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Abstract

We have witnessed unprecedented changes in the industrial world with the advent of computers
and the field of manufacturing is no exception. With the boom of microcomputers, their usage
in manufacturing systems was realized at every level ~ from the shop floor level fo the adminis-
trative and management layers. This paper deals with the software development issues that
a software engineer has to take into account when analyzing, designing, and implementing
software for manufacturing systems. Two important criteria that one has fo consider are the
real-time requirements and the device independent abstractions that such software has fo pro-
vide to the end-user, since it is reasonable to expect an end-user to know very little about the
software intricacies. Two specific aspects of manufacturing software are discussed in detuil
here. The first part discusses a language with an object oriented flavor for programming man-
ufacturing systems. In particular, some of the design aspects and implementation issues are
discussed. The other part describes the networking issues that are specific to the manufacturing
environment. A prototype manufacturing system developed as a part of the project is used as
a model to explain the various concepts and issues. A detailed description of the new language,

Cell Programming Language ( CPL ), developed for the prototype is also included.

1.Introduction

Manufacturing, which dates backs to the Stone Age, has evolved from an ad hoc and imprecise
technique to a very sophisticated and mathematically sound engineering discipline. The reasons for this
are twofold : 1. increasing need to produce goods which are of high quality, 2. need to optimize cost, effort,
and time. These criteria point unanimously in one direction - Automation. In addition to eliminating the
human component from repetitive task execution, automation also ensures repeatability which is very cru-
cial to promoting quality and maintaining it in a consistent manner. It also helps in enforcing high stan-
dards of quality by rigorous specification of the requirements which can then be built into automated
tools. In the past two decades or so, the approaches to automation itself have undergone tremendous
changes. Simple automated manufacturing systems like copy lathes gave way to machines with hard-wired
logic circuits, which took input in form of simple instructions and executed them faithfully and consistent-

ly. These machines which came into being in the early and mid-70’s, used to employ a programmable



controller and are commonly referred to as numerically controlled machines for their ability to read in com-
mands in the form of numbers and other symbolic representations. The significant feature, which was
clearly a drawback, was the fact that most of the logic and control had to be hard-wired into the controller
unit, thus leaving very little room for flexibility in control and management of the machines. This realiza-
tion resulted in a totally new approach, involving computer-based control, commonly known as Computer-
ized Numerical Control (CNC) of manufacturing systems. Even though computers were in use prior to this
period, their prohibitive costs made it almost impossible to incorporate them into the manufacturing envi-
ronment. It was the boom of mini and micro computers which triggered this revolution and made it possi-
ble to overcome the drawbacks associated with numerically controlled (NC) systems. The advantages real-

ized by such an approach are [1]:
1. An increase in flexibility,

2. A reduction in the complexity of the hardware circuits, as well as the availability
of automatic diagnostics programs, brings a subsequent need for fewer mainte-

nance personnel,

3. A reduction in inaccuracies in manufacturing due to a reduced use of the tape

reader,

4. An improvement in the possibilities for correcting errors in part programs - the

editing feature,

5. The possibility of using the computer’s peripheral equipment for debugging the

edited part program; e.g., a plotter can be utilized for drawing the shape of the part.

The other significant aspect of the usage of computer-based control was the ability to establish
reliable communication channels between various manufacturing entities through computers which could
be networked together. In fact, this approach could be extended to include the design and management
components of manufacturing systems to create integrated design and manufacturing environments also

known as Computer Aided Design and Manufacturing Systems ( CAD/CAM ).

With this overview about the manufacturing world today, it is now time to look at the implications

of such a revolution on the software, hardware, and networking requirements from the point of view of



software engineering and computer science, which is the domain that our work lies in. The foremost real-
ization is the stringent requirement on the timely execution of commands and instructions which clearly
forces the software and the hardware into the real time domain. A specific instance of such a software
design which highlights real time factors is the development of a software based robot controller [2]. In

addition, the life cycle for such software is more task oriented as opposed to being data oriented [3].

In the network sub-component, time constraints become extremely crucial when process control
has to be performed remotely, i.e., from a computer that is not directly wired into the manufacturing cell.
This not only puts a demand on the software development at the application level, but also poses strict

real time requirements at the low-level software managing the network.

Another feature inherent to the manufacturing environment is the lack of a common programming
syntax for programmable manufacturing standards. Lack of such standards makes programming such
devices in their native programming syntax very cumbersome and annoying. In addition, the primitive
nature of instructions, which comprise a set of primitive opcodes and operands, does very little to alleviate

the burden of programming.

The aforementioned aspects form the central core of the project which are discussed in detail in

the following sections.

1.1.Description of the Problem and Motivation for the Project

The Computer Integrated Manufacturing Lab at Miami University, which is used for teaching
undergraduate lab courses in the Manufacturing Engineering curriculum, lacked an environment that
could group the various disparate units like the machining centers, conveyors, robots, and material storage
and retrieval systems into independent programmable flexible manufacturing cells. In other words, there
was no common software development platform on which students could easily program these various
machines in a high level language, thus making it unnecessary to know the specific commands for each
of the machines. Further, the existing engineering design software had to be incorporated into this plat-
form so that a prototype Computer Integrated Manufacturing (and design) environment (CIM) could be
developed. This was the practical motivation. The theoretical motivation was to test the object-oriented
paradigm to develop software for a such a system and to test the suitability of the same to real-time appli-

cation development in general. We also believed that this approach could easily accommodate changes



in the system when new components were added or existing specification of the machines were changed
[4]-
With this in mind, we set out to define the problem domain for which we could develop a solution,

which in turn, could be extrapolated to accommodate further changes and enhancements in the problem

domain. The domain thus comprised the following physical entities:
6. A CNC machining center with a pneumatically controlled chuck,

7. A spatial robot with three degrees of freedom which accepted commands from a

programmable linear controller,
8. A conveyor system,

9. Various electro-pneumatic actuators and feedback devices like the photo sensitive

and limit switches,
10. A set of stand alone personal computers,

11. Some graphics and engineering design software running on the PCs mentioned

above, and

12. A RISC machine which could act as a server for a Local Area Network (LAN).

1.2.0utline of the Paper

This project was pursued by two graduate students working along with three faculty members.
Two distinct phases were recognized for the given task. The first one dealt with the language semantics
and design issues and the second one dealt with networking issues. Other aspects that were recognized

along the way are discussed in detail in the section on future directions.

Section two discusses the salient features of the o-o paradigm and in particular its suitability to
manufacturing systems software design as well as its drawbacks. Issues like device independent software
and maintenance are also discussed. The remainder of the section deals with the real-time issues pertain-

ing to the manufacturing environment which in turn expose the limitations of this approach.

In the third section, description and implementation aspects of the CPL and the associate transla-

tion tools are discussed. The development of these tools was also done in an object-oriented manner. Im-



plementation of real-time constraints, though modest in number, are also explained. Limitations of the

system in the real~-time domain are also be outlined in the section dealing with summary and conclusions.

The fourth section discusses the network design including LAN topology and the protocols
adopted for communication between the computers. The network-based tools developed for remote mon-

itoring, as well as data communication functions of the network are discussed in detail.

This paper concludes with a summary of our experiences and an outline of the limitations of the
present configuration. Following this, future directions are discussed as an aid to other students who may

be interested in pursuing this project further.

2.0bject-Oriented Methodology and Manufacturing Systems

The important requirements in designing software fo computer-controlled manufacturing sys-

tems are :

13. To provide a common platform across various manufacturing peripherals and

14. To hide the physical details of these peripherals from the end user as far as possible
and at the same time, make the software independent of the actual peripherals that

it represents or operates.

It is interesting to look at the second requirement in detail. To remove the physical details of the
device from the user’s view means that the language should specify generic actions. Consider an example:
start lathe. This command does not specify how to start the lathe, but just specifies an action to be per-
formed on the lathe. It does not specify whether a solenoid switch has to be tripped or a hydraulic switch
has to be turned on. Thus, by providing such an instruction, we have created an abstraction of the act of
switching on a device. The latter part of the requirement seems to contradict the first one in that, once
we provide a implementation-independent abstraction to the end-user, should we not handle the imple-
mentation-specifics within the software. This apparent problem can be very easily circumvented by mov-
ing those details into the hardware of the computer that controls the switches and actuators of the various
manufacturing paraphernalia. To decide what the hardware should handle and what the software should

is a non-trivial issue in the design of real-time system development [5].



The need for a common platform and device-independent software calls for an approach which
can map entities into the problem domain to the software while hiding the actual representational details
of the same. Also, we desire to have a platform that can span different components of manutacturing thus
providing a truly integrated environment [9]. Assuming that this can be done, the next choice is to decide
which of the three approaches - process~driven, data-driven, object-oriented, or a mix of the two. Pro-
cess—driven approach, although sufficient, does not do a good job of providing a good abstraction of the
system on the software level to the user. Data-driven approach is not suitable at all since data do not form
the core of the system. Real-time command execution and data-acquisition form the central theme of

these systems. The o~o paradigm fits into this situation very well for three main reasons:

1. It provides a very nice abstraction (by virtue of class concept and data encapsula-
tion) of the manufacturing peripheral it represents by incorporating the dafa (that
the peripheral would manipulate) and actions (that it can perform for the external

user) into a class,

2. Additions or modifications made to the existing set up can be very easily incorpo-
rated into the software with practically no change to user-level abstraction, as long

as the access interface remains unchanged, and

3. A homogeneous interface can be built to encompass all the sub~components of

manufacturing with such an approach.

These reasons are discussed in more detail in the next section. Justification for this approach is

also discussed in [9].

2.1.Application of the O-0O Approach to Design of Software for Manufacturing Systems

It is important to ask ourselves whether all manufacturing is object~oriented. This question is well

addressed by the table below [6].

