
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year 

Applying an Operational Formal Method

to Safety-Critical Systems

Ann Sobel
Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/14

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1996-003

Applying an Operational Formal Method to
Safety-Critical Systems

Ann E. Kelley Sobel

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

Applying an Operational Formal Method to
Safety-Critical Systems

by
Ann E. Kelley Sobel

Systems Analysis Department
Miami University

Oxford, Ohro 45056

Working Paper #96-003 11/96

Applying an Operational Formal Method to
Safety-Critical Systems

Ann E. Kelley Sobel
Systems Analysis
Miami University
Oxford, OH 45056

(513) 529-7541

Abstract

Despite thirty years of study by the academic community, industry has not em-

braced the systematic usage of formal methods. To address this concern, a formal

method is proposed which possesses many of the qualities that practitioners have

listed as lacking from current formal methods: inclusion of both a specification and

verification model, a tabular notation that only requires knowledge of first-order

logic, support for both composition and decomposition, application throughout the

software life-cycle, and tool support. The presentation includes several applications

to safety-critical software systems.

Keywords and Phrases Formal methods, specification, trace-based sys-

tems, software development, concurrency, verification.

1. Introduction

Despite thirty years of study in the academic community, formal specifica-

tion and verification models of software systems have been slow in making a large

impact on industrial software development. Of the instances of applying formal

methods during large-scale software development, most of these systems have in-

volved safety-critical applications [1,7,9,17,18,23]. The safety-critical environment

was a natural candidate because of the generally accepted advantages of applying

forrnal method analysis: increased assurance of reliability, predictibility of sys-

tem behavior, and the ability to identify potential faults and subsequent recovery

measures.

Recently, the academic community has focused on why industry hasn't em-

braced the systematic usage of forrnal methods [4,24,25,30]. Roundtable discus-

sions from academicians, practitioners, and engineers [25] have identified a number

of potential causes: inadequate tools, inadequate examples, the mathematics re-

quired is beyond the standard engineering curriculum, lack of support for the entire

software life-cycle, scalability, and cost-effectiveness. Some practitioners have felt

distanced by the academic community due to the academician's lack of understand-

ing of the industrial problem domain which may, in part, explain why a majority

of formalisms aren't readily or directly applicable t o industrial problems. This

distancing can be so extreme that some practitioners encourage the avoidance of

methods that are overloaded with formalisms [30].

Having identified the qualities that are lacking from most forrnal methods, aca-

demicians should now focus on creating formal methods with qualities that industry

both needs and desires. Namely, a method that

1. Has a mathematical foundation

2. Abstracts the state of a system to a level that neither leads to

omission nor biases an implementation

3. Supports composition

4. Isolates failures

5. Supports modularity

6. Allows developers to use more formal techniques in the

specification and design phases, support refinement to

executable code, and proof-of properties

7. Is applicable to the industrial problem domain

8. Has tool support

9. Is easily used by engineers

In this paper, a formal method is proposed which meets all t,he characteristics

and qualities outlined above. It is based upon t,he modular verification model de-

fined in [26] t o determine the externally visible behavior of concurrent systems. The

majority of the presentation centers on the introduction of a corresponding speci-

fication model which is also modular and fully abstract. The specification model

was also influenced by the engineering notations used in the variety of specifica-

tion requirements documents created by NASA contractors for the International

Space Station Alpha. The combination of the specification and verification rriodels

comprise a formal method that can be applied throughout the software life-cycle,

has been used in industrial software development, and appeals to engineers due

to its operational nature. The tool PVS [19] can be used to predict behavior and

establish proof-of properties of these specifications. The specification model is easy

to teach as it is currently taught a t the undergraduate level and is used in other

core curriculum courses of a software engineering undergraduate degree.

The method used to specify a concurrent program is presented in section 11.

Examples of the application of this specification model t o the Alternating Bit

Protocol, Byzantine Agreement, and a safety-critical application are elaborated in

section 111. The integration of the proposed formal method into the software life-

cycle is outlined in sect,ion IV and ilicludes an example of refinement into executable

code of the Alternating Bit Protocol. A comparison t o related works is made in

section V.

2. Specification Model

The use of a formal specification notation to outline the functional character-

istics of the intended behavior of a concurrent program allows the programmer t o

be concise and unambiguous. Specifications also aid in understanding the complex

interactions between processes and provide a basis for the verification of the result-

ing program. When producing specifications, it is important to avoid biasing the

choice of implementation by including details which suggest or imply a particular

implementation strategy. I t is also desirable t o use the same formalism to spec-

ify the characteristics of the system components created by gradually refining the

high-level specification of the concurrent program into individual process specifi-

cations. Clearly, a formal specification model that provides the ability to express

high-level modular specifications without implementation details and that supports

hierarchical system decomposition will aid in the creation and comprehension of

concurrent programs.

