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Abstract 

Despite thirty years of study by the academic community, industry has not em- 

braced the systematic usage of formal methods. To address this concern, a formal 

method is proposed which possesses many of the qualities that  practitioners have 

listed as lacking from current formal methods: inclusion of both a specification and 

verification model, a tabular notation that  only requires knowledge of first-order 

logic, support for both composition and decomposition, application throughout the 

software life-cycle, and tool support. The presentation includes several applications 

to safety-critical software systems. 

Keywords and Phrases Formal methods, specification, trace-based sys- 

tems, software development, concurrency, verification. 



1. Introduction 

Despite thirty years of study in the academic community, formal specifica- 

tion and verification models of software systems have been slow in making a large 

impact on industrial software development. Of the instances of applying formal 

methods during large-scale software development, most of these systems have in- 

volved safety-critical applications [1,7,9,17,18,23]. The safety-critical environment 

was a natural candidate because of the generally accepted advantages of applying 

forrnal method analysis: increased assurance of reliability, predictibility of sys- 

tem behavior, and the ability to identify potential faults and subsequent recovery 

measures. 

Recently, the academic community has focused on why industry hasn't em- 

braced the systematic usage of forrnal methods [4,24,25,30]. Roundtable discus- 

sions from academicians, practitioners, and engineers [25] have identified a number 

of potential causes: inadequate tools, inadequate examples, the mathematics re- 

quired is beyond the standard engineering curriculum, lack of support for the entire 

software life-cycle, scalability, and cost-effectiveness. Some practitioners have felt 

distanced by the academic community due to  the academician's lack of understand- 

ing of the industrial problem domain which may, in part, explain why a majority 

of formalisms aren't readily or directly applicable t o  industrial problems. This 

distancing can be so extreme that  some practitioners encourage the avoidance of 

methods that  are overloaded with formalisms [30]. 

Having identified the qualities that  are lacking from most forrnal methods, aca- 

demicians should now focus on creating formal methods with qualities that  industry 

both needs and desires. Namely, a method that 

1. Has a mathematical foundation 

2. Abstracts the state of a system to  a level that neither leads to 

omission nor biases an implementation 

3. Supports composition 

4. Isolates failures 

5. Supports modularity 

6. Allows developers to use more formal techniques in the 

specification and design phases, support refinement to 

executable code, and proof-of properties 



7. Is applicable to  the industrial problem domain 

8. Has tool support 

9. Is easily used by engineers 

In this paper, a formal method is proposed which meets all t,he characteristics 

and qualities outlined above. It is based upon t,he modular verification model de- 

fined in [26] t o  determine the externally visible behavior of concurrent systems. The 

majority of the presentation centers on the introduction of a corresponding speci- 

fication model which is also modular and fully abstract. The specification model 

was also influenced by the engineering notations used in the variety of specifica- 

tion requirements documents created by NASA contractors for the International 

Space Station Alpha. The combination of the specification and verification rriodels 

comprise a formal method that can be applied throughout the software life-cycle, 

has been used in industrial software development, and appeals to engineers due 

to  its operational nature. The tool PVS [19] can be used to  predict behavior and 

establish proof-of properties of these specifications. The specification model is easy 

to teach as it is currently taught a t  the undergraduate level and is used in other 

core curriculum courses of a software engineering undergraduate degree. 

The method used to  specify a concurrent program is presented in section 11. 

Examples of the application of this specification model t o  the Alternating Bit 

Protocol, Byzantine Agreement, and a safety-critical application are elaborated in 

section 111. The integration of the proposed formal method into the software life- 

cycle is outlined in sect,ion IV and ilicludes an example of refinement into executable 

code of the Alternating Bit Protocol. A comparison t o  related works is made in 

section V. 

2. Specification Model 

The use of a formal specification notation to outline the functional character- 

istics of the intended behavior of a concurrent program allows the programmer t o  

be concise and unambiguous. Specifications also aid in understanding the complex 

interactions between processes and provide a basis for the verification of the result- 

ing program. When producing specifications, it is important to avoid biasing the 

choice of implementation by including details which suggest or imply a particular 

implementation strategy. I t  is also desirable t o  use the same formalism to spec- 

ify the characteristics of the system components created by gradually refining the 



high-level specification of the concurrent program into individual process specifi- 

cations. Clearly, a formal specification model that  provides the ability to  express 

high-level modular specifications without implementation details and that  supports 

hierarchical system decomposition will aid in the creation and comprehension of 

concurrent programs. 