Manufacturing Objectives Object-Oriented Premises

Production of concrete, well defined, repeat- | Focuses all objects and their attributes, ap-
able, interchangeable parts and products. plying classification structures, encapsula-
tion, and uniform representation.

Manufacturing by process and assembly Applies assembly structures and high-level
plans abstraction




Based on methods to define process opera-
tions and manufacturing services.

Methods define operations and services by
objects.

Complex product, process and facility are
designed by their elements.

Specifications of complex systems by their
elementary object components.

Combines information and material process-
ing to create end-products.

The O-O model combines the data and pro-
cess model

Depends on systematic and consistent plans.

Consistent, systematic representation of real-
ity.

Group technology/commonalty for productiv-
ity gains.

Delegation and inheritance by explicit repre-
sentation of commonalty.

Communication and integration among mul-
tiple enterprise functions.

Communication by messages, polymorphism,
and corresponding operations.

Culture of clear, ordered, and stable pro-
cesses and procedures.

Model stability, clarity, and flexibility by
minimal dependency between objects.

Performance: Maximum profit; minimum
cost; rapid adaptation to change; quality.

Allows changes with minimum rewrite of
code, minimum errors, improved manage-
ment of complexity, and increased program-
mer productivity.

Table 2.1.1: The affinity between manufacturing and object-orientation

It should be noted here that the above table draws parallels of which only a few are relevant to
this project. Nevertheless, this table does imply that 0-o paradigm can be successfully used to develop
an integrated manufacturing software environment that effectively encompasses the various components

of a manufacturing system. This is pictorially depicted in the figure below[6].

Manufacturing software
OOP, O0A, 00D

Models for Manufacturing Planning
and Design: OOA, 00D, OODB

Object-Orientation

Models for Manufacturing Control
00C, OOM/P

O0OC: Object-Oriented Control
QODB: Object-Oriented Data Base
OOM/P: Object-Oriented Modelling and Problem-Solving

OO0A: Object-Oriented Analysis
OOD: Object—Oriented Design
QOP: Object-Oriented Programming

Figure 2.1.1: Scope of object~oriented manufacturing



These illustrations strongly indicate that manufacturing can be very closely modelled using the
O-O approach. Additional material on this topic can be found in [7], [8], and [9]. The advantages of such

an approach are summarized below [6]:

1. The entities in the abstract domain ( i.e, class objects ) have a natural one-to-one

corresspondence with the entities in the physical world,

2. Modularity is inherent to this approach which has a very significant implication.
With very little programming effort, the control software can be easily adapted to

different environments,

3. Software development task itself can be simplified by dividing the effort among
team members. Specific tasks need to be allocated by just specifying the abstract
objects, leaving the implementation details to the particular member developing

the software.

Unfortunately, this approach does not come without drawbacks. Recalling the real time con-
straints that have been outlined in the previous sections, some of the features of the 0o-o paradigm that
make it very powerful turn out to be serious bottlenecks during implementation of 0-o based software
for manufacturing systems [10]. In the aforementioned reference, the author gives a detailed explanation
about the drawbacks of such an approach. Since manufacturing systems are inherently distributed, re-
mote object invocation feature is necessary which the present implementations of the paradigm do not
support [6]. These features need to be built into the system using networking toolkits which in turn adds
more time overhead to the over all real-time response. Nevertheless, it is important to note that the over-
head of distributed support results in additional overhead due to message passing, which can deteriorate

the performance further.

Another issue that is of importance in such an environment is the need for shared memory. In the
manufacturing environment, it is common for two software processes to communicate with each other
via a common memory area in the computer. In order to ensure consistency of information in such

memory locations, it is important that at most one process access it at anytime. To achieve this the lan-



guage needs to provide features like sermaphores and at this point no implementation of the o-o paradigm

supports such a construct.

The other disadvantage that directly stems from the “power” of 0-o paradigm is the overhead
associated with polymorphism and dynamic binding. These features require the run-time environment o
determine the specific method that needs to be invoked rather than determining it at compile time. This
results in very high run~time costs that can seriously impede the real-time constraints, This is of crucial
importance to hard real time systems since it can produce incorrect results in such systems. Soff real time
systems" are less susceptible to such phenomena but, nevertheless, output could still be degraded [5]. Lan-

guages supporting those features also lack built-in support for process synchronization [6].

The drawbacks that we mentioned earlier can be overcome in part by having efficient hardware.
In fact, we all hope that the emerging technology and future capabilities will solve this problem or at least

provide a way to compensate for it.

3.Design and Development Cell Programming Language (CPL) and Associated Tools

It may be recalled from the requirements of a language for manufacturing environment that it has
to provide a good abstraction of the physical devices and their activities that it represents and also be
device independent. The language presented here, despite being independent of the specific details of the
physical entities that it represents, is to a certain degree dependent on the hardware that provides the
interface to the manufacturing devices. This still maintains the device independence since the exact details
of manipulating the different peripherals is within the hardware and external electro-mechanical interfac-
ing equipment.

On the other hand, the user now has to configure the hardware interfaces through software by
using specific configuration commands that the language provides. These will be explained in more detail
in the next section. It is important know that this dependency is inherent and hence unavoidable. One
possibility to hide these details would be to hardcode these details into the translation tools for CPL, but
this would introduce a certain amount of inflexibility and in turn make the language device dependent.
So it has to be remembered that we are maintaining a delicate balance between device independent ab-

straction at the user level and the device-independent nature of the language itself.

1. Hard real time systems are those that have very stringent response requirements. Soft real time systems,
on the other hand, can handle some amount of delay.



3.1.A Formal Description of Cell Programming Language
The formal specification of the grammar of CPL is included in appendix A. A CPL program con-
sists of four major sections:
1. Port Declarations: Used to identify hardware interface ports.
2. Devices Declarations: To identify different manufacturing peripherals within a cell, and to assign

ports and associate bits with these devices

3. Cell Declarations: Used to declare the network address of the cell controlling computers.
4. Procedure statements: Commands to execute manufacturing, monitoring, and feedback
instructions.

3.1.1.Port Declarations
The port declaration section is used to assign a physical port address on the PC. The declarations
are made within a Ports.... End block. Following the key word Porfs is a series of individual port declara-

tions. Its syntax is as shown below:

<Port_ldentifier> (<Port_address> <direction>) | (<baudrate> <data_bits>
<stop_bits> <parity> };
The Port_Identifier can be any alpha-numeric character string to identify a port with a user-de-
fined name. Underscores may be used for forming descriptive identifiers. The port_address should be a
valid hardware address that corresponds to an actual physical port in the computer hardware. It is this
port that actually provides the interface to the physical domain, i.e., various manufacturing components.
The direction indicates whether the port is used to input information or output information. Output drives
some physical devices and input gets feedback or status information that is used to decide the course of

future action. The default mode is input.

If the other specification is used, it implies the identification of a serial communication port that
is usually used to downloading information to the external devices, i.e., sending commands to a lathe in
its primitive instruction format or download a file consisting of similar instructions. It should be noted
that these commands can be separately generated by other CAD/CAM software and then stored in files
which can be accessed by the CPL programs written by the end-user. Thus the end-user can use these
files without having to deal with the low-level instructions directly and thus maintaining the abstraction

outlined in the earlier sections. Another type of port that is used in this set-up is the printer port which

10



can be implicitly addressed by the individual instructions. The reason for the lack of formal specification
of such a port is simply because there is no formal setting of parameters to be performed when dealing

with them. An sample piece of code to illustrate the use of these instructions is given below.

Ports
PortA 64259 Output;
PortB 64256 Input;
PortC 64257,
CommpPort1 36007 1 1;

End

3.1.2.Device Declarations

In this section, each device in the cell is associated with a bit on a port. These devices have to be
one of the device_type types which are defined as a part of the data type subset of the language. These
predefined types correspond to physical entities in the cell. Any new entities can be easily incorporated
into the language by virtue of the modular structure that the O-O approach supports. The syntax for such
a declaration is as follows:

<device_variable> <device_type> (<port_variable> [<bit_number>]) |
<programmabile_port>;

The declaration block is bound by the key words Devices and End. The <device_variable > is a
user-defined alphanumeric string with possible underscores separating the individual characters in the
strings. The <device_type > is one of the pre-defined key words which corressponds to a actual physical
device. The <port_variable> is a label associated with a physical port that is assumed to have been de-
clared previously in the port declaration section. The <bit_number> field is a numeric value between
0 and 7 which corressponds to a physical bit on the communication port. It is this bit that controls the
manufacturing device, partly or wholly. In cases where this bit is associated with input, its state represents

the state of the device associated with it. The example below illustrates the syntax of this declaration.

Devices
PalletLiftUp pulse PortC 4
Conveyor Coil PortC 5
Robot Programmable LPT1

End

11



The table below lists the device types and their associated functions.

Device Type Valid Functions
Coil On, Off
Sensor Waiton, Waitoff
Pulse Strobe
Programmable Send. Do
Wait milliseconds

Table 3.1.2.1: Device functions

It is worthwhile to note that the programmable device type represents the class of manufacturing
devices that can be programmed by a set of primitive instructions that are unique to the particular device
class. It is in fact this type which hides this detail away from the user.
3.1.3.Cell Declarations

This subset of declarations associates each manufacturing cell with a computer which controls
the functioning of that particular cell. This is done to facilitate inter-cell communication through the un-

derlying computer network. The syntax is shown below.
<cell_variable> <computer_id>

Here <cell _variable > associates a manufacturing cell with a character string. The terminal
< computer_id > is a network address that uniquely identifies a computer on the network. Addresses
can be either Internet addresses or names that uniquely map to an Internet address. Two examples below
explain the syntax. These declarations are contained within the Cells... End block. The experimental CIM
configuration that we have developed as a part of this project has one cell at present. However, additional
cells can be easily added to this.

