintf{iptr, "\n"),
DO THE READING RULE PROCESS %
while{{ch = getc{rptr)) 1= ENDRF)
FWRITE A RULE INTO THE rule_base ARRAY */
rule_baseli++] = ¢ch;
rule baseli++] = ENDRF,
rule_basefl] = ENDARRAY,
FFINCREMENT THE RULE NUMBER BY ONE %/
rule_countert+,
¥
b

7 GET THE TOTAL NUMBER OF RULES %/
total_rule = rule_countsr,

 CLOSE THE Graptoolrul FILE ™
folose{rptr),;

1

J



ek o ke ¥ kR ook e e e b e e e e o dedrdedede ok Rk B Rk ke # # e e e e B e e o e

/
e e 10.0 SearchForTheWorkingRule function *
* Purpose: A SsarchForTheWorkingRule function will search forarule inthe *
* rute_base array whose conditions have been satisfied by the fact
* bass. This rule will be called a working rule. *
* Calling functions: 1. char *"GetAFact{char®, int, char[}) *
* 2. char *FactisinTheFactbass(char[], int™ *
ok % #* e Fe ok e i 3 e Ao A el g e kg £ e f

char *SearchlForTheWorkingRule(int *found_rule)

{

char rule_condition[FACT_SIZE], *right_rule, logical;
int found, notdone = TRUE, maitch, and_result, or_result, or_count;

/

* DO SEARCHING FOR THE WORKING RULE PROCESS ¥/

while{{notdone) && (Frule_ptr 1= ENDARRAY))
f

1

MNITIALIZE THE VARIABLES ¥/
and_result = TRUE;
found = or_count = or_result = FALSE;
7 SEARCH FOR THE BEGINNING OF A RULE ™/
rule_ptr = strehrrule_ptr, DEFRULE),
# CHECK IF 1T 1S THE BEGINNING OF THE RULE */
if*rule_plr == DEFRULE)
{
FUPDATE THE RULE NUMBER %/
rule_counter++;
£ ASSIGN THE RULE ADDRESS TO right_rule */
right_rule = rule_ptr;
M CLEAR ALL THE VALUE INSIDE variable ARRAY ¥/
variable[0] = ENDARRAY;
* DO THE PATTERN MATCHING PROCESS */
while(*(rule_ptr = GetAFact{rule_ptr, CONDITION,
rule_condition)) 1= {chanENDRF)

{
* SEPARATE THE LOGICAL OPERATOR FROM THE RULE CONDITION */
logical = rule_condition[0];
strepy(&rule_condition|0], &rule_condition[1]);
PCHECK THE EXISTENCE OF THE CONDITION IN THE FACT BASE %
FactisinTheFactbase(rule_condition, &match),
 CHECKIF RULE CONDITION HAS A NOT OPERATOR */
ifllogical == LOGI_NOT)
{
FOINVERTS THE match VALUE
maich = Imaitch;
logical = LOGI_AND;
¥



g

/* CHECK IF RULE CONDITION HAS AN OR OPERATOR */
if(logical == LOGI_OR)

<
3

or_count++

DO INCLUSIVE OR BETWEEN CURRENT AND PREVIOUS OR CONDITION */
ifor_result || match)
or_result = TRUE;

alse

or_result = FALSE:
b

alse

* CHECK IF RULE CONDITION HAS THE AND OPERATOR *
iflogical == LOGI_AND)

£ DO EXPLICIT AND BETWEEN CURRENT AND PREVIOUS AND CONDITION */
ifland_result && match)
and_result = TRUE;
else
and result = FALSE;
\
i

5
/A CHECKIF ANY INCLUSIVE OR HAS BEEN PERFORMED */
iflor_count == )

or_result = TRUE;

7 CHECKIF BOTH LOGICAL GROUPS HAVE BEEN SATISFIED */
ifand_result && or_result)

found = TRUE;
M CHECK IF THE WORKING RULE 1S FOUND ¥
ifffound)

notdone = FALSE;
}.
}
*found_rule = found;
return{right_rule};



e b o Rk g o e e o o Yo W o Wbk £3 e e drdeokofede ke ke R ok e ¥ o ke o s of e ey

11.0 AssertNewract function *
Purpose: An AssertNewFact function will add a unique new fact into the ¥
fact base. ¥

Calling functions: 1. char *GetAFact{char®, int, charf}) ¥
2. char *FactisinTheFactbase{char]], int%) ”
3. void ReplaceVariableWithValua{char]], char{j} *

bids R de e o e de b e Wk kR R AR RE f

H
%
#
#
w
#
*
#

void AssertNewFact{char *nght_rule}

1
int found;
char new_condition[FACT_SIZE], work_stri[VARIABLE_SIZE + FACT_SIZE];
/D0 THE ASSERTION PROCESS ¥/
while(*(right_rule = GetAFact{right_rule, ASSERT, new_condition}} I= {char)ENDRF)
{
ReplaceVariableWithValue(new_condition, worl_str);
FactisinTheFactbase{work_str, &found);
7 CHECK IF A NEW FACT 1S NOT FOUND IN THE FACT BASE ¥/
if{tfound)
7 ADD A NEW FACT TO THE FACT BASE %/
streat(fact _base, work_str);
3
J