A process is specified as the collection of specifications of t,he externally visible

"actions" of the process which will constitute its externally visible behavior. An

action represents an interaction between this process and the other processes of

the concurrent program. The specification of an action describes when that act,ion

may occur in terms of the current value of the process trace and the effect of the

occurrence of this action on the process trace by the addition of another element

to the sequence. The externally visible behavior of a process does not reference

any internal state changes nor does it permit assumptions concerning the behavior

of the other processes in the program.

A concurrent program is specified as the collection of specifications of the ex-

ternally visible actions of the program. The set of externally visible actions of the

processes that constitute the concurrent program is larger than the set of exter-

nally visible actions of the program itself. This fact is due to individual process

actions caused by internal program interactions exclude them from membership in

the set of externally visible actions of the program. It is important t o note that

this model of specifying concurrency is independent of any particular concurrent

programming language.

The specification of the externally visible behavior of each concurrent program

captures the global behavior of that program without the need to examine the

internal structure of the individual processes. Therefore, our specifications will not

bias toward a particular implementation nor a particular concurrent programming

language. They are also written a t an appropriate level of abstraction since they

capture the intended behavior of a concurrent program in sufficient detail to verify

its correctness without cluttering the specification with the details of how the pro-

gram achieves this behavior. Since the specification of a process is defined in terms

of its externally visible actions without assuming any possible behavior of the other

processes in the program, our specifications are modular: a modification of the im-

plementation of any one process would not cause a change in the specifications of

the other processes in the program.

2.1 Trace Notation

The variable h is used to represent the process trace sequence. A subscript, hi,

is used to identify the process to which this trace sequence is associated. Generally,

process trace sequences are initialized t o the empty sequence, E. Trace operations

are defined as follows.

Notation

#h

h' c h

h- h'

h,'

h,/i

Definition

the length of h

h' is a prefix of h

h is concatenated t o h'

the reverse of h

the restriction of the elements of h only

to those elernents involving process P,

the restriction of the elements of h only

to those elernents involving programs

external to the program P

2.2 Process Specifications

A concurrent program P is a correct implementation of a specification if the

following conditions are satisfied:

1. If the execution of P begins in a state satisfying the precondition of p, then the

execution of P terminates in a state in which the values of the process traces,

h l , . . . , h,, and their initial values satisfy the relation defined by the specification.

2. If the execution of P begins in a state satisfying the precondition of p and the

execution of IJ is not expected to terminate, then the execution of P maintains

a state invariant in which the values of the process traces, h l , . . . , h,, and their

initial values satisfy the relation defined by the specification.

3. If the precondition of P is not satisfied by the initial state, then the specification

does not determine the behavior of p.

Thus? a specification determines the precondition on the initial state and the rela-

tionship between the initial and final (or intermediate) state(s) of p.

Formally, an individual process execution is represented by a sequence of the

form

where h: is the prefix of length j of the process trace sequence h, and aI, is an

element from the set of externally visible actions of the process P,. All possible

process trace sequences for the process P, defines a "behavioral" model of the

process. This sequence of externally visible actions of a process was chosen t o

coincide with the definition of externally observable behavior in [26] which defined

the modular semantics of concurrent systems.

Since actions coincide with the observable behavior of a process, they typically

are some form of communication: (a)synchronous message passing or shared vari-

able communication. An action is defined in terms of a change of value of the

corresponding process trace. A specificattion of an action, which includes the cur-

rent and extended process trace, will be written in two parts: an enabling and an

eSfect. The effect specifies the change in value of the process trace by concatenat,ing

another element to t8he trace. The enabling part specifies when this action may

occur as a guard to the trace update.

To write the specification of a process, the actions which comprise the behavior

of that process are determined. For each action, all possible enabling conditions

and their effect on the process trace are listed. Tabular notation is used t o represent

the process specification where each table is an appealing visual representation of

the potential changes of a process trace. Specification tables have the following

form.

Pi I action I
1 enable / effect I

A sequence element has the form, (c A , ~ , j,lT), where C represents the type of com-

munication (either input or output), A represents the externally visible action, and

i names the process to which this element is associated. If C represents output, then

a j component is included to name the process that receives the output. Lastly, Z
represents the data sent or received.