Cells
Cellt Celll_Comp

StorageCell 134.53.32.240
End

3.1.4.Procedure statements

A CPL file comprises the following units:
1. Procedures: Contains the instruction sequence to control and operate cell.

2. Program: Collection of procedures.

12



The syntax for procedure statements is shown below:
<device_variable> . (<device_function> [ ( parameter {...})]) | <delay_time>

< device_variable > is an identifier previously declared in the device declaration section. The
< device_function> is a key word defined in the language. The function(s) associated with each device
are listed in table 3.1.2.1. All statements are within a Procedure... End block. The following is an example

of the syntax for procedure statements.

Procedure
Conveyor.On;
Robot.Send (‘'NT”);
Lathe.Do(MachinePart);
Delay.500

End;

Here again we notice the implementation-independent syntax ( and semantics ) of the instructions.
The final “container” for all the language entities described earlier is the program construct. This is essen-
tially a collection of statements that invoke procedures which are assumed to have been declared before.
This approach enforces a modular structure to the programs, thus enhancing readability and promoting
ease of development and maintenance. As before. all program statements are enclosed by Program...End

block. The syntax of a program statement is as follows:
<procedure_name>.<cell_name> [(<condition>|<no_of_iterations>)];

One important observation about this syntax is the presence of an optional clause that, in effect,
permits repetition. This can be explicitly specified by number of iterations or a condition so that repetition
occurs as long as the boolean value of the expression remains unchanged. This condition is a special one
in that it refers to a signal from a cell controlling computer. The idea behind this can be explained by a
simple example. Consider a series of cells along a manufacturing line for cars. Let us assume that two
adjacent cells machine the engine block. Further, let us assume that the first cell performs a milling opera-
tion on the engine block and the subsequent one does a finishing operation on the blocks. Now, we would
like the second cell to perform its operations as long as there are parts arriving from its successor cell.
Another way of stating this is to say that this cell repeats its functions as long as the previous cell is up

and running. It is interesting to note that this approach blends well with the declarative style of program-

13



ming in which we specify what we want as opposed to how to do it. In other words, this is is yet another
instance of the abstraction that we have been constantly emphasizing [11], [12]. At this point this feature
is a part of the language definition, but the present version of its implementation does not support it. A

final example illustrates this syntax of the program statement.

Program
MachinePart.EngineBlockCell; *This is a comment!
StoreParts, StorageCell (ManufacturingCell. SignalOn);
StoreParts.RetrieveParts(50);

End

The above example illustrates the way in which comments are inserted. In CPL, every statement
except block marker sends with a semicolon. An example of a CPL program is included in the appendix

B. A copy of the user manual can be found in appendix C.

3.2.Construction of the Interpreter for Executing CPL

The development of tools to translate and execute CPL instructions was done in two phases. In
the first phase, all the CPL code is compiled to produce an intermediate representation. which we called
I-code representation. This representation resembles any standard assembler syntax. The reader is urged
to refer to appendix D for a sample of this representation. In the second phase, the I-code file is inter-
preted and commands are generated for the hardware interface which controlled the manufacturing cell.
The reason for this two-tiered approach can now be seen in the light of CNC approach which was dis-
cussed in the introduction. It is the interpreter which provides the control of the cell (and hence the periph-
erals that make up the cell), to the computer controlling it. Thus have we moved the control from the device
controllers up into the software layers. This enhances the flexible nature of the manufacturing system in
that it lets us control the functioning during the actual execution of the instruction. The development of
the tools for the first phase of the translation, i.e., the compiler and the cross-reference listing generator

was taken up by another graduate student [13]. The figure below summarizes these two stages of language

14



translation process.

I-CODE

COMMANDS VIA COMMUNICATION

CPL CODE 1-CODE PORTS

COMPILER INTERPRETE

Table 3.2.1: Two stage CPL language translation process

3.2.1.Functional Description of the CPL Interpreter

The interpreter serves the following services:

L. It enforces control of the manufacturing cell in the controlling computer by executing one instruction
at a time.

2.1t optionally allows user interaction and thus passes the control to the user level. This is done by provid-
ing execution under sfep (-s) mode. This mode outputs the CPL command and waits for the user prompt
before executing the corresponding set of low-level instructions. In other words, the interpreter “steps”
through instructions one at a time in an asynchronous fashion. This option also allows provides runtime
debugging facilities.

3. An option to trace (-t) is also provided to enable the user to associate each CPL instructions with the
actual physical action that the instruction represents. This is provided to make the environment more

user-friendly.

With these specification of functional requirements, the next step was to design the structure of
the interpreter. It was decided to separate the interpreter from the compiler component from a pure soft-

ware engineering perspective. This would result in decoupling and thus code inter-dependencies would

15




be totally eliminated. It was again decided that the O-O approach would be suitable for reasons already

discussed in the previous sections of the paper. The design aspects are explained in the next section.

3.2.2.Design and Implementation of the Interpreter

The first step in the design process was to identify the tasks that the interpreter had to carry out.

It should be recalled that the interpreter had to execute intermediate code, called p—code. that is output
by the compiler which takes CPL source as input. With this in mind, five action primitives were recognized
which are listed below:

(SetBit) Set or reset a bit on the I/O port.

(QueryWait) Wait for the system to enter a particular state,

(Wait) Wait unconditionally for a specified amount of time.

(SendString) Send a text string over an interface.

(Strobe) Send a strobed signal via the /O port.

In addition, actions pertaining to setting up of the ports and debugging features were recognized.

The actions listed above will be explained in detail now.

Every manufacturing device is associated with one or more bits on the I/O port, the number of
bits being directly related to the number of abstract devices that a physical manufacturing device handles.
For example, a CNC lathe would be considered equivalent to three logical devices, the first one to switch
it on or off, the second one to toggle it into a mode to accept instructions via the serial interface, and the
third one to control the opening and closing of the chuck ( This is not entirely true since the chuck can
be considered as an independent device and thus be decoupled from the lathe, which is yet another man-

ifestation of the o-o paradigm that we have employed! ).

Often. it is necessary to wait for the system to enter a particular state before the next action can
be taken. Consider another situation which employs the second action primitive to achieve this goal. Be-
fore the chuck can release the part that has just been machined by the lathe. it is very important that the
robot grasps the part first, otherwise we will have the robot in a fairly embarrassing situation of not know-
ing how to get hold of the part! Therefore, the face saving measure here would be to wait until the robot
has grasped the part with its gripper before the chuck can be asked to release the part. So by employing

the QueryWait action primitive, it is possible to make the chuck wait till the robot grasps the part following
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which it can safely release the part. This is illustrated by a generalized state diagram shown below.

Not( Robot grasp part }

Robot grasp part Release chuck

Figure 3.2.2.1: State transition diagram for QueryWait action primitive

The third action primitive, Wait, is similar to the previous one but does not require the constraint
of having to wait for the system to get into a particular state. This unconditional wait primitive allows
the user to decide on the wait time between actions. Typically. this is useful when sending a sequence of
portinitializations with a fixed time interval between individual initialization. This is often necessary when

a user wants to be sure that the system has reached a given state before taking the intended action.

The SendString primitive primarily addresses the issue of sending text strings to programmable
devices such as robot and lathe over an appropriate interface. These strings are commands that the de-
vices understand and execute. In fact, one of the aims of CPL was to hide this relatively primitive set of
commands from the end-user as far as possible. This primitive achieves this as follows: Files containing
these commands are generated once for a particular setup of the cell and stored away in a database resid-
ing on the network server. (Details about the network are explained in section 4). By using the SendString

primitive, the user can request the downloading of these programs to specific programmable devices.

The last primitive action, Strobe, is identical to SetBif except that this action sends a step input
(a high followed by a low on the electrical interface ) to the I/O port. This action is to accommodate certain

manufacturing devices that require a strobed input for activation or deactivation.

With this identification of tasks that the interpreter, the next step was to identify the data elements
that would be necessary. In formal 0-o0 terms, this meant the identification of the nouns as objects, the
verbs being the verbs that have just been discussed. The inheritance structure is illustrated in appendix

E. The code implementing the interpreter is included in appendix F.
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4.Network based Tools for Management and Control of Manufacturing Cells

4.1.A Brief Introduction to Manufacturing Networks

The role of a computer based network is very critical to the functioning of a CIM setup. It is the
network which provides means of communication between various entities, as well as integrate the design,
manufacturing and management components successfully. So a reliable and a timely network is very es-
sential in the CIM world. A hierarchical model for a network can be thought of comprising the following
levels:
1. Factory level network.
2. Shop level network.
3. Cell level network.
4, Machine level network.

5. Sensor level network.

It is interesting to note the close correspondence of this hierarchy with the structured layers that
CPL provides. The performance variables for each of these layers can vary depending on the requirements
of the network at each level. The same is true abut the topology of the network at each of these levels.

The table below summarizes this information.

Network level Topology Medium access Performance Overall
control variables functionality
Factory Partial Point to point Throughput High/Medium
interconnections
Shop Bus, Ring, Loop, | Token passing, Throughput High
Star Ethernet
Cell Bus, Ring, Loop, | Token passing, | Response time, High
Star Ethernet Throughput
Machine Bus Token passing Response time Medium
Sensor Bus Polling, Response time Low
Token passing

Table 4.1: Hierarchical network structure and performance variables for Manufacturing

As can be seen, the performance is measured by response time as we move down the hierarchy.