3
i

206



L)

{ dek gk ok deol fedek bk ek e e e o o e R

e e o e A e e o e ol oo o o o

12.0 RetractOldFact function *
* Purpose: A RetractOldFact function will remaove a fact from the fact base.

L4

#

* Calling functions: 1. char *GetAFact{char®, int, charl]) *
" 2. char *FactisinTheFactbase(charl], int™) #
3. void ReplaceVariableWithValuelchar]], charll) *

eoded e de e oo v R ek R R

*

e e e o e e e R Kk e

void RetractOldFact{char *right_rule)

{

int found;

char re_condition[FACT_SIZE], "next_ptr;

char work_str[VARIABLE _SIZE + FACT_SIZE], *maich_plr,;

DG THE RETRACTION PROCESS */

white(*{right_rule = GetAFact{right_rule, RETRACT, re_condition}} I= {chanENDRF}
{
ReplaceVariableWithValuel{re_condition, work_str),
match_ptr = FactisinTheFactbaselwork_str, &found);
[ CHECK IF THE RETRACTING FACT 1S FOUND %/

if{found)

{

/¥ SEARCH FOR THE END OF RETRACTING FACT IN THE FACT BASE */
next_ptr = strehr({match_ptr), C_PARENTHES);
M REMOVE THE RETRACT FACT FROM THE FACT BASE ¥/
if(*next_ptr == C_PARENTHES]
strepyimateh_ptr, ++nextplr);
else
*match_ptr = ENDARRAY,
¥

Fe b b e fode ke ki LR RS ek ®



# E e ol e ey 5 e e o wef weded Fdedefe & e el ek Al Al

* &

13.0 NodeGenerator function *
Purpose: A NodeGenerator function will generate nodes which are aresult *

* of applying the logical path algorithm to test the rule-based *

* structure. The structure of a node has already been defined in ¥

* the beginning of Graptool as follows: *

¥ 1. A rule_num is an integer variable which identifies the rule ¥

* whose condition have been salisfied by the fact_base array. *

* 2. A con_num is an integer variable which identifies the node *

* condition sel. The con_num will always be zero unless a diff- 7

* erent condition set exists with the same rule. The combinat-

* ion of rule_num with con_num is used for node identifiers *

* which are cailed the nods number. *

* 3. A condition_set array contains a set of fact blocks which *

* comes from the fact_base aray. *

¥ 4. A ptrnext is a structure pointer variable which contains the ¥

* address of the next connecting node. Atthe last node (no *

* connecting node), the ptrnext contains the nowhere value. *

* 5. A worknode is a structure pointer variable. it contains the *

* address of the node from which the current node was generated. *
* 6. A duplicate is a structure pointer variable. If contains an *

* existing node address which is a duplicate of the current node ¥

¥ *

* Calling functions: 1. char *GetAFact{char®, int, charl]) *

* 2. char *FactisinTheFactbass(charl], int*) ¥

ke ddeo kR dedekokkkokoRok Rk % ¥ Hkk wwh ek kkk dokk Foole ke & FRRAA Rk kAR dddok ok Rk el ok e e R ok dednke f

yoid NodeGenerator{void)

{

int match;
struct node *dupi, *check;
char work_strFACT_SIZE + VARIABLE_SIZE], *c_ptr;
M INITIALIZE VARIABLES VALUE ¥/
dupi = nowhere;
condition_counter = (;
7 GENERATE THE NEW NODE ¥/
ptrnew = {struct node “ymalloc{sizeoi{struct node)};
M CHECK IF THE NEW NODE 18 THE FIRST NODE IN THE CHAIN %/
iHptriirst == nowhers)
ptrfirst = ptrwork = ptrlast = ptmew,
else
{
check = ptrfirst;
% DO THE NEW NODE CHECKING PROCESS ¥/
do
{
* CHECK IF RULE OF NEW NODE HAS BEEN USED IN THE OTHER NODE */
if{{rule_counter == check-»rule_num}
&8 (condilion_counter <= check->condition_counter)}
P
L
maich = TRUE;
¢_ptr = check->condilion_set;



f CHECK THE MATCHING BETWEEN CONDITION SET AND FACT BASE ¥/
while{(match) &&

{*{c_ptr = GetAFactic_ptr, DEFFACTS, work_str)) 1= {chanENDARRAY))

FactisinTheFactbase(work_str, &match);

£ CHECK IF CONDITION SET I8 THE SAME AS THE FACT BASE ¥/
if{(match) && (strien{fact_base} == strlenicheck-»condition_set)})

dupi = pirwork;
else

condition_counter = check->con_num + 1;
¥

£ GET AN ADDRESS OF THE NEXT CONNECTING NODE */
check = checlk-»plrnext;

while{{check I= nowhere) && {dup! == nowhere));
pirlast = pirlast-=ptrext = ptrmew,

}

£ INITIALIZE THE NEW NODE COMPONENTS VALUE Y
pirnew->rule_num = rule_counter,

ptrnew->=con_num = condition_counter;
strepy(ptrnew->condition_set, fact_base);

pirnew->pirmext = nowhers;

plrnew->worknode = ptrwork;

ptroew->duplicate = dupi;