The enable condition is typically written in terms of the last element of the

process trace sequence a t any point in time, namely h;(l) . Therefore, an individual

element as the enable condition means that the current last element of the sequence

is asserted to be of this form. Similarly, the effect lists the element which is added

to the process trace sequence for a particular action. To conserve table space, the i

and j component is omitted from elements when their values are readily apparent.

Additionally, the action initial will be omitted from the table when the process

trace sequence is initialized to E.

The notation, pi sat ti, indicates that the process trace sequence values satisfy

the predicate composed of the specification table entries a t any point during the

execution of Pi. The predicate ti is constructed as follows: Aj enablej =+ e f f e c t j

where j ranges over the rows of the table ti.

2.3 (De) Cornpositionality

The individual process traces, h,, are combined to determine a co~icur~en t pro-

gram trace, h, representing the externally observable behavior of the concurrent

system consisting of the composition of processes. The combining of the process

traces must obey compatibility, e.g. if P, sends a particular value t o P,, then

this value must be recorded on bot,h sequences in an appropriate location. Essen-

tially, compatibility (or mutual consistency) ensures that the set of process trace

sequences under consideration could arise during the execution of the correspond-

ing set of processes. In fact, any program trace sequence can be used t o define

individual process traces by projecting out and colicatenating each element of h

which involves that particular process.

It is this observation which forrns the basis of the rule for composing the in-

dividual process specifications into a concurrent program specification, where p is

composed of processes [PI (1 . . . IIP,].

Pi sat t i? i = l , . . . , n

3h. [[h,/l = hl A t l A h/2 = hz tz A . . . A h/n = h, A t,] =+ t 1

P sat t

The following inference rule can be used t o weaken the specification, ti.

Pi sat t i , ti 3 t k

P, sat t k

This colicurrent program may also be a subsystem of a larger concurrent pro-

gram. If so, the program trace sequence can be modified to represent the externally

7

visible actions of the program by eliminating all actions involving pairs of processes

that are components of this program. The program trace sequence must only con-

tain actions involving an internal process and a process which is external to this

program.

Program trace sequences can be decomposed into partial process trace se-

quences. The elements of the original sequences are partitioned and associated

with individual process traces on the basis of the externally visible actions of a

process. It is necessary to preserve the original ordering of the elements in the pro-

gram trace in the process trace. During the process of iterative refinement stages

which continually adds implementation details, additional processes will be added

t,o the concurrent program. Each additional process will have a set of externally

visible actions which are new to the concurrent program. Those processes which

inherit externally visible actions from the concurrent program may also increase

their set of actions with additional externally visible actions involving this process

and one of the newly created processes.

P sat t

Qi E ProcID(h). [3hi. [hli = hZxt A ti * ti] 1

Pi sat ti

The function, ProcID(h), returns the set of processes identified in the elements

of the program trace sequence h. The notation ti defines a specification table

consisting of those actions which are also externally visible actions of the process pi.

Any references to actions in the remaining enabling conditions which are not shared

by P and Pi must be eliminated. Finally, we can not assume that the enabling

condition as denoted in t refers to the last element of the process trace sequence,

hi. However, it does refer to sorrle prior element; so the enabling condition, el must

be modified as follows: Max{j : j 5 #hi and h;(j) = e).

This inference rule ensures that the order of elements in the program trace

sequence h is preserved in the individual process trace sequences hi for those ex-

ternally visible actions shared by both the process Pi and the program P. The rule

also ensures that the assertion corresponding to the portion of the specifica,tion

table t of the shared externally visible actions implies the assertion corresponding

to the new specification table ti.

3. Examples

3.1 Alternating Bit Protocol

The Alternating Bit Prot,ocol is a classic network protocol [2]. It requires

only one bit of control information t o guarantee reliability. The original protocol

consists of two processes which can send and receive data from outside users and

a potentially faulty communication medium. To simplify the specification, we will

only permit process Receive to receive data from users and only permit process

Send to send data to users.

The process Receive accepts data from an external unbounded source of data,

adds a sequence bit to the data to create a message, and sends this message to pro-

cess Send by calling the method Forward. The process Send receives the message,

strips off the sequence bit, and outputs the data to an unbounded sink. Acknowl-

edgments, defined as a sequence bit, are sent back to the process Receive. The

communication medium is modeled as single element buffers that can change a se-

quence number to the constant '%errorn (any integer other than 0 or I) to represent

a corruption of the data. The specification of this protocol must demonstrate the

delivery of the messages in the correct order despite possible corruption by the

medium.