This is consistent with the fact that the lower levels of the network hierarchy are working at the machine

level, and hence the real-time performance of such networks would be of critical importance.
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4.2.A Structured Approach for Designing Manufacturing Networks
There are a number steps involved in the design of a manufacturing network. The following are
significant:
1. Selection of network architecture.
2. Design of a specific network topology.
3. Choosing specific implementations.
4. Development of a set of application requirements.
5. Translation of application requirements into a set of network requirements.
6. Design of application software.

7. Evaluation of the overall design.

The selection of an architecture depends largely on the functionality. Stringent real time require-
ments would imply a fast and a reliable network which is characteristic of lower two layers of the hierarchy
listed before. As can be seen, Ethernet is not preferred in the lower levels, since its performance seems

to degrade with increasing traffic [14]. Token bus architecture is preferred in these layers.

Topology is largely governed by the possibility of further expansion of the existing network. When-
ever possibilities of expansion exist, a star topology is preferred since it is very easy to add additional nodes
on such a setup. Referring to table 4.1, we see that star configuration is a topological option in the top
three layers whereas it is absent in the lower ones. This is due to the fact that at the machine and the sensor

levels, there is very little possibility of additions being made to the network.

Since there are many protocol and network implementations, network application designers must
choose specific implementations so that they match the selected architecture, provide adequate perform-
ance, and easily interface with other devices used in the application. Factors affecting implementation

include operating systems, programming languages. etc.

Definition of application requirements is a statement of what the manufacturing systems needs
to deliver. This is done to extract the implications of such requirements on the performance ot the network

component of the manufacturing system.

Once the application requirements are clearly defined, the next stage would be to make some deci-

sions about the network requirements. The important factors that come into play here are response time,

19



information throughput, medium type for all networks and subnetworks, tolerance of failures, software

interface, etc.

Once the network requirements of the network are defined, the next step would be to design appli-
cation software to run on such a network. These applications typically perform end user functions. A typi-
cal example in this category would be a set of software programs that remotely monitor the status of a

cell. Another example could be software that manages a centralized database on the network.

Evaluation of the network is necessary to verify and validate the design. Typically, this can be per-

formed using analytical models, simulation or measured data.

4.3.A Prototype Network for CIM Lab at Miami University

The network that was designed and installed at Miami university spanned the factory. and shop
levels of the network hierarchy. As a result, a combination of bus and star topology was chosen. Since
the traffic on the network was expected be low, an Ethernet was chosen. This also rendered the network
compatible with the existing networks in the building as well as the networking software that is currently
being used. The configuration of the network is shown in appendix G. A star topology using twisted pair
cables was chosen at the cell shop level to accommodate for additional cells in the future and also allow
the relocation of cells. A bus topology was employed to connect the computers that were identified to be

used in the design and the analysis components of the CIM model.

4.4.Network Applications

The network applications that were developed were to add remote monitoring capabilities to the
network so that an user could monitor the status of a cell from any computer that was on the network.
The Remote Procedural Call toolkit was utilized for this purpose which provided some ready to use pro-

gram shells that could be customized for specific applications.

The client server approach was taken to develop this application. It was decided that the client
would run on the computér that also controlled the cell, along with the interpreter which drove the cell.
This posed a problem since the operating system that runs on these computers does not have the capability
to support multitasking. This shortcoming was overcome by using Terminate and Stay Resident (TSR) tech-
nique. This approach essentially hooks an application program to one of the system interrupts (like key-

board or timer interrupt) and activates the application whenever an interrupt is generated. It is up to the

20



application to take some action or pass the control over to the default interrupt handler. Thus, using this
approach, the client program that monitors the status of the cell runs in the background and the interpret-
er runs in the foreground. The client monitors the status by observing any changes on the I/O port to which
all the manufacturing peripherals are hooked. On the server side. a program that polls the network for
updated information about the cell, is kept running. If any updated information is received, the display

screen is updated to reflect these changes.

One interesting real time constraint emerged during the development of this application. The cli-
ent that monitors the cell can be set to poll the system at fixed time intervals. If these time intervals are
spaced too far apart, then it is possible to lose transitions that occur in the system between the two check
points. For example, it is possible that the photo sensor detects a pallet, sets a bit on the 1/0 port, then
resets it after the pallet passes, before the monitoring program checks the status again. This loss of infor-
mation can result in inaccurate status information. On the other hand, polling the 1/O port too often would
degrade the performance of the interpreter and could the affect the performance of the cell. Thus, a trade
off had to be made by trial and error to decide on an acceptable time interval between successive pollings.

The code that implements the monitoring system is included in the appendix.

5.Summary and Future Directions

This project attempted to analyze the various software and computer requirements for a computer
integrated manufacturing environment. The development of CPL addressed the language issues and the
present version of it has been successfully tested for correctness. Due to time and resource constraints,
some issues could not be considered in this project. Firstly, a truly multitasking operating system with
some real time capabilities is needed for a CIM environment. Presently, the operating system, DOS, sup-
ports single tasking only with practically no real time capabilities and this is a serious bottleneck in the
system. CPL needs to be enhanced to support shared memory capability. thus allowing multiple processes
to access a common memory area (which is necessary when two distinct processes coordinating with each
other). Shared memory places additional burden on the application languages and the operating system.
since now one has to make sure that memory updates by one process are not overwritten by the other
processes. This needs memory lock mechanism like semaphores. As the number of cells on the shop floor

increase, it is necessary to build in concurrency into the software system to allow for the network hierarchy
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to be extended to the factory layer. This would enable a central computer to coordinate various cells oper-
ating in parallel. Another feature that is needed is priority scheduling of processes, and this needs to be
passed on to the application layers since the user has control over assigning priorities to different pro-

Cesses.

Attempts have been made to preserve the declarative style of CPL as far as possible. At this point,
the language does not support constructs like if-then—else, repeat—until, while~do, etc. Although these con-
structs make a language more powerful, it should be noted that a certain amount of procedural flavor
is introduced into the language. On further consideration, it seems that this is necessary to deal with real
time constraints of the system. Another possibility can be recursion to provide declarative form of looping,
but this generally degrades the performance at runtime. So it can be concluded that these constructs have

to be incorporated at the cost of losing some of the declarative flavor of the language.

Another important issue that needs to be considered is the extension of the language to offer net-
work support. This is necessary if the language needs to support multiple cell management in a network
transparent way. This would make it unnecessary for the user to know if two processes are resident on
the same machine or on different machines. This would offer a client-server médel which can be conve-
niently used to implement such applications as remote monitoring applications. Also. this would make
it possible to establish a homogeneous language interface across the design and manufacturing compo-

nents of the CIM model since these components generally reside on different machines on the network.

The CIM model that has been developed does not yet incorporate an integrated user interface.
which is necessary to provide a common software platform that spans the various stages of an integrated
environment, This would provide a window-based, menu~driven interface to the user that could hide all

the network details from the user and provide an easy to use interface.

In conclusion, CPL provides a platform to develop simple programs by the students intending
use it. Peripherals can be added to and deleted from the cell very easily by incorporating appropriate de-
vice declarations. The interpreter is dependent on the hardware to a certain extent. but this unavoidable.
Any new action primitives can be very easily added to it since its object-oriented nature makes it highly
modular. The remote monitoring facility is very simple at this stage, but the basic framework has been

established to facilitate further enhancements to it.
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Appendix A
CPL Grammar

The Cell Programming Language is designed as a context-free grammar and uses the Backus
Naur notation for expressing the syntax. The grammar is free of ambiguity at present but shall be cor-
rected for any ambiguities detected henceforth.

CPL is described as a set of production rules, each production rule consisting of a left hand
side and a right-hand side, separated by an assignment operator. An example of a production rule
is given below.

Production Rule : An example

<expr> -> <expr> + term> | <expr> - <term> | <term>

<term> -> 0|1|2}3{4|5{6[7]8|9

The left-hand side is always a non-terminal symbol. The right hand side may be a combina-
tion of non-terminals and terminals, only non-terminals, or only terminal symbols. The non-terminals
are enclosed within the "<’ and > symbols and the terminals are represented by constant values.
The -~ > string serves as the assignment operator. Optional symbols may be enclosed within square
brackets or braces [  and '|’. Parenthesis are used to specify grouping of symbols, and when more
than one symbol, separated by commas, is enclosed within "{" and '}", it means that at least one of
the symbols or a group of symbols must be present. For example, in line 16 of the CPL grammar,
the device_data must either consist of the port_name followed by a valid_bit or just a predefined_port.
The parenthesis around port_name and valid_data indicates that these two are grouped and hence
they go together. In this grammar, the language keywords, alphabets, special ASCII characters and
digits are the terminal symbols. Currently, the language provides for sequence and repetition con-
structs, but also leaves room for adding alternative constructs. The CPL production rules are as shown

below.
CPL Production Rules
1. <cpl_program > — PROGRAM < prog_name > < declarations >
2. <declarations > —t [ <port_declarations > ] < device_declarations > < procedure_declarations >
3. <port_declarations > — PORTS < port_stmntList> END
4. <device_declarations > — DEVICES <device_stmntList > END
5. < procedure_declarations > — PROCEDURE < procedure_stmntList > END
6. <port_stmntList > — < port_stmnt > [ < port_stmntList> ]
7. <port_stmntList > — < port_stmnt >



8. <port_stmnt> — <port_name > < port_address > <direction>;

9. < port_name > — < identifier >

10. < port_address > — <integer >

11. <device_stmntList > — <device_stmnt > [ device_stmntList > ]

12. <device_stmntList> -— < device_stmnt >

13. <device_stmnt > — < device_name > <device_type > <device_data>;

14. <device_name > — < identifier >

15. <device_type > -+ PROGRAMMABLE | < nonpgble_type >

16. <device_data > —+ { (< port_name > <valid_bit> )}, < predefined_port> }

17. <procedure_stmntList> - < procedure_stmnt > [ < procedure_stmntList > |

18. <procedure_stmntList> -~ < procedure_stmnt >

19. <procedure_stmnt > — < sequence > | <repetition> | <alternation >

20. <sequence > —+ < device_name >[ . <dev_func>]:

21. <repetition > — DO <iterations> < procedure_stmt_list> END DO

22. <dev_func> — < function >

23. < function> — < pulse_func > | < coil_func > | <sensor_func > | < programmable_func > | <wait_time >

24, < pulse_func > — . Strobe

25. <coil_func> —t .{On, OFF }

26. <sensor_func> - . { WaitOn , WaitOff }

27. <programmable_func> — . Send < open_parenthesis > { (<double_quote > <string > < double_quote > ),
<identifier > } <close_parenthesis > '

28, < wait_time > — . <integer >

29. < direction > —+ [ INPUT | |OUTPUT

30. < nonpgble_type > —t COIL|SENSOR | PULSE|WAIT

31.. <predefined_port> —+ LPT1:|COM2:

32, <valid_bit> —t 0]112]3]4|5|617

33. <iterations > — <integer >

34. <identifier > - < string >

35. <string > —+ <character > [ <character > }

36. <character> — < alphabet > | < special_character > | <digit >

37. <alphabet > -+ A|B|C|D|E|F|G|H|I}J|K|LIM|NIO|P|Q|R|S|T|U|V|WIX|Y|Z]|alblc|d|e|f]g]
hiifjik[lim[nfolplqlr|s|tiulviw|x|y|z

38. < special_character > —+ < parenthesis > | < braces > | < flower_bracket > | < math_operator> | ‘| 7 || @|#]$|%|
&P IHDIEPLERFINGE

39. <double_quote > —+ "

40). < parenthesis > — < open_parenthesis > | <close_parenthesis >

41. <braces> b < open_brace > | <close_brace >

42. < flower_bracket> —t < open_flower_bracket> | <close_flower_bracket>

43. <open_parenthesis > -4 (

44. <close_parenthesis > -t )

45. <open_brace > - [

46. <close_brace > -+ [

47. <open_flower_bracket> — {

48, <close_flower_bracket> — }

49, <math_operators > —+ + -1/

50. <integer > -+ < digit > { < digit >}

51. <digit> — 0]1]2]3{4]|5]|617|819
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Appendix B
CPL Source Program

Ports /* Port declarations
PortC 64259 Output;
PortA 64256 Input:

End

Devices /* Device declarations
PalletLiftUp Pulse PortC 4;
Conveyor Coil PortC 5;
PhotoCell Sensor PortA 7;
PalletArrived Sensor PortA 6;
ChuckOpen  Pulse PortC 1;
Robot Programmable LPT1;
LatheStart Pulse PortC 2
LatheStop Sensor PortA 4;
PalletLifted Sensor PortA 5;
PalletStops Coil PortC 0;
ChuckClose Pulse PortC 3;
PalletLiftDownPulse PortC 6;
LatheRunning Sensor PortA 2;
LatheHandShk Sensor PortA 3;
Delay Wait;

End

Procedure /* Device operations
Robot.Send("NT™);
PalletStops.On;
Conveyor.On;
PhotoCell. WaitOn;
PalletStops.Off;
PalletArrived. WaitOn;
Delay.1000;
PalletLiftUp.Strobe;
Pallet. WaitOn;
Conveyor.Off;
ChuckOpen.Strobe;
Robot.Do(LoadPart);
Delay.1000;
ChuckClose.Strobe;
Delay.2000:
Robot.Do(MoveAway);
Delay.2000;
LatheStart.Strobe;
LatheStop. WaitOff;
Robot.Do(MoveBack);
Delay.2000;
ChuckOpen.Strobe;

Delay.2000;
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Endg;

Robot.Do(GetPart);
PalletStops.On:

PalietLiftDown.Strobe;

Conveyor.On;
Delay.500;
Conveyor.Off:
LatheStart.Strobe;
PalletStops.off;
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Appendix C
CPL Language Reference & User
Manual

1. Introduction

The Cell Programming Language (CPL) s a high-level special purpose language being
developed at the Department of Systems Analysis at Miami University. This project is part
of a larger project to design a computer aided manufacturing system, and support course
work, projects, and research in Flexible Manufacturing.

1.1. What is CPL

CPL is a programming language environment for use in the control of manufacturing
cells. Individual cell components and their operations can be integrated by programming the
cell as a single unit. Programs to do this could be written in any other existing high-level lan-
guage such as BASIC or C, but the user would have to be familiar with the syntax necessary
to perform low-level input and output to the various hardware devices that provide the inter-
face to the cell’s devices. For example, the user would set a particular bit on a particular hard-
ware port to 1 to turn on a device. Instead, CPL allows the user to program the cell by using
commands such as On and Off, and the CPL system will take care of the low-level program-
ming details.

CPL does not hide all of the hardware details. In order to use CPL., the user is still
required to know the particular hardware device and bit to which each device is interfaced.
Also, the user must know the type of device. Finally, individual cell components such as robots
and CNC machines will have to be programmed in their host languages. One advantage, how-
ever, is that the programmer has full control of the operations, and can communicate with the
individual devices even after the programs have been loaded into their memories.

1.2. The CPL Environment
The CPL environment consists of :
. CAD/CAM workstations, a file server and peripherals;
. A local area network;

1

2

3. Personal Computer (PC) controlled manufacturing cells;

4. Interfacing electronics between the PCs and the cell devices:
5

. A programming language used to program the cells.

An overview of the environment can be found in the paper "Object-Oriented Flexible
Manufacturing System at Miami University” in Appendix A of this document. The remainder
of this document is devoted to the description of item 5 in the above list.




2. How CPL Works?

The CPL software consists of three major components:
1. CPL compiler;
2. CPL interpreter;
3. Remote status display.

The CPL compiler processes the user’'s CPL program along with any required robot
and/or CNC command files to produce an intermediate file of instructions known as p-code.
This p-code is the input to the interpreter which performs the low-level input/output opera-
tions on the cell controller PC. Thus, the compiler can be run on any PC or CAD/CAM work-
station, but the interpreter must reside on the cell controlling computer. Once a CPL project
has been compiled to p-code, it need not be recompiled unless a change is made in the CPL
code, The machine command files serve only as input so any changes made to them will not
affect the execution of the CPL program. A debugging option is provided in the interpreter
which helps to eliminate CPL program errors.

The remote status display is an optional component of the system that can be used
to remotely monitor the operation of the cell. The remote status display has a component,
called the monitor, that runs on the cell controller, and a component, called the display, that
runs on a remote PC, for example a CAD/CAM workstation. The monitor sends the state
of each device to the display which in turn outputs the status to the user.

3. A CPL Project

Earlier it was stated that CPL is a language that allows the user to control and integrate
devices of a manufacturing cell, but that the user is still required to program individual cells
in their host languages. Thus, a CPL program would consist of:

1. A CPL program, and
2. Zero or more command files for programmable devices.

In managing a project, the user should keep all of the command files and the associated
CPL language file together, ideally in a separate directory on a CAD/CAM workstation.

4. A CPL Program

A CPL program consists of five major sections: port declarations, device declarations,
cell declarations, procedure declarations, and program declarations. The following subsec-
tions elaborate on each of these.

4.1, Data Structures in CPL

A CPL program has three major types
1. Ports: Used to name hardware interface ports.
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2. Devices:  Used toname individual cell devices, and assign ports and bit numbers
3. Cells: Used to declare network addresses of cell controlling computer.
In CPL, all data structures are composite data types and a declaration of a variable to be of
a type also assigns values to the attributes of the type. So, a dynamic change in the value of
a variable is not possible.

4.1.1. Port Declarations

The port declaration section is used to assign a physical port address on the PC. The
declarations are made within a PORTS.... END block. Following the keyword PORTS is a
series of individual port declarations. The syntax of a port declaration is as follows

< port_variable > ( < port_address > < direction >)|{ < port_name > < baudrate > < data_bits > < stop_bits > < parity > );

The port_variable can be any user defined identifier consisting of a maximum of 31 characters.
The identifier can consist of alphabetic characters, digits and underscores upto a maximum
of 31 characters. The port _address should be a physical port address and the direction is either
INPUT or OUTPUT depending on whether the port is used to send or receive signals; the
default direction is INPUT. If the port is a serial port, the port_name should be one of the
serial ports COM1: or COM2: followed by the baudrate, number of data bits, number of stop
bits, and the type of parity should be specified. An example port declaration section is given
below.

Ports

PortA 64259 Output;

PortB 64256 Input;

PortC 64257,

Comlport COM1:36007 1 L;
End
4.1.2. Device Declarations

The device declaration section is used to declare a device object and associate a port
and bit number with it. The device types are predefined and correspond to the devices in the
cell. We have not made provisions for including user-defined device types in the language,
because at this juncture we do not anticipate such a need. The declaration block is bounded
by the keywords DEVICES and END. The syntax for the device declaration is as follows.

< device_variable > < device_type > ( < port_variable > [ <bit_number> ]) | <programmable_port> :
The device_variable is a user defined identifier and the device_type is a keyword in the language.
The port_variable should have been defined earlier in the port declaration section, and the
bit_number is a constant between 0 and 7 and corresponds to a bit on the data acquisition
board. For a programmable device type, the port name LPT1 is specified if a parallel port
is to be used, and the port identifier that has been assigned one of the serial ports COM1: or
COM2: is specified if a serial port is to be used. An example device declaration section is
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given below.
Devices
PalletLiftup Pulse PortC 4;
Conveyor Coil  PortC 5

Robot Programmable LPT1;
Lathe Programmable Comlport;
End

4.1.3. Cell Declarations

The cell declaration section is used to assign network addresses to cell names in order
to provide for communication between cells. Declaring cell names makes it convenient to as-
sign a procedure to a cell, and facilitates modular programming at a small scale. The syntax
of a cell declaration is as follows:

< cell_variable > <network_address >;

The cell_variable is like any other user defined identifier, and cannot exceed a maximum of 31 characters.
The network_address is a pre-defined host name or network address that has been assigned to the cell
controlling computer by the system administrator. An example of a cell declaration section is given be-
low.