Henet

o]
Py
G
N



JrESEddbbiy g Aol e b # @ ek

* connection between nodes.
%
*

Calling Tunclion: NONE

14.0 DisplayTestResult function
* Purpose: A DisplayTestResult function will create node connection list.
This list includes the node number, node condition set, and the

wwwwwwwww #

void DisplayTestResuif(void)
{
int =0, lefter = NONE;
struct node *ptrnamse;
if{display == nowhere)
ptrname = plrwork;
elss
{
P GET THE CONNECTING ADDRESS ¥/
if{clip_flag)
{
pirame = plriast;
clp_flag = FALSE;

b

else

ptrname = nowhere;
3
if(ptrname 1= nowhere)
{

printf{™n'};

fprintf(iptr, "\n"};
f{display == nowhere)
{

delay(DELAY_LOOPRY:
printf("Working ),
forintf(iptr, "Working "),
h

nnnnnn

printf("NODE{®%d, %d)\n", ptrname-=rule_num, ptrname->con_num};
fprintf(iptr, "NODE(%d, %di\n”, ptmame->rule_num, plimame-»con_num);

if(display == nowhere)
{
printf("it's condition set is._\n"Y;
forintf(iptr, "It's condition sef is. \n");
\
J
POISPLAY NODE CONDITION SET %/
while{ptrname-»condition_seili] I= ENDARRAY)
{
letter = ptrname->condition_set]i];
if{letter == Q_SPACE)
letter = SPACE;
else
if{letter == O_PAREN)
letter = O_PARENTHES;

210

bk dedede ok



else
if{lefier == C_PAREN)
letter = C_PARENTHES;
printf{*%c", letter);
forintf{iptr, "%c", letier)
f{ptrname->condition_set[i] == C_PARENTHES)
{
printf{n'y;
fprintfliptr, "™,
m
g
+;
h
if{display == nowhere)
£
1
display = ptrwork;
printf("...and connect to the following nodes: \n™);
forintf{iptr,”...and connact to the following nodes: \n"y,

}

3
4
else

{

printf{WnTERMINATION NODE™;
fprintf(iptr, "nTERMINATION NODE"),
)



JrEEREERRakdh b kk ik gl el e e A R B R e e s fede o et e

*

15.0 Fina!ﬁnaifsis function *
* Purpose: A FinalAnalysis function will do a simple rule base analysis fr@rr *
* the node connection list.

Calling function: NGNE #

Wt d i FeEkF R T T hh b d bt b hh ek % b Feldodetehk ok okl ok dok FRE R AR R AR EYE # e Yo #

void FinalAnalysis{void)
{

int dup_count, node_count;
rule_counter = 0,
i DISPLAY A PROCESS MESSAGE ¥/
printfinin® = Rulebase Structural Analysis #7 ny;
fprintf{iptr, nAn* e Rulebase Structural Analysis * ™ \n");
5 DO THE RULE BASE AMALYSIS PROCESSING ¥
while{rule_counter < total_rule}
{
M GET THE ADDRESS OF THE FIRST NODE *f
display = ptrfirst;
dup_count = node_count =
DO NODE SEARCHING WHILE T IS NOT THE END OF NODE LISTING */
while{display != nowhere)
{
" CHECK IF NODE CAME FORM THE CURRENT RULE */
if{display->rule_num == rule_countsr)
{
7 UPDATE THE NODE COUNTER */
node _count++,
7 CHECK IF THIS NODE 1S A DUPLICATE NODE */
if{display->duplicate 1= nowhere)
/F UPDATE THE DUPLICATE NODE COUNTER #/
dup_count++;
}
# GET AN ADDRESS OF THE NEXT NODE ¥/
display = display-=pirmext;
%
M DISPLAY AND SAVE THE RULE BASE ANALYSIS RESULT ¢
printf{"nRULE NUMBER - %d", rule_counter;;
printf("nNUMBER OF NODES - %d", node_count);
printf("inNUMBER OF DUPLICATE NODES - %d\n", dup_count};
fprintfiptr, "nRULE NUMBER - %d", rule_counter);
forintf{iptr, "'nNUMBER OF NODES - %d”, nods_count);
forintfiptr, "nNUMBER OF DUPLICATE NODES - %din", dup_count);
delay(DELAY_LOOP),
£ UPDATE THE RULE NUMBER ¥/
rule_countert+,

h
ﬁé’?r‘i’c{”‘i;’* FEREEEE R TR UBERE RN Gh T Rh * T e ;«w}n};
fprintfliptr, "n M A SRS RS 1)

h

212



f ek e il el * #

ded b dR bk kR R AR o i e e o

"

16.0 WriteFormatToWorkingFile function

* Purpose: A WiiteFormatToWorkingFile funclion will write a block into a
* given working file. This function also checks the initialization
of a fact_base array.