1 Send

{(?Forward,num,info) V (!Write, info)) (!RepIy,s_ack)

Action 1
Enable

{(!Reply,s-ack) V E)

Forward

(?Forward,num,info)

Write Reply

The specification of the process Receive includes the datum to be sent and r-ack

which is used to determine the receipt of the acknowledgement from the process

Send. The specification of the process Send defines info to represent the message

received and num which is used t o determine whether info contains an uncorrupted

new message.

The specification of the Alternating Bit Protocol must ensure the delivery of

these messages in the correct order. From examination of the process trace sequence

hRes for the process Receive, a sequence of data items, F, can be constructed rep-

resenting all data received from the outside source. Correspondingly, the sequence

s, containing all data sent to the users, can be constructed from the process trace

sequence hSend for the process Send. Therefore, the specification for the prot,ocol

will ensure that 'i: i F for the protocol trace h.

3.2 Byzantine Agreement

The Byzantine Agreement problem, first introduced by Pease et a1.1221, illus-

trates fault tolerance in distributed systems. A system which communicates by

message passing has two different kinds of processes: reliable and unreliable. If

there are m (m > 0) unreliable processes, then there must be a t least 3 * m + 1 reli-

able processes for a solution to the Byzantine Agreement problem to exist. There

is a designated process, called commander, that may or may not be reliable. Each

process i has a local variable byz,. Agreement is reached when every reliable process

sets its local variable, byz,, to a common value. If the commander process is reliable,

then this common value is d,, the initial value of the commander's local variable;

otherwise, the common value is N I L . Since reliable processes are indistinguishable

from unreliable ones, it is unltnown a t the time of receipt whether an individual

message is arbit,rary or not.

The specification of the Byzantine Agreement algorithm states that

byzi = byzj, where i , j are reliable processes

and

commander is reliable ==+ byzi = d ,

The algorithm assumes a function ma.joritywith the property that if a majority

of the values v, equal d, then majority(v,, . . . , vn-,) equals d,. If no majority value

among the v, exists, then majority(vl, . . . , vn-1) equals N I L . For simplicity, we will

initially assume that m = 1. The specifications for the colnn~ander and an arbitrary

process PC from the n - 1 processes are given.

Commander Action I

In the first step, the commander sends a value vi to all n - 1 processes. If the

commander is reliable, t,he vi are equal to d,, the value of the commander's local

variable. If the commander is unreliable, the values of the vi are arbitrary. Once

the process Pi receives the commander's message, the value received is forwarded

to the other n - 2 processes. Pi either receives a copy of the value that each other

process received from the commander or an arbitrary value. The majority function

is then used t o determine the value of byzi.

Enable

The complexity of the Byzantine Agreement algorithm grows significantly with

larger numbers of faulty processes. By just increasing m t o 2, the specification

table must be duplicated n - I times.

RecC

3.3 ISSA Command & Control Example

I I

As part of an ongoing project by NASA to study the effectiveness of formal

methods in improving the quality of software requirements, formal analysis of the

software requirements of the Failure, Detection, Isolation, and Recovery (FDIR)

system of the International Space Station -4lpha (ISSA) has been performed [6].

This analysis focused on whether the dynamic interactions of the FDIR system

were both consistent and complete and whether the most catastrophic failures had

appropriate recovery measures. The difficulty of this analysis is compounded by

the fact that multiple subsystems are responsible for identifying, isolating, and

recovering from just one type of failure.

The software subsystem, Command & Control (C&C), of ISSA is mainly re-

sponsible for station level control, command and data handling, and communica-

tions functions. It is this system which issues the command to perform nonpropul-

sive a,ttitude maneuvers; a maneuver which is performed as part of the docking of

the Space Shuttle with ISSA. The ISSA subsystem, Guidance, Navigation and Con-

trol (GN&C), is responsible for navigation, attitude determination, and attitude

control. The following diagram illustrates the actions taken by these two subsys-

tems when an attitude maneuver command is issued and a Caution & Warning

(e.g. failure) event occurs.

In the following diagram, nodes represent modular components of either the

C&C or the GN&C subsystem and the arcs represent a subset of possible actions

of the two subsystems.

The tabular specification of the C k C attitude controller and the GY&C control

atlt itude subsyst,em follow

C&C AC

Enable

Action

XttMan ComRes
I

In the diagram, the GN&C control attitude subsystem is composed of four

separate components: control attitude manager, torque command generator, CMG

(control moment gyros) control & monitor, and the controller performance monitor.