Cells

ManufacCell  cimlab6;
StorageCetll 192.34.54.3;
End

4.2. Control Constructs in CPL

A CPL program has two basic control constructs:
7. Procedures: Contains the sequence of cell control operations executed on devices
8. Program:  Collection of procedures to be executed on cells

4.2.1. Procedure Declarations

The next section in the program is the procedure section which consists of statement
constructs. Each statement represents one device operation and directly corresponds to an
actual operation of the real device. The syntax of a procedure statement is as follows,

< device_variable > . ( <device_function > [ <open_parenthesis > parameter { ... .}. <close_parenthesis > ] |

< delay_time >
The device_variable is an identifier previously declared in the device declaration section. The
device_function is predefined, and is a keyword in the language. Table 4.2.1 lists device types
and valid functions for each device type. Function parameters are enclosed within parenthesis
and are separated by commas. As with devices and ports, the keywords PROCEDURE and
END mark the beginning and end of a procedure block. An example of the procedure section
is given below.

viii



Procedure
Conveyor.On;
Robot.Send("NT™);
Lathe.Do(Cutpart);

Delay.1000;
End
TABLE 2.1
TYPES VALID FUNCTIONS
COIL ON, OFF
SENSOR WAITON, WAITOFF
PULSE STROBE
PROGRAMMABLE SEND, DO
DELAY MILLISECONDS

Students can program device objects with names that directly correspond to their real-
world counterparts. The predefined device functions are named after the actual device opera-
tions. For e.g., a statement such as Conveyor.On is an instruction to switch on the conveyor
and a statement such as PhotoCell. WaitOn is an instruction to wait for the photocell to be
switched on. This way it is possible to write a program and visualize an entire production
operation without actually performing it.

The user is, however, required to program a programmable device type using its host
language. Commands to the PROGRAMMABLE device type can be given directly by passing
them as parameters to a function or they can be stored in a separate file, and the file name
passed as the parameter. For e.g., Robot is declared to be a programmable device, and the
Send operation accepts a parameter which is a string and sends a command to the robot. The
Do function on the other hand accepts an identifier that is the name of a file consisting of robot
commands which are read and directly output to the robot.

42.2. Program Declaration

The program section is the last section in a CPL program, and is simply a series of
statements arranged in a predetermined order by the programmer. Each procedure statement
states what procedure is going to be executed on what cell, and specifies repetition clauses,
if any. The program statements appear within a PROGRAM...END block. The syntax of
a program statement is as follows:

<cell_name >. < procedure_name > [( < condition > | <repetition_times >)];
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The procedure_name is the name of a procedure that has been defined previously. Similarly
the cell_name is also the name of a cell that has already been declared. Repetition clauses,
if any, must be specified either as a condition, or as the number of repetition_times that a proce-
dureis to be executed. These are enclosed within parentheses. An example program declara-
tion is given below.
Program
ManufacCell.ProduceBody;
StorageCell.StoreParts (ManufacCell.SignalOn);
ManufacCell.ProduceBody(50); * Repeat 50 times
StorageCell.StoreParts(50);
End

In CPL, every statement excepting block markers end with a semicolon. The program-
mer may insert comments in the program by preceding the comment with an asterisk, which
is the comment character. A valid program statement and a comment may be typed on the
same line, but the comment should follow the program statement. The reverse is, however,
not true, because all characters in a line following a comment character are ignored by the
CPL compiler. The syntax of this language is kept simple and compact in order to make it
more appealing to users. At the end of the compilation, a cross-reference output listing the
cross referencing between various devices and ports is printed. Error handling is performed
by an error object which prints out error messages with corresponding line numbers and error
codes. An example of a complete CPL program is given in appendix E.

5. Using CPL

To invoke the CPL system from the network, type the command

CPL drive pathname filename

The drive is the drive on which the input and program files are located, and the path-
name is any absolute or relative DOS path specification. Absolute path specifications are
given from the root directory and relative path names are given from the current directory.
The filename is any combination of alphabetic characters, and the entire file specification
should not exceed thirty characters.

The CPL program file can be edited using any standard editor. and should be stored
as an ASCII text file. One advantage of structuring the CPL system as two independent com-
ponents is that the execution is not tied up with the compilation process. To execute the CPL.
program type the command

CIMINT drive:pathname filename.

The CPL program can also be executed in the debug mode. 'Io do this, type the com-
mand ‘



CIMINT -d drive pathname filename.

The debug mode will execute the program in steps and the user can trace through the program.
This is especially useful for locating program errors.

6. CPL Errors

Errors in the program are detected by the compiler and displayed onto the screen at
the end of the compilation. At this point errors are not output into a list file, but this feature
may appear in future versions of the compiler. CPL compiler errors are of three types: Syntax
Errors, Fatal Errors, and Warning Errors. Currently the compiler allows a maximum of five
syntax errors before it terminates abnormally. Fatal errors are those that make it impossible
for the compilation process to continue. As such the compiler terminates execution immedi-
ately after a fatal error is discovered; no count of fatal errors is kept. Warning errors are those
that do not seriously affect the production of p-code, but may produce unpredictable results
at run-time, or impede the debugging process by producing incorrect cross references. Al-
though warning errors are detected and displayed, they are ignored by the compiler. A de-
scription of the standard error messages produced by the CPL compiler are listed in the fol-
lowing pages, along with hints to rectify the errors.

6.1.  FATAL Errors
UNOPNSRCFIL - Unable to open source file

The compiler was unable to open the source file, because of incorrect path specifica-
tion or access violation. Restart compiler with correct path name, and check access protection
for the file.

UNOPNERRFIL - Unable to open errors database

The compiler was unable to open the file containing the compiler error messages. Con-
sult the system administrator or the person in charge of maintaining the CPL system.

UNOPNOUTFIL - Unable to create output file

The compiler was unable to create the output p—code file. Check the drive status if
drive included in the path specification. Restart the compiler with the correct path name.

EREADSRCFIL - Unable to read source file

The source program file contained some extraneous characters which the program
could not decipher, or the compiler does not have read access for the file. Check the source
file for any extraneous characters, and also check the group and world access protection for
the file.

PARSERERROR - Undefined action code
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A bug in the CPL compiler. Consult the system administrator.
UNOPNCMDFIL - Unable to open the command file

The compiler was unable to open a command file specified in the program. Check
the name of the command file specified for spelling errors, and also check if the command
file is present in the same directory as the input file.

UNREAERRFIL - Unable to read from errors file

The compiler was unable to read the file containing the error messages. Consult the
system administrator.

UNRESERRPTR - Unable to reset error file pointer
The compiler is unable to reset the file pointer for the error file. Consult the system
administrator.
6.2.  SYNTAX Errors
SEMICOLEXPT - Semicolon ; expected

A semicolon was not found where expected. Insert a semicolon at the end of the state-
ment appearing on the line indicated by the line number in the error message.

FUNCOPREXPT - Function operator expected

The function operator "’ was omitted in a procedure statement. Insert the function
operator after the device name in the procedure statement appearing on the line indicated by
the line number in the error message.

UNDEFIDENTF - Undefined identifier

The identifier discovered was not declared previously in a declaration section. Enter
a declaration for the identifier in the corresponding declaration section.

IDENTIFEXPT - Identifier expected

The compiler was expecting to find an identifier, but could not find one. Include the
necessary identifier in the statement appearing on the line indicated by the line number in the
error message.

TYPADDREXPT - Type name or address expected

A port variable was not assigned an address or a serial port type. Inserta port address
or serial port name in the statement appearing on the line indicated by the line number in the
error message.

INCORRSERPORT - An incorrect serial port was specified

An incorrect serial port was specified in the declaration of a serial port variable.
Check the serial port name in the definition for predefined serial ports, and correct spelling
errors, if any.
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INTEGEREXPT - Integer expected

An integer was not found where expected. Check program to locate actual error and
make the necessary changes.

INVALDEVTYP - Invalid device type

The device type specified in a device declaration is invalid. Check declaration for
spelling errors, and change it to a known device type. If error persists even after correction,
consult the system administrator.

DEVTYPEXPT - Device type expected

The compiler was expecting a device type. but did not find one. Check the syntax and
make necessary changes.

INVALIDFUNC - Invalid function name

The function name specified is not valid for the accompanying device type. Check the
manual for permitted functions for the device type specified, and make the necessary changes.

KEYWORDEXPT - Keyword expected

An was not found where expected. Check program to locate actual error and make
the necessary changes. If error persists even after correction, consult the system administra-
tor.

PARITYMISMA - Parameters type mismatch

The parameter type specified does not match with the type expected.
PORTKEYEXPT - expected keywords: Ports

The port declaration section did not begin with the keyword, Ports.
DEVKEYWEXPT - expected keywords: Devices

The device declaration section did not begin with the keyword, Devices.
PROCKEYEXPT - expected keywords: Ports

The port declaration section did not begin with the keyword, Procedure.

6.3.  WARNING ERRORS
UNOPNCRFILE - Unable to open cross reference file

The compiler was unable to create or open the cross-reference file. Check the drive
status if drive included in the path specification. Restart the compiler with the correct path
name. This error does not stop the generation of p-code in the output file, but does not pro-
duce useful debugging information.

BAUDNOTSPEC - Baud rate not specified
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The baud rate for the serial port specification was not specified in the port declaration
section. The compiler will assume the default baud rate which may not match the actual baud
rate for the connected device.