&

*

LA N A A

* Calling function: void Error{char”, int, char),

LA oo R e R * Fokdeok R okokk wRERERFEEE Fede

FEHRFREEERRAE R R RS

char *"WriteFormatToWorkingFile(int fact_type, char Mact_ptr, FILE "workdile)
{

int block_size = 1;

FWRITE THE GRAPTOOL FORMAT BLOCK TO THE WORKING FILE ¥/
putc{fact_type, workfile),

while{*fact pltr I= C_PARENTHES)

£
L

putc(*fact_ptr, workfile);
block sizet++;
fact_pir++,
;3,
putc(C_PARENTHES, workfile);
# CALCULATE AN APPROXIMATION SIZE OF FACT BASE */
ifffact_type == RETRACT)
fact base size = fact_base_size - block_size;
elss
if{{ffact_type == ASSERT) || (fact_type == DEFFACTS))
fact_base_size = fact_base size + block_size;
* CHECK THE SIZE OF fact_base ARRAY ¥/
itlffact base size »= CON_SIZE-2)
Error{("CON_SIZE, ", CON_SIZE ", BYTES IS TOO SMALL. W'Y,
returni{fact_ptr);

A

213

Foode ke W E K & e e e Bk s )

nnnli



b L oo e e W e e o Ao o A e e Fedrd e dr e S de et ek & W Fe e B e o e e o o e G

17.0 FactisinTheFactbase function *
Purpose: A FacllsinTheFactbase function will check for the exisience ofa °
given block from the rule_base array in the facl_base array.

ERE

* Calling functions: 1. char *GetAFact{char®, int, char[])
* 2. int FieldUnification(char[], charl]}
3. void ReplaceVariableWithValue{char]], charl])

® o  EF # %

&

W R e

Ak ek dedr ek e ok o e el

char *FactlsinTheFactbase{char Tact_strf], int *found)

{

int match = FALSE, endvar;
char a_fact[FACT _SIZE + VARIABLE_SIZE], *match_ptr, *c_ptr;
c_ptr = fact_base;
endvar = strien{variable},
DO THE SEARCHING OF A GIVEN FACT IN A fact_base ARRAY ¥/
while({(Imaich) && (*c_plr I= (chanENDARRAY))
{
match_pir = ¢_plr;
* COMPARE A GIVEN FACT WITH A FACT FROM THE fact_base ARRAY */
if{(*{c_plr = GetAFact{c_ptr, DEFFACTS, a_fach)) I= {(chanENDARRAY)
match = FieldUnification{fact_str, a_fact);
# CHECK match IS NOT TRUE %/
if{lmatch)
variable[endvar] = ENDARRAY,
C_pire+;
j,.
fF ASSIGN A match VALUE TO A found VARIABLE ¥/
*found = maich;
return{match_ptr};

1
J

214



e e e e e e e e o o He ol o e e sl ol e v o o e e R ol e o o ke e e o e e R b we e i e v e e e ok Fededede el e e de e e ook W Wk

17.1 FieldUnification function *
* Purpose: A FisldUnification function will check for any matching between *
two given blocks. One of the blocks comes from the rule_base ¥
array and the other block comes from the fact_base array. This 7
function will compare two fields from each block at a ime. if *
the field from the rule_base array block is a variable field, the *
function will store that fisld and its values in the variable *

ki

E I

array.

R S I I e R A 4

Calling functions: 1. inf LogicalOperation{char[], char]}}
2. char *GetAField(char®, char]], int*}
3. char *GetAFact{char”, int, char[])

FEEEEREERRAREAERRR AR AT R R AR T RERYR ¥ w w Hkw whEEEEhRERRhRERRR iRy Rk j

* %

int FieldUnification{char fact_strfl, char con_strl)
{
double fvalue, cvalue;
int fnotlast, cnotlast, vnotlast, logical, |, |, var_maitch;
int fecount = 0, ccount = 0, flotal, clotal, malch, found, endread, notvar;
char field[FACT_SIZE], cfield[FACT_SIZE];
char var_strVARIABLE_SIZE], viield[FACT_SIZE],
char *fendptr, *cendptr, *plr, *fptr, *f_ptr, *viptr, *vptr, *eptr, *c_pir;
7 ASSIGN THE fact_str AND con_str ADDRESSES TO fpir AND cpir VARIABLE™Y
fotr = fact_str;
cptr = con_slir;
feount = ccount = O;
* CALCULATE THE TOTAL NUMBER OF FIELDS IN THE fact_sir */
do
{

foount++;
fptr = GetARield{fptr, ffield, &Mnotlast);
}
while(fnotlast);
FCALCULATE THE TOTAL NUMBER OF FIELDS IN THE con_str *f
do