To illustrate the cornpositionality of individual component specification tables, the

separate GN&C component specifications are given. Those actions which involve

only GN&C control attitude subsystem components are internal t o this subsystem

and are not represented in the GN&C CA specification table.

GN&C CA

Enable

{ (? ~ t t ~ a n , x) V (!Att

?CntlRes status

Action

AttMan ComRes
I

4. Application in Software Development

The requirements specification of a software system is only one phase of the

software life cycle. First, the specifications are written, analyzed for consistency

and completeness, and tested. The specifications are then refined by iterative

design stages into an implementation in a particular programming language. Next,

the implementation is verified and processes are tested independently. Processes

are combined into independent modules and tested. Modules are integrated into a

system, which is tested and validated. Finally, the system is maintained.

The proposed formal method is all encompassing in that it can be applied t o any

phase of the software life cycle. This formal method contains a specification model

that is both modular and compositional. A specification model possessing these

characteristics supports the development process by driving the creation of smaller,

disjoint system components of the concurrent program. One of the most important

issues concerning specifications is the assurance that a particular implementation

satisfies it,s specification. The verification model included in t,he proposed formal

method provides this assurance by establishing either a postcondition or invariant

of the implementation which can be shown to imply the specification.

The productivity of the development process is improved by locating errors a t

the earliest moment; ideally, when creating and analyzing the specification but cer-

tainly when ensuring that a particular implementation satisfies a specification. The

specifications can be analyzed using the tool PVS [19] and the tabular specification

notation is a natural origin for test case generation. Lastly, the maintainability of

the system is simplified by providing a formal statement of the individual system

component's behavior.

To demonstrate the applicability of the formal method t o other phases of the

software life cycle, an example of establishing that an implementation satisfies its

specification follows.

3.1 Refinement of the Alternating Bit Protocol

The implementation language chosen for the Alternating Bit Protocal is Java

which supports thread synchronization through the use of monitors. In general, a

monitor encapsulates data along with a set of access functions which support single

thread access to a data item. Critical sections are identified with the keyword

synchronized and thread (delactivation is controlled by wait and notify commands.

An implementation of the specification of the Alternating Bit Protocol pre-

sented in sectlion I11 follows.

class Receive

{
private itein data;

private int ackno, WaitAck = 1, LastSent = 0;

private boolean progress = false;
public synchronized void Acceptjiterri data) {

while (LastSent == WaitAck && progress == false)
wait () ;

LastSent = (LastSent + 1) MOD 2;
Forward(LastSent, data);
while (progress == false);
progress = false;
while (LastSent == WaitAck) (

Forward(LastSerit,, data) ;
while (progress == false);
progress = false;

1
1
protected synchronized void Reply(int ackno) {

if (ackno == WaitAck) {
WaitAck = (IVaitAck + 1) MOD 2;
progress = true;
notify();

1
else

progress = true;

class Send {
private i t em info;
private int messno, NextRequired = 1;
protected void Forward(int messno, i t em info) {

if (messno == NextRequired) {
Write(inf0) ;
NextRequired = (NextRequired + 1) MOD 2;

1;
Reply((NextRequired - 1) MOD 2);

1;
1;

The class Receive includes the suspension of the execution of the method Accept

when a new data item is received but notification by the class object Send confirms

that the previous data item forwarded to Send has been corrupted. The current

data item must be repeatedly forwarded to Send until notification by Send confirms

that the data itern has been received. At this time, any one of the suspended

threads of execution can be resumed.

To prove this Java implementation satisfies the specification of the Alternating

Bit Prot,ocol presented in section 111, one must verify that the postcondition of each

call and of each method called defines a process trace for the class that satisfies

the corresponding row of the class7 specification table. A full set of axioms and

rules of inference for monitors are provided in [28] in order to perform this task;

however, highlights of this process follow.

A process trace will be associated with each declared object of a class; for

this example, hRec and h ~ ~ , ~ ~ . The elements comprising the process trace sequence

hSend are very similar to those listed in the specification table for the process Send

when including the information omitted when preserving table space. The major

difference is in the elements representing either a call t o a method or that a method

is called. Instead of using a one action element, two trace elements are used to

record the call being made and the subsequent return from the method called as

well as the start and end of the execution of a method.