STMTNOEFFEC - Statement has no effect in code

A procedure statement or program statement was discovered without any function
name. Such a statement is meaningless, and does not produce any p-code.

UNOPNTRCFIL - Unable to open trace file

The compiler was unable to create or open the trace file, which is a temporary file used
to output source code statements needed to send trace information to the interpreter. Check
the drive status if drive included in the path specification. Restart the compiler with the cor-
rect path name. This error does not stop the generation of p-code in the output file, but does
not produce useful debugging information.
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Appendix D
I-Code Representation

Note: The italicized text represents the CPL statement whose I-code representation appears below.
11 ComPort COMI1:3007 20
9642400

11 PortA 64256 Input

10 64256 input

11 PortB 64257 Output

10 64257 output

11 PortC 64258 Output

10 64258 output

11 LatheHandshake.Strobe
7642570 1

11 LatheG66inp. Strobe
76425711

11 Lathe.Do(loadlathe)
8COM1 %

8COM! NG X' Z'F H
8 COM1 00MO03

8§ COM1 0100 00- 7100
§COM1 0201-100 00 80
8§ COM1 0301- 50 50 25
8COM1 0401 00 500 25
8§COM1 0501 50 50 25
8§ COM1 0600 100 00

8§ COM1 0700 00 6500

8§ COM1 08MO5

8§ COM1 09MO00

8 COM1 10M30

8 COM1

11 Robot.Send("NT”)
5LPTINT

11 PualletStops.On
16425801




11 Conveyor.On

1642585 1

11 PhotoCell. WaitOn
36425671

11 PalletStops. Off
26425800

11 PalletArrived WaitOn
3642566 1

11 Delay. 1000

6 1000

11 PalletLiftUp.Strobe
764258 4 1

11 PalletLifted. WaitOn
3642565 1

11 Conveyor. Off
26425850

11 ChuckOpen.Strobe
764258 11

11 Robot. Do(loadpart)

8 LPT1 MI -2400.-1600,800,1570,1390,0
8 LPT1 MI 0.-240,-540,225,-225,0

8 LPT1 GC

8 LPT1 MI 0,1020,-240,-55,55.0

8 LPT1 MI -7200.200,1000,0,0.0

8 LPT1 MI 250,-1800,1700,0.0.0

8 LPT1 MI 20,-530.175.0,0.0

8 LPT1 MI -130.0.0.0.0.0

11 Delay. 1000

6 1000

11 ChuckClose.Strobe
7642583 1

11 Delay. 2000

6 2000

11 Robot. Do(moveaway)
8 LPT1 GO

8 LPT1 MI 130.0,0.0.0.0
8 LPT1 MI -20.530.-175,0.0.0
8 LPT1 MI 0.2360.-2660,-1680.-1160.0

11 Delay. 2000

6 2000

11 LatheStart.Strobe
7642582 1

11 LatheStop. WaitOff
464256 4 0

11 Robot. Do(MoveBack)




8 LPT1 MI -250,-560,960,1680,1160,0
8 LPT1 MI 250.-1800,1700,0.0,0

8 LPT1 MI 20,-530,175,0,0,0

8 LPT1 MI -130,0,0,0,0,0

8 LPT1 GC

11 Delay. 2000

6 2000

11 ChuckQpen.Strobe
764258 11

11 Delay.2000

6 2000

1] Robot. Do(GetPart)

8 LPT1 MI -20.530.-175,0,0,0

8 LPT1 MI -250.1800,-1700,0,0,0

8 LPT1 MI 7200,0,0,0,0,0

8 LPT1 MI 0.-1180.-760,55.-55,0

8 LPT1 GO

8 LPT1 MI 2300,1700.-160,~1695,-1265,0
8 LPT1 NT

11 PalletStops.On
16425801

11 PalletLiftDown.Strobe
764258 6 1

11 Conveyor.On
16425851

11 Delay.500

6 500

11 Conveyor. Off

264258 50

11 PualletStops.Off
26425800

11 LatheStart.Strobe
7642582 1

11 LatheHandshake.Strobe

7642570 1
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Appendix E

Class Hierarchy for the Interpreter
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Appendix F
Code for CPL Interpreter

//——-] instruct.h ]
// Instruction class hierarchy

#ifndef INSTRUCT_H
#define INSTRUCT_H

#include <stdio.h>
#include <string.h>

#define SIZE 80
#define TRUE 1
#define FALSE 0

class instruction_t {
int op_code:
char name[21];
public:
instruction_t(int op =0, char *n="Noop") { op_code = op; strcpy(name,n); }
int isA(char *)
char *nameOf(void);
int op_codeOf(void):
virtual int execute(void) = 0;
virtual int numOfPIns(void){return(1);}:

}s
class cplSource : public instruction_t {
private:
int pCodelnst;
char *cplCode;
public:
cplSource(int pCode, char *cplBuffer);
int numOfPIns(void);
int execute(void);
}:

class setBit_t : public instruction_t {
unsigned int portid;
int bit;
int value;
public:
setBit_t(FILE *fp).
int execute(void);

%
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class queryWait_t : public instruction_t {
unsigned int portid;
int bit;
int value;
public:
queryWait_t(FILE *fp)
int execute(void);

%

class wait_t : public instruction_t {
int millisec; ‘
public:
wait_t(FILE *fp);
int execute(void);

%

class sendString_t : public instruction_t {
char port[16];
char text[80];
static int flag;
public:
sendString_t(FILE *fp):
int execute(void);

}:

class strobe_t : public instruction_t {
unsigned int portid;
int bit;
int value;
public:
strobe_t(FILE *fp);
int execute(void);

%
class commSetup: public instruction_t {
unsigned char baudRate;
unsigned char dataBits;
unsigned char stopBits:
unsigned char parity;
int commPort;
public:
commSetup(FILE *fp):
int execute(void);
I

class dabSetup: public instruction_t {
unsigned int portid;




char mode[10];
static int portlnitialized;

public:
dabSetup(FILE *fp);
int execute(void);
}:
#endif



//~—] listh ]

#ifndef LIST_H
#define LIST_H

#nclude “instruct.h”

/1

/! class definition for a list "selectable™ objects.

/

// this is a generic list class — change the type names and reuse.
/1

/1
// Change this typedef to make the list operate on other types
i

typedet instruction_t * objptr_t;

struct entry_t { // doubly linked list entry
objptr_t obj;
struct entry_t *prev, *next;

h
class list_t {

public:
list_t(void);
~list_t(void):

void insert(objptr_t obj):
void append(objptr_t obj);
void remove(objptr_t obj);
int length(void);

objptr_t first(void);
objptr_t next(void);
objptr_t last(void);

objptr_t prev(void)

private:

entry_t head, tail, *cursor;
int n_entries;

}
#endif

// end of file
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// FUNCTBL.H

#ifndet FUNC_H
#define FUNC_H

/* Function opcode definitions */

#detine CON 1
#define COFF

#define CWAITON
#define CWAITOFF 4
#define CSEND

#define CWAIT

#define CSTROBE
#detine CDO

#define CCOMSETUP
#define CDABSETUP 10

W N

N =R <N B e SRV

#endif




//~—{ instruct.cpp ]
#include <stdio.h>
#include <dos.h>
#include <bios.h>
#include <string.h>
#include <conio.h>
#include "opcodes.h™
#include "instruct.h”
#include "list.h”

extern int trace, singleStep:
// Methods for instruction_t

int instruction_t:isA(char *n)

{

if (stremp(instruction_t",n) = = 0) return 1;
else return 0;

}

char * instruction_t:nameOf(void)

{

return(name);

}

int instruction_t::op_codeOf(void)

{

}
//Methods for cplSource

return(op_code);

cplSource::cplSource(int pCode, char *cplBuffer) : instruction_t (CPL_COMMAND, "cplSource™)
{

pCodelnst = pCode;

cplCode = new char|strlen(cplBuffer)+ 1J:

strncpy(cplCode, cpliBuffer. strlen(cplBuffer) + 1):

}
int cplSource:numOfPIns(void)
{
return(pCodelnst);
}
int cplSource:execute(void)
{
if (trace)
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clrscr();
printf("%s”, cplCode);
delay(2000);

}

if (singleStep)

{

clrscr();

printf("%s", cplCode);
printf("\nHit return to continue”);

getch();
clrscr();
printf("\nWait ...");
}
return(1);

}

/] Methods for setBit_t

setBit_t::setBit_t(FILE *fp) : instruction_t (SET_BIT_ON, "setBit_t")

{
fscanf(fp,”%u %d %d",&portid,&bit,&value);

}

int setBit_t:execute(void)

{
unsigned char status = inportb(portid);
unsigned char mask = 1 < < bit;

if (value)

outportb(portid, status|mask);
else

outportb(portid,status& ~ mask);

#ifdet VERBOSE
printf("Executed setBit, port = %u, bit = %d, value = %d\n",
portid.bit,value);
#endif
return 1;

}

/I Methods for wait_t

wait_tuwait_t(FILE *fp) : instruction_t (WAIT "wait_t")
{

fscanf(fp, "%d". &millisec):.
}




wait_t:execute(void)

{

delay(millisec);
return 1;

}
/! Methods for queryWait_t

queryWait_t::queryWait_t(FILE *fp)

{
tscanf(fp, "%u %d %d", &portid,&bit,&value);

}

queryWait_t::execute(void)

{
unsigned char result = inportb(portid);
unsigned char mask = 1 < < bit;

if( value = = 1)

while(!(mask & result)) result = inportb(portid);
else

while((mask & result)) result = inportb(portid);

#ifdef VERBOSE
printf("queryWait value = %d, bit = %d, port = %d\n",
value,bit.result);
#endif
return 1;

}
/I Methods for sendString_t

sendString_t::sendString_t(FILE *fp)
{

fscanf(fp. "%s", port);
fgets(text, sizeof(text), fp);

}
sendString_t:execute(void)
{

char *ip = text;

int len;

if (stremp(port, "LPT1") = = ()

I

len = strlen(text);
for(ip=text; *ip == "' && *ip I= 0% ip+ +):
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}

}

text[len-1)
text[len] =

- a\rv;
\n’;

text[len+ 1] = "\0%
fprintf(stdprn,”%s”,ip):

if (strcmp(port, "COM1") = = ()

{

}
#ifdef VERBOSE

#endif
return 1;

/1 set RTS bit. CTS is automatically set on
// the null modem.