{

coount++;
cptr = GetAField{cptr, cfield, &cnotlast),
1
F
while{cnotlast);
I ASSIGN NUMBER OF FIELDS TO fiotal AND ctotal ¥/
flotal = foount;
ctotal = coount;
f* RE-INITIALIZE THE VALUE OF fptr, optr, foount, AND ccount */
fplr = fact_str,
cptr = con_sir,
feount = coount =
£ DO THE FIELD UNIFICATION PROCESS ¥/

do

{
f_ptr = ipir;
¢ plr= cptr;

match = logical = FALSE;

b3
fem—y
Lo



FGET AFELD FROM fact_str AND STORE 1T IN flield ARRAY */
fptr = GetAField{fplr, field, &notlast);
7 GET A FIELD FROM con_str AND STORE 1T IN clield ARRAY */
cplr = CetArield{cptr, clield, &cnotlast);
# UPDATE THE FIELD NUMBER OF ffisld AND cfield */
foount++;
coount++;
7 OHECK FOR THE EXISTENCE OF ANY LOGICAL OPERATORS INSIDE ffield
if{{{strchriffield, LOGI NOT) 1= ENDARRAY) I
(strohriffield, LOGI_AND) 1= ENDARRAY) {]
{strchr{ffield, LOGI_OR) I= ENDARRAY)) &&
{field[0] I= QUOTEY
1
logical = TRUE;
pir = ffieid;
£ CHECK IF flisld 1S A VARIABLE FIELD ¥/
if{ffield[0] == 8_WILDCARD)
f* SEARCH FOR THE BEGINNING ADDRESS OF LOGICAL FIELD IN ffield */
ptr = strehr{ffield, LOGIL AND;
D0 THE LOGICAL OPERATION BETWEEN ffield AND cfisld ¥/
match = LogicalOperation{(++ptr, cfield);
" CHECK IF THE ADDRESS INSIDE ptr 1S NOT AN ffield ADDRESS ¥/
if{ptr I= field)
/* ERASE THE SUB-LOGICAL FIELD INSIDE ffield */
"(--ptr) = ENDARRAY,
3
else
# COMPARING ffield WITH cfield */
Hstremp{ffield, cfield) == SUCCESS)
mafch = TRUE;
slse
{
* CONVERT flield AND cfield TO REAL NUMBERS %
fvalue = stricd{ffield, &fendptr);
cvalue = striod{cfield, &cendptr};
* COMPARING THE REAL NUMBERS OF ffield AND cfigld */
#{{fvalue == cvalue)&&(*fendptr == ENDARRAY J&&(*cendptr == ENDARRAY))
match = TRUE;
}
M CHECKIF flield IS A WILDCARD OR VARIABLE FIELD */
H{{ffield[0] == S_WILDCARD)
[| {{frield[Q] == M_WILDCARD) && (ffield[1] == S _WILDCARD)))

e,

# CHECKIF flield 15 OR HAS ANY LOGICAL FIELDS ¥/
if(llogical)

match = TRUE;
fINITIALIZE THE VALUE OF found, votr, AND var_match */
found = FALSE;
vptr = variable;
var_maich = TRUE;

b
Yok
[



 CHECK FOR THE EXISTENCE OF ffield IN THE variable ARRAY */
while{{Hound} && (*(vplr = GetAFact{vptr,
DEFFACTS, var_stry) I= {chanENDARRAYY)
{
viptr = var_sir,
7 GET A FIELD FROM variable ARRAY ¥/
viptr = GetAField{(vptr, viield, Svnotlast),;
7 CHECK IF field EXISTS IN THE variable ARRAY ¥/
if{stremp(field, viisld) == SUCCESS)
{
cptr = ¢_ptr;
found = TRUE;
* CHECK FOR THE EXISTENCE OF flield VALUES ¥/
# FROM variable ARRAY INSIDE THE con_str ¥/
do
{
* GET A FIELD FROM con_str %/
optr = GetAField{cptr, cfield, &cnotlast);
S GET A FIELD FROM variable ARRAY ¥/
viptr = GetAFisld{votr, viield, &vnotlast),
* CHECKIF flield VALUE EXISTS INSIDE con_str */
if{strempivfield, clield) i= SUCCESS)
var_match = FALSE;
¥
while({var_maich) && {(vnotlast));

¥

b

}
fF THE flield MATCHES THE cfield ¥/
FIF AND ONLY IF BOTH match AND var_match ARE TRUE ¥/
ifimatch && var_match)
match = TRUE;
else
match = FALSE;
* CHECK FOR THE BEXISTENCE OF flisld IN variable ARRAY®/
if{tfound)
{
notvar = FALEE;
£ SETITO CURRENT ENDING OF variable ARRAY ¥/
i = strien{variable);
# ADD AN OPEN PARENTHESIS AND ffield TO variable ARBAY ¥/
streat{variable, "y,
streat{variable, flisld);
JF CHECK IF flield 1S A SINGLE-FIELD VARIABLE OR WILDCARD */
if{ffield[0] == 5 WILDCARD;
{
PFOHECKIF flield IS A SINGLE-FIELD WILDCARD %/
if{ffield[1] == ENDARRAY)
notvar = TRUE;
endread = ccount + 1,

}



FOHECK IF flield 18 A MULTIFIELD VARIABLE OR WILDCARD ¥/
f{(feld[0] == M_WILDCARD) && {ffield[1] == 5_WILDCARD))
{
M CHECKF flisld 18 A MULTIFIELD WILDCARD ¥/
if(flield[2] == ENDARRAY)
notvar = TRUE;
7 CHECK IF flield IS THE LAST FILED IN fact_str %/
if{iinctlast)
7 UPDATE THE endread VALUE */
endread = ciotal + 1;
else
{
i _ptr = fptr:
£ GET THE BOUNDARY FIELD OF ffield */
fptr = GetAFisld({fptr, flield, &fotlast);
fptr =1 _ptr;
frotlast = TRUE;
# CHECK IF BOUNDARY FIELD IS AVARIABLE FIELD OR WILDCARD ¥/
i{(field]0] == S_WILDCARD) |]
{{lield[0] == M_WILDCARD) && (flield[1] == §_WILDCARD}))