On the other hand, the elements included in the process trace sequence hRec

include several new trace elements, two of which are the new elements listed for

hSend. Two more elements will be introduced to represent the suspensions and

resumptions of the threads of execution which occur due t o tlie wait and notify

commands. Therefore, the execution of a wait command causes the addition of

a suspensioll element to the class object trace sequence hRe, and the execution of

a notify command causes the addittion of a resume element. These new elements

contain additional information due to the need to introduce incarnation numbers

which represent particular incarnations of tjhe method Accept [28].

For the method Forward in the class object S e n d , the postcondition is as follows:

Postcondition { h>,,,(I) = (!Forward) A h;.,,,(2) = (?Reply) A

hrSend(3) = (!Reply,NextRequired - I Mod 2) A

A NextRequired = messno +
{NextRequired = NextRequired + 1 Mod 2 A

hkend(4) = (?Write) A hkend(5) = (!Write,info) A

/1;,,,(6) = (?Forward,messno, in f 0))

A NextRequired # messno +
{h>end(3) = (!Reply ,Ne~~tRe~uiTed - I Mod 2) A

h2.,,,(4) = (?Forward,messno, i n f 0)))

After making the stlbstitution of the specification variable names with the corre-

sponding implementation variable names, removing from hRec those elements which

were added for the purpose of applying the verification mode1 tto this implementa-

tion, and transforming the postcondition of the method Forward into an invariant

for the class object Send, will allow this invariant tto satisfy the specification table

in section 111.

For the method Reply defined in the class object Receive:

Postcondit ion { h&,,(l) = (!Reply) A {ackno # WaitAc t +
hh,,(2) = (?Reply,ackno)) A { ackno = WaitAck 3

{WuitAck: = WaitAck + 1 Mod 2 A

hh,,(2) = {?Resume))) A progress = true)

For the method Accept defined in the class object Receive:

Postcondition { kk, , (l) = (!Accept) A progress = false A

3k. {Vj. 2 5 j 5 2 * k . [Even (j) A (LastSent + lMod2 = Wai tAck) =s

h g , (j) = (?Forward) A

hk,,(j + 1) = (!Forward,LusCSent, data)] A

h&,,(2 * k + 2) = (?Forward) A

hkec(2 * k + 3) = (!Forward,LastSent, data)

[LastSent # WaitAck + hhe,(2 * k + 4) = (?Accept,data)] A

[LastSent = WaitAck + hh,,(2 * k + 4) = (!Suspend) A

h&,,(2 * k + 5) = ('?Accept,data)]))

Combining the postconditions of the two methods and handling the multiple

in~arnat~ions of the method Accept make the determination of the class object

invariant for Receive difficult. The construction of the invariant requires the appli-

cat8ion of several proof rules found in [28] which are not presented here. However,

the pattern of sequence elements imposed by both the Accept and Reply method

is consistent with the specification table for Receive.

The individual class object invariants will be combined with a compatibility

requirement on the class object trace sequences to ensure that any action in which

two objects participate is recorded on the two trace sequences in a mutually con-

sistent fashion. The definition of C m p a t (h l , . . . , h,) is as follows.

Therefore, the values for those elements recorded in the trace sequence hR,,

when issuing a call to the method Forward will indeed be recorded in the trace

sequence elements for receiving the method call in hSend. The proposed two se-

quences of data items, .r and s, can be constructed from the ?Accept elements of hRec

and from the !Write elements of hSend to ensure that this implementation satisfies

the protocol requirement, .r & s.

5. Comparison to Related Works

Trace-based semantics for networks are based on either individual channel or

process traces. The majority of these proof systems are of the channel trace va-

riety and unfortunately suffer from being incomplete [14]. In order Lo overcome

incompleteness, some authors have resorted to abandoning first-order logic in favor

of temporal logic [31]. The process trace-based model presented here is (relatively)

complete [5] , relies only on first-order logic, and is modular [26]. It has been ap-

plied to all forms of concurrency and in a production-quality, large-scale software

development system [27]. This process trace semantic model is a full abstraction

of the operational model (contains sufficient information t o prove essential proper-

ties of the model without containing too much information, e.g. the internals of a

process).