/foutportb(0x3fc, 1);

len = strlen(text);

text[len-1] = "\r’;

text[len] = "\n’,

text[len+ 1] = 0"

// now down load the string contained in text
for(int i = 0; i <strlen(text); i+ +)
{
while (text[i] = = 0x40)
i+ +:
int mask = 1< <5;
int status = inportb(0x3fd);

/1 Is the transmitter holding
register empty??
while ( !(status & mask))
status = inportb(0x3fd):
/loutportb(0x3fe, 0);
outportb(0x3£8, textli]);

printf("sendString execute, sent %s\n",text);

/! Methods for strobe_t

strobe_t:strobe_t(FILE *fp) : instruction_t (STROBE, “strobe_t")

{

int strobe_t::execute(void)

{

fscanf(fp,”%u %d %d".&portid,&bit,&value),
}
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unsigned char status = inportb(portid);
unsigned char mask = 1 < < bit;

if (value)
{
outportb(portid. status|mask);
delay(500);
outportb(portid, status& ~ mask);
delay(500);
}
else
{
outportb(portid, status& ~ mask);
delay(500);
outportb(portid, status|mask);
delay(500);
}
#ifdef VERBOSE
printf("Executed strobe. port = %u, bit = %d, value = %d\n",
portid,bit,value);
#endif
return 1;

}

/I Methods for commSetup

commSetup::commSetup(FILE *fp) : instruction_t (COMM_SETUP, "commSetup™)

{
fscanf(fp,”%d %d %d %d %d”.&baudRate,&dataBits,&stopBits, &parity, &commPort);

}

int commSetup::execute(void)

{

char settings = baudRate | dataBits | stopBits | parity;
bioscom(0, settings, commPort);

#ifdet VERBOSE
printf("Executed commSetup, baudRate = %d, dataBits = %d, stopBits = %d, parity = %d.
commPort = %d\n",
baudRate.dataBits.stopBits, parity, commPort);
#endit
return 1;

}
/! Methods for dabSetup
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dabSetup::dabSetup(FILE *fp) : instruction_t (DAB_SETUP, "dabSetup”)

{
fscanf(fp.”%u %s",&portid,mode);

}

int dabSetup::execute(void)

{

/:1::(::)::}:::::}::;::1::]::}::f::k:]::k:}::k:{nk:k=!==!==l=**=l==l¢*:{::B******:}:tk=l‘¢=!<ﬂ::l::!ﬁ:}::k:k:l::k*:k:k:x::h:}::i::g:k:k:;:

* IMPORTANT! The following piece of code sets up the  *
* Intel 8255A 1/O chip with ports B, C for output *

* and port A for input. Any changes or replacements done *
* in the future should corressspondingly be made here. *

* Please consult the hardware manual if in doubt. *
=!:=!=:k:k=!=*=x==l'-=k:l::$=:t::k:!eﬂt:k:k*=§::k:k:!::l:*ﬂc:i:*:I:=t=**:M:::::M::!:*m*:k:k*:}z:!:ﬂ:*:k:h:kﬂ::l:*ﬂ::l::k*:h/

outportb(portid, 0);
if(!portlnitialized)

{
outportb(64259,144);
portlnitialized = TRUE:
}
#ifdef VERBOSE

printf("Executed dabSetup, portid = %u, mode = %s\n", portid, mode):
#endif
return 1;

}




/| —-[ interprt.cpp ]

#include <stdio.h>
#nclude <dos.h>
#nclude <Dbios.h>
#include <string.h>
#include <conioh>
#include "opcodes.h”
#include "instruct.h”
#include “list.h”

char cplButfer[SIZE];
FILE *InputFile;

char *FileName;

int trace = FALSE;

int singleStep = FALSE;

int get_instructions(list_t *ilist, list_t *sourceList)

{

instruction_t *iptr:
int opcode, pCode;
int FirstTime = FALSE;

if((InputFile = fopen(FileName, "1")) = = NULL)
{
printf("\nInput file not found™):
return(0);
}
while (fscanf(InputFile,"%d".&opcode) = = 1)
{
switch(opcode)
{
case COMM_SETUP:
ilist- > append(new commSetup(InputFile));
pCode + +;
break;
case DAB_SETUP:
ilist- > append(new dabSetup(InputFile));
pCode + +;
break;
case SET_BIT_ON:
case SET_BIT_OFF:
ilist- > append(new setBit_t(InputFile));
pCode+ +;
break;




case QUERY_WAIT_ON:
case QUERY_WAIT_OFF:
ilist- > append(new queryWait_t(InputFile));
pCode+ +;
break;
case SEND_STRING:
case DO:
ilist- > append(new sendString_t(InputFile));
pCode + +;
break;
case WAIT:
ilist- > append(new wait_t(InputFile));
pCode+ +;
break;
case STROBE:
ilist- > append(new strobe_t(InputFile));
pCode+ +;
break;
case CPL_COMMAND:
if(FirstTime)
{
fgets(cplBuffer, SIZE, InputFile):
pCode = 0;
FirstTime = FALSE;
break;
}
sourceList~ > append(new cplSource(pCode, cplBuffer)):
pCode = 0;
fgets(cplBuffer, SIZE, InputFile);
break;
default:
printf("Undefined opcode %d\n",opcode);

}
}

/I append the last piece of source code.
sourceList-> append(new cplSource(pCode, cplBuffer)):
return 1;

}

int execute_instructions(list_t *ilist, list_t *sourceList)

{
instruction_t “iptr = ilist- > first();
instruction_t *sourcePtr = sourceList-> first();
while (iptr != NULL) {
if(trace|singleStep)
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sourcePtr- > execute();
for(int i =0; i <sourcePtr- > numOfPIns(); i + +)
{
if(liptr- > execute())
return(0);
iptr = ilist-> next():
}

sourcePtr = sourceList~> next();

}

return 1;

}

main(int argc, char *argv[])
{
int status;
list_t *ilist = new list_t;
list_t *sourceList = new list_t;

FileName = new char|[strlen(argv[1])+ 3]
strepy(FileName, "s:\0");

switch(argc)
{
case 1:
printf("Standard usage: interprt [/debug] <file_name>\n");
return(0);
case 2
strncat(FileName, argv[1]. strlen(argv[1])+ 1);
break;
case 3:

it ( strempi(argv[1], "-t\0") = = ()
trace = TRUE;
else
if ( strempi(argv[l], "-s\0") = = 0)
singleStep = TRUE;
else
t
printf("\nunknown option”);
return(0):

strncat(FileName, argv(2], strlen(argv|2])+ 1);
break;
}
if (get_instructions(ilist, sourceList))
status = execute_instructions(ilist, sourceList);
if (Istatus)

xXxxii



clrscr();
printf("\naborting at users request..\n");
return(0);

}

return 0;
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/1-—| list.cpp ]

/
/I Member functions for the list class. This list class has the
/I property that elements are always added at the head. This list

/! only contains objects of class “selectable”.
1

#include <stdio.h>
#include “list.h”

list_t:list_t(void) {

head.obj = ( objptr_t )NULL;
head.next = &tail;
head.prev = (entry_t *)NULL;

tail.obj = ( objptr_t )NULL;
tail.prev = &head;
tail.next = (entry_t *)NULL;

cursor = &head;
n_entries = 0;

return;
}

list_t:: list_t(void) {
entry_t *temp;

cursor = head.next;

while (cursor | = &tail) {
temp = Cursor;
Cursor = cursor-> next;
delete temp;

}

return;

}
void list_t::insert( objptr_t obj) {

cursor = head.next;
head.next = new entry_t:
head.next->obj = obj;
head.next- > next = cursor;
head.next-> prev = &head;
cursor-> prev = head.next;

XK1V



n_entries + + .

return;

}
void list_t::append(objptr_t obj) {

cursor = tail.prev;
tail.prev = new entry_t;
tail.prev->obj = obj;
tail.prev-> prev = cursor;
tail.prev->next = &tail;
cursor->next = tail.prev;

n_entries+ +;

return;

}

void list_t::remove( objptr_t obj) {
int deleted = 0;

cursor = head.next;

while (cursor ! = &tail && !deleted) {

if (cursor->o0bj = = obj) {
CUursor-> prev->next = cursor-> next;
CUrsor- > next->>prev = Cursor->> prev;
cursor->obj = (objptr_t )NULL;
delete cursor;
deleted = 1;
n_entries—;
}

else {
Cursor = cursor->next;

}

return;

}
objptr_t list_t:first(void) {
cursor = head.next;

return cursor- > obj;

}

objptr_t list_t::next(void) {



if (cursor ! = &tail) cursor = cursor- > next;

return cursor->obj;

}
objptr_t list_t:last(void) {
cursor = tail.prev;

return cursor- > obj;

}

objptr_t list_t:prev(void) {

it (cursor ! = &head) cursor = cursor-> prev;

return cursor-> obj;

}
int list_t::length(void) {

return n_entries;

}
// end of file
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Appendix G
Schematic Representation of the Network to Support CIM

File Server
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