{

volr = variable;
found = var_match = FALSE;
 CHECK FOR THE EXISTENCE OF BOUNDARY FIELD IN variable ARRAY ¥/
while{{(found) && *{vplr = GetAFact{vplr,
DEFFACTS, var_stn) 1= {chanfENDARRAY})
{
viptr = var_sir;
 GET A FIELD FROM variable ARRAY ¥/
vipty = GetAField{vintr, viield, &vnotlast);
f* CHECK IF BOUNDARY FILED BEXISTS IN THE variable ARRAY */
if{stremp(fiield, viield) == SUCCESS)
{
found = TRUE,
/F GET THE BOUNDARY FIELD VALUES FROM variable ARRAY */
viptr = GetAField{viptr, viield, &vnotlast);
f* CHECK IF BOUNDARY FIELD VALUE MATCH CURRENT cfield */
if{strempiviieid, cfisld) == SUCCESS)
var_match = TRUE;
}
)
iffvar_match)
{
notvar = TRUE;
endread = ccount;

.
i

else
# UPDATE THE endread VALUE */
endread = clotal - (fiotal - feount + 1) + coount;

Sengaed

218



alse
{
endread = ccount;
cplr = ¢_pir,
/* SEARCH FOR THE BOUNDARY FIELD IN THE con_str ¥/
do
{
cplr = GetAField{cptr, clield, &cnotlast);
if(stremp(ffield, cfield) i= SUCCESS)
f UPDATE THE endread VALUE ¥/
endread++;
else
cptr = con_sir,
¥
while{{cnotiast) && {cplr 1= con_stn);
¥
/* CHECK IF THE ffield VARIABLE 18 BOUND TO NOTHING */
iflendread == ccount)
cnotlast = notvar = TRUE;
¥
}
cplr = ¢_ptr;
7 ADD flield VALUE TO THE variable ARRAY ¥/
for{] = ccount, j<endread; [++)

i

!
cptr = GetAField{cptr, clield, &cnotlast);
streat{variable, " ");
stroat{variable, clield);
1
]
streat{variable, )",
 CHECKIF field 1S NOT A VARIABLE FIELD ¥/
if{notvar}
* RE-SETTING THE END OF variable ARRAY */
variableli] = ENDARRAY;
3
}
}
while{{mateh) && (fnotlast) && {cnotlast));
f* CHECK fact_str IF LAST FIELD HAS NOT BEEN CHECKED ¥/
if{{fnotlast I= SUCCESS) &% (malch))
5

1
GetAField{folr, flield, &fnotlash);
J* CHECK fact_sir IF LAST FIELD IS NOT A %/
AMULTIFIELD WILDCARD OR VARIABLE ¥/
iH{{ffield[0] = M_WILDCARD) || (flield[1] 1= 8 WILDCARD))
match = FALSE;
;,
* CHECK IF fact_str OR con_str HAS NOT REACHED THE END */
if{{fnotlast I= SUCCESS] || (cnotlast I= SUCCESS))
match = FALSE;

return{maichy;
%
i



}r’, d b g e o e e Fe e o # e o o o st bk bohd e d Fh bRy hdhdd * e

17.1.1 LogicalOperation function

* Purpese: A LogicalOperation function compares a given figld rom afact  *
block of the fact_base array with a given logical field from a "
condition block of the rule_base array. *

EE A

Calling function: NONE

int LogicalOperation{char ffield]], char cfield]])

char subfield[FACT _SIZE] logical = ENDARRAY,

int fptr = O, previous = NONE, current, splr, Iptr, match;

# DO AFIELD LOGICAL OPERATION ¥/

while{ffieldlfptr] 1= ENDARRAY)

{

sptr = O

P READ A SUB-LOGICAL FIELD FROM fiield TO subfield ARRAY™Y/
do

i
5

subfieldsptr] = flield{fptr];

spire+,

fotr++;

h
while{(field[fplr] I= LOGIL_ AND} &&

{ffield[fptr] 1= LOGI_OR) && (Field[fptr] i= ENDARRAY)),

subfield[sptr] = ENDARRAY,
tptr = current = FALSE;
/ GET A LOGICAL OPERATOR FROM A subfield %/
if{(subfield][0] == LOGI_AND) || (subfield[0] == LOGI_OR}}
{

logical = subfield[0];

tplr++;

’
f* CHECK FOR AN EXISTENCE OF LOGICAL NOT IN A subfield */
if{subfield[iptr] == LOGI_NOT)

totr++;
7 COMPARE subfield WITH cfield ARRAYY/
if(strempl&subfielditpty], cfield] == SUCCESS)

current = TRUE;
£ INVERSE A current VALUE IF subfield HAS A LOGICAL NOT %/
if{{iptr I= 0) && (subfield[iptr-1] == LOGI_NCT))

current = lcurrent;
FCHECKIT IS THE FIRST LOGICAL OPERATION ¥/
if{previous == NONE)

match = current;

b
[\
=



S

alse

DO THE LOGICAL OPERATION WITH PREVIOUS FIELD ¥/

switch(logical)