Lamport[l5,16] introduces specifications which consist of a collection of state

funct,ions that map program states into sets of values; a collection of initial values

for these functions which define the set of states in which the system may begin

computation; and a collection of properties, written using temporal logic, describ-

ing both the safety and liveness conditions required of the system. Lamport's

specification model significantly differs fi-om the proposed specification model in

that only externally visible behavior of the concurrent program is specified. An-

other major departure lies in the use of control predicates and prograrn counters

in the specification of a process. Conversely, the proposed specification model cap-

tures a process' behavior a t a higher level of abstraction. In the proposed model,

a process can be viewed as an abstract data object where t8he externally visible

actions change the value (i.e. state) of the object. Therefore, the specification of a

process defines the ~emant~ics of this abstract data object without including infor-

mation concerning its implementation. In order to verify a process, Lamport must

introduce auxiliary state functions and use temporal logic whereas in the proposed

model the corresponding verification method in [26] can be directly applied to the

original specifications.

Leveson9s AND/OR Tables [91] are a tabular representation of the disjunc-

tive nor~nal form of a Boolean expression. Specifications are written in RSML,

Requirements State Machine Language, which uses state transitions to capture

the functional behavior of the software. Transition conditions are translated into

AND/OR tables. Functions were chosen to guarantee completeness and consistency

and tools are provided to support this analysis. However, trhis choice forces spec-

ifications t o be deterministic. AND/OR tables can become difficult t o use when

transition conditions are written using such first-order logic operators as implica-

tion and equivalence. Lastly, the application of this specification model, as well as

the remaining specification models in this section, focuses only on the requirements

specification stage of the software life-cycle.

Parnas proposes the use of tabular representations of relatioils [20,21] for cre-

ating program specifications which describe a set of statte sequences in a finite state

machine. A variety of table formats are used to define the mathematical functions

and relat,ions that capture the state transitions of the software system. The table

format is proport,ed t,o aid in the understanding of multidimensional expressions

and simplify the inspection of requirements specification documents. Numerous

rules are provided for changing table formats in order to provide the most read-

able function definition. The main emphasis for providing a tabular notation is to

support the construction of readable systems requirements documents.

The SCR, Software Cost Reduction, method [12] describes the functional re-

quirements of software and is applied during the requirements specification of a

software system. This method includes Parnas' tabular representations to describe

system functions, timing, and precision; however, the SCR method attempts t o

provide a formal basis through the use of a (deterministic) state automaton, mon-

itored and controlled variables, conditions, and events. Table functions are used

to define output variables, terms, and mode classes for condition, event, and mode

transition tables. Tools are available for consistency and completeness checks. The

main application of this method is to embedded process control systems.

6 . Summary

A formal method is proposed that meets many of the needs and desires of the

industrial community: the method can be a,pplied throughout the software life-

cycle, has been used during industrial software development, and uses a notation

that amppeals to engineers. The specification model proposed records the external

behavior of a process in a tabular manner using process trace sequences which

record the externally visible actions of this process. Using this model, the specifi-

cation of the externally visible behavior of each concurrent program captures the

program's behavior wit,hout examining the internal structure of the individual pro-

cesses. The modular proof systems presented in [26] can be used to verify that a

particular implementation meets its specification and current tools exist to support

this acti~it~y.

Acknowledgements

Sincerest thanks are extended to Brent Auernheimer for his careful reading

and suggestions on the improvement of the presentation of this work. The Inter-

national Space Station Alpha work was started while the author was supported

as a NASA/ASEE Summer Faculty Fellovv a t NASA's Jet Propulsion Laboratory,

California Institute of Technology. The teaching of this formal method as part of

the undergraduate core curriculum is supported by an NSF Educational Innovation

Grant, CDA-9522257.

References

I. Barroca, L.M. and J.A. McDermid, ('Formal Methods: Use and Relevance for
the Development of Safety-Critical Systems" , The Computer Journal, Vol. 35,
No. 6, 1992, pp. 579-599.

2. Bartlett, K.A., R.A. Scantlebury, and P.T. Wilkinson, "A Note on Reliable
Full-Duplex Transmission Over Half-Duplex Links". Comm. ACM, Vol 12,

No. 5 , pp. 260-261, May 1969.

3. Bowen, J.P. and M.G. Hinchey, "Seven More Myths of Formal Methods", TEE%;
Software, July 1995, pp. 34-41.

4. Butler, R.W., J.L. Caldwell, V.A. Carreno, C.M. Holloway, P.S. Miner, B.L. Di-
Vito, "NASA Langley's Research and Technology-Transfer Program in Formal
Methods", COMPASS'95: Proc. of the 10" Annual Conference on Computer
Assurance, June 25-29, 1995, gp. 135-149.

5. Cook, S.A., "Soundness and Completeness of an Axiom System for Program
Verificat,ion3', STAM Journal on Computing, Vol. 7, February 1978, pp. 70-90.