{
case LOGI AND [if{current && previous)
match = TRUE,

else
match = FALSE;
break;
case LOGL OR :if{current || previous)
match = TRUE;
slse
match = FALSE;
breaic

default  malch = current;
N

i
M ASSIGN A current VALUE TO A previous VARIABLE #/
previous = current,

}

return{matchy;

3

;
e s



fa‘ #* R ot # w ieod i e Frede * ek

e b ek e

18.0 CheckTheFieldSyntax funciion

&

o de ded Fededek deopd

* Purpose: A CheckTheFieldSyntax function will check the syntaxcerrors of  #
¥ each field in the given fact block. *
* Calling function: char *GetAField{char®, char]}, int") *

ik hEE FER e

Fededrde g K ek LR R ¥

int CheckTheFieldSyntax{char *fact_ptr}

char a_field[FACT_SIZE]
int notlast, length, |, good_fact = TRUE;
F CHECK THE SYNTAX OF EACH FIELD IN A FACT BLOCK ¥/
do
{
/¥ GET A FIELD FROM THE GIVEN FACT BLOCK */
fact_pir = GetAField{fact_ptr, a_field, &notlast);
£ CHECKIT IS NOT A STRING (BEGIN AND END WITH QUOTE) */
ifa_fisld[0] I= QUOTE)
1
# CHECKIFITIS AWILDCARD OR VARIABLE FIELD *f
if({a_field[0] == S_WILDCARD) ||
{{a_field[0] == M_WILDCARD) && (a_field[1] == & WILDCARD)))
good_fact = FALSE,
F* CHECK good_fact VALUE IS TRUE %/
iflgood_fact)

!
1

* CALCULATE THE SIZE OF a_field ARRAY ¥/
length = strlen{a_field};
#* CHECK FOR THE EXISTENCE OF ANY LOGICAL ¥/
7 OPERATORS OR PARENTHESES INTHE FIELD ¥/
for(i=0; i<length-1; i++)
{
f({(a_field[i] == LOGIL_OR) || (a_field[i] == LOGI_AND;} |
(a_field[i] == "} && (a_field]i] I= a_field{i+11)}
good_fact = FALSE;

else
if{{a_field[i] == LOGIL_NOT} ||
{a_field]] == O_PARENTHES) || {2_field[i] == C_PARENTHES))
good fact = FALSE;
}
h
}

B!
!

while(notlast);
return{good_fact);

¥



s ook ke B dokok Fdesle b i

* ¥ e e e e e wH

19.0 ReplaceVarnableWithValue function *

Purpose. A ReplaceVarableWithValue function will replace all the variable  *
fields in the given action block with its values from a variable
array.

- N I A T e

#

*

k3

Calling function: char *GetAFisld{char, charll, int™) *

dodded ded bR oA e g e e e

nnnnnn HREREEYRE & vk doRh o bR R e #

void ReplaceVariableVWithValuel{char fact_sirl], char result_sir[])
{

int fnctlast = TRUE, vnotlast, notdone, length;

char flield[FIELD _SIZE], viield[FIELD _SIZE], *ffplr, *fact_ptr, *vplir;
HNITIALIZE THE VARIABLE ¥/
fact_pir = fact_sir,
strepy{result_str, ")
* DO THE VALUE REPLACEMENT PROCESSES ¥/
while{fnotlast)

{

/*GET A FIELD FROM THE fact_sir ARRAY ¥/

fact _plr = GetAFisld{fact_ptr, flield, &fnotlast);

M CHECK ffield 1S A VARIABLE FIELD ¥/

if{{ffield[0] == S_WILDCARD) ||
{{ffield0] == M_WILDCARD) &8& {flield[1] == S_WILDCARD}})
ki
L

7 CHECK ffield CONTAINS ANY LOGICAL FIELDS %/
if{{ffpir = strehr{ffield, LOGI_AND)) 1= ENDARRAY)

*fotr = ENDARRAY;
volr = variable;

notdone = TRUE;
FSEARCH FOR THE VALUES OF flisld IN A variable ARRAY ¥/
while{{notdone) && Pvplr I= ENDARRAYY)

i

vplr = GetAField{vptr, viield, &vnotlast),
iflstremp(ffield, viield) == SUCCESS)

{

A ADD VALUES FROM A variable ARRAY TO THE result_str ARRAY ¥/
while{vnotiast)

vptr = GetARield{vptr, viield, &vnotlasi);
streat{result_str, viield);
streat{result_str, " "},

\

notdone = FALSE;

# SEARCH FOR THE BEGINNING OF VARIABLE FIELD IN A variable ARRAY ¥/
vptr = strehrivptr, O_PARENTHES);

3,

3

¥

223



else
7 1F field IS NOT A VARIABLE FIELD, ADD 1T TO THE result_str ARRAY ¥/

r
T

streat{result_str, flieid);
streat{result_str, " ");
¥
}
#CALCULATE THE SIZE OF A result_str ARRAY ¥/
fength = strlen({result_str);
# CHECK THE EXISTENCE OF ANY FIELDS IN result_sitr ARRAY */
if{length > 1}
resull_strflength-1] = (chanC_PARENTHES;
aise
result_str{0] = ENDARRAY,

[0
[



f % TR dd # Fekoe Rk dod i # bl o e dededr EE SR LE a

* 20.0 GetAField function *
* Purpose: A GetAField function will get a fieid from a block,

* *

* Calling function: NONE *

dodelhek dok #* e ek ki b deohokok kel ¥ FhdhdhoRk A ¥ e e de o ke dokd % B a!

char *GetAField{char *fact_ptr, char a_field]], int *notlast)

i

1

int i=0;

fact ptr++;

*notlast = FALSE;

A READ A FILED FROM THE GIVEN FACT TO AN a_field ARRAY ¥/
white({(*fact_ptr I= SPACE}&&(fact_pir I= C_PARENTHES&&( < FIELD _SIZE-2))

a_feldi] = *fact_ptr;
fact _ptre+;
+;

¥
a_field[i] = ENDARRAY,
f CHECK FOR THE RETURNING FIELD SIZE
if(i »= FIELD_SIZE-2)
Error("FIND A FIELD TOO LARGE FOR THE FIELD ARRAY.", NONE, "0,
/P CHECKIT IS NOT THE LAST FIELD IN A FACT %/
if{(*fact_plr = C_PARENTHES}
*notlast = THUE;
return{fact_ptr};
!



;

i* # 3 o ded dede e dedek bk R e e * * ekl ke ki # o

¥ 21.0 GetAFact function

dode e de o

* Purpose: A GetAFact function will get a block from a given array. *

#

* Calling function: NONE ®

char *GetAFact{char *array_plr, int fact_type, char a_fact})
{

int i=0;

char facttype = O_PARENTHES, endch = ENDARRAY:
FFCHECK T IS NOT AN DEFFACTS

ifffact_type = DEFFACTS)

{

endch = {chankENDRF;

facttype = {chanfact_tyvpe;

* SEARCH FOR A factlype CHARACTER IN THE GIVEN ARRAY */
while{{"array_ptr 1= facttype) && (farray_ptr I= endch))
array_pir++,
FFOHECK FOR THE EXISTENCE OF A facttype CHARACTER */
if*array_plr == facttype)
{
if{farray_plr == C_PARENTHES)
array_ptr-—
/READ A FACT FROM THE GIVEN ARRAY TO AN a_fact ARRAY */
do
{
array_plr++;
a_factfi] = *array_pitr;
+,
3
while(("array_ptr I= C_PARENTHES) && (i < FACT_SIZE-2));
a_fact]i] = ENDARRAY;
¥
FOHECK FOR THE SIZE OF RETURNING FACT ¥/
if{i == FACT_SIZE-2)
Error("FIND A FACT TOO LONG FOR THE FACT ARRAY ", NONE, "\n™);
return{array_ptr);

b
b
o

“*



/ g 3 g s e e Fhd R * btk hddddd

%

22.0 Error function

* Purpese: An Error function will display the error message and then stop
* Graptool software execution.

#

* Calling function: void Message{char®, int, char®)

Es 3 % ¥ ? # %

Fekdik # * # % % & fkw o ke

void Error{char *first_errmess, int err_number, char *second_errmess)
{
* DISPLAY THE ERROR MESSAGE ON A COMPUTER SCREEN ¥/
Message({"WnERROR. ", NONE, first_srrmess);
Message(ENDARRAY, err_number, second_enmess);
 CLOSE ALL THE OPENED FILES ¥/
folosssl();
A RETURN THE CONTROL TO DOS OPERATING SYSTEM */
exit{1};
}



FRE R R R 3 AR

*
* 23.0 Message function
* Purpose: A Message function will display a given message and store it in
¥ Graptool err if that file has been opened,

k4

£

¥ d dede

* Calling funclion: NONE

void Messagelchar irsl_mess, inl mess_number, char *second_mess)

i

# CHECK FOR AN ENDARRAY CHARACTER ¥/
if(*first_mess I= ENDARRAY)
orintf('9%s”, firsl_mess);
7 CHECK FOR A NEGATIVE ONE ¥/
if{mess_number I= NONE)
printf("%d", mess_number);
P CHECK FOR AN ENDARRAY CHARACTER %/
if{*second_mess 1= ENDARRAY}
printf{"%s", second_mess);
P CHECK AN ERROR FILE 18 OPENED */
iflerror_file_openj
{
# CHECK FOR AN ENDARRAY CHARACTER ¥/
if(*first_mess |= ENDARRAY)
forintfleptr, "9%s", first_mess);
M CHECK FOR A NEGATIVE ONE ¥/
ifimeass_number = NONE)
forintfleptr, "%d", mess_number);
# CHECK FOR AN ENDARRAY CHARACTER %/
iff*second_mess I= ENDARRAY)
fprintf{eptr, "%s", second_mess);
}

1
i

g
b
joie]