6. Covington, R., A. Sobel, and K. Freise, "Applications of Formal Methods to
International Space Station Alpha FDIR: Phase I1 Summary", Internal Report,
NASA Johnson Space Center, April 1996.

7. Gerhart, S., D. Craigen, and T. Ralson, "Experience with Formal Methods in
Critical Systems", 1EEE Software, Vol. 11, No. I, January 1994, pp. 21-28.

8. Hall, A., "Seven Myths of Formal Methods", 1EEE Software, September 1990,
pp. 11-19.

9. Hall, A., "Using Formal Met,hods to Develop an ATC Information System",
IEEE Software, Vol. 13, No. 2, March 1996, pp. 66-76.

10. Hatley, D.J. and I.A. Pirbhai, Strategies for Real-Time System Specification,
Dorset House Publishing Co., Inc., 1987.

11. Heimdahl, M. P.E. and N.G. Leveson, "Completeness and Consistency in Hi-
erarchical State-Based Requirements'' , IEEE Trans. on Software Engineering,
May 1996.

12. Heitmeyer, C., B. Labaw, and D. Kiskis, "Consistency Checking of SCR-Style
Requirements Specifications" , 111 tern. Symp. on Requirements Engineering,
York, England, March 1995.

13. Hoare, C.A.R., "An Overview of Some Formal Methods for Program Design",
1EE'F Computer, September 1987, pp. 85-91.

14. Jonsson, B., "A Fully Abstract Trace Model for Dataflow Networks", 16th ACM
POPL, Austin, Texas, 1989, pp. 155-165.

15. Lamport,, L., "A Simple Approach to Specifying Concurrent Systems", Comm.
ACM, Vol. 32, No. 1, January 1989, pp. 32-45.

16. Lamport, L., "The Temporal Logic of Actions", ACM Trans. Program. Lang.
Syst., Vol. 16, No. 3, May 1994, pp. 872-923.

17. Larsen, P.G., J. Fitzgerald, T. Brookes, "Applying Formal Specification in
Industry", IEEE Software, Vol. 13, No. 3, May 1996, pp. 48-56.

18. Miller, S.P. and M. Srivas, "Formal Verifi~at~ion of the AAMP5 Microprocessor:
A Case Study in the Industrial use of Formal Methods", Proc. of the Worlcshop
on Industrial-Strength Formal Specification Techniques, April 5-8, 1995, pp.
2-16.

19. Owre, S., N. Shankar, and J. Rushby, "User Guide for the PVS Specification
and Verification System", Computer Science Laboratory, SRI International,
Menlo Park, CA, March 1993.

20. Parnas, D.L., "Mathematical Description and Specification of Software", IFIP
94, Vol. 1, pp. 354-359.

21. Parnas, D.L., "Tabular Representation of Relations", CRL Report No. 260,
October 1992.

22. Pease, M., R. Shostak, and L. Eamgort, "Reaching Agreement in the Presence
of Faults", Journ. ACM, Vol. 27, No. 2, April 1980, pp. 228-234.

23, Rushby, R., "Formal Methods and the Certification of Critical Systems", Tech-
nical Report SRI-CSL-93-07, November 1993.

24. Saiedian, H. and M.G. Hinchey, "Challenges in the Successful Transfer of For-
mal Methods Technology into Industrial Applications", Information and Soft-
ware Technology, Vol. 38, No. 5, May 1996.

25. Saiedian, H., "An Invitation to Formal Methods7', Computer, Vol. 29, No. 4,

April 1996, pp. 16-30.

26. Sobel, A.E.K. Modular Verification of Concurrent Systems. Ph.D. Dissertation,
The Ohio State University, August 1986.

27. Sobel, A.E.K. "Proposed SEDL Specification of Concurrency", IBM Research
Advanced Abstract, RC 13336, December 1987.

28. Sobel, A.E.K. and N. Soundararajan, "A Proof System for Distributed Pro-
cesses", Acta Informatica, Vol. 25, No. 3, 1988, pp. 305-332. The extended
abstract appears in LNCS 193: Proceedings of the Logics of Programs, pp.
343-358.

29. Soundararajan, N., "Tracing the Missing Information", Technical Report OSU-
CISRC-8/94-TR46, The Ohio State University, 1994.

30. Weber-Wulff, D., "Selling Formal Methods to Industry", LNCS 670, FME'93:
Industrial-Strength Formal AMethods, April 1993, pp. 671-677.