A process is specified as the collection of specifications of t,he externally visible 

"actions" of the process which will constitute its externally visible behavior. An 

action represents an interaction between this process and the other processes of 

the concurrent program. The specification of an action describes when that  act,ion 

may occur in terms of the current value of the process trace and the effect of the 

occurrence of this action on the process trace by the addition of another element 

to the sequence. The externally visible behavior of a process does not reference 

any internal state changes nor does it permit assumptions concerning the behavior 

of the other processes in the program. 

A concurrent program is specified as the collection of specifications of the ex- 

ternally visible actions of the program. The set of externally visible actions of the 

processes that  constitute the concurrent program is larger than the set of exter- 

nally visible actions of the program itself. This fact is due to individual process 

actions caused by internal program interactions exclude them from membership in 

the set of externally visible actions of the program. It is important t o  note that  

this model of specifying concurrency is independent of any particular concurrent 

programming language. 

The specification of the externally visible behavior of each concurrent program 

captures the global behavior of that  program without the need to examine the 

internal structure of the individual processes. Therefore, our specifications will not 

bias toward a particular implementation nor a particular concurrent programming 

language. They are also written a t  an appropriate level of abstraction since they 

capture the intended behavior of a concurrent program in sufficient detail to verify 

its correctness without cluttering the specification with the details of how the pro- 

gram achieves this behavior. Since the specification of a process is defined in terms 

of its externally visible actions without assuming any possible behavior of the other 

processes in the program, our specifications are modular: a modification of the im- 

plementation of any one process would not cause a change in the specifications of 

the other processes in the program. 



2.1 Trace Notation 

The variable h is used to represent the process trace sequence. A subscript, hi, 

is used to  identify the process to  which this trace sequence is associated. Generally, 

process trace sequences are initialized t o  the empty sequence, E. Trace operations 

are defined as follows. 

Notation 

#h 

h' c h 

h- h' 

h,' 

h,/i 

Definition 

the length of h 

h' is a prefix of h 

h is concatenated t o  h' 

the reverse of h 

the restriction of the elements of h only 

to those elernents involving process P, 

the restriction of the elements of h only 

to those elernents involving programs 

external to  the program P 

2.2 Process Specifications 

A concurrent program P is a correct implementation of a specification if the 

following conditions are satisfied: 

1. If the execution of P begins in a state satisfying the precondition of p, then the 

execution of P terminates in a state in which the values of the process traces, 

h l ,  . . . , h,, and their initial values satisfy the relation defined by the specification. 

2. If the execution of P begins in a state satisfying the precondition of p and the 

execution of IJ is not expected to  terminate, then the execution of P maintains 

a state invariant in which the values of the process traces, h l ,  . . . , h,, and their 

initial values satisfy the relation defined by the specification. 

3. If the precondition of P is not satisfied by the initial state, then the specification 

does not determine the behavior of p. 

Thus? a specification determines the precondition on the initial state and the rela- 

tionship between the initial and final (or intermediate) state(s) of p. 

Formally, an individual process execution is represented by a sequence of the 

form 



where h: is the prefix of length j of the process trace sequence h, and aI, is an 

element from the set of externally visible actions of the process P,. All possible 

process trace sequences for the process P, defines a "behavioral" model of the 

process. This sequence of externally visible actions of a process was chosen t o  

coincide with the definition of externally observable behavior in [26] which defined 

the modular semantics of concurrent systems. 

Since actions coincide with the observable behavior of a process, they typically 

are some form of communication: (a)synchronous message passing or shared vari- 

able communication. An action is defined in terms of a change of value of the 

corresponding process trace. A specificattion of an action, which includes the cur- 

rent and extended process trace, will be written in two parts: an enabling and an 

eSfect. The effect specifies the change in value of the process trace by concatenat,ing 

another element to t8he trace. The enabling part specifies when this action may 

occur as a guard to  the trace update. 

To write the specification of a process, the actions which comprise the behavior 

of that  process are determined. For each action, all possible enabling conditions 

and their effect on the process trace are listed. Tabular notation is used t o  represent 

the process specification where each table is an appealing visual representation of 

the potential changes of a process trace. Specification tables have the following 

form. 

Pi I action I 
1 enable / effect I 

A sequence element has the form, ( c A , ~ ,  j,lT), where C represents the type of com- 

munication (either input or output), A represents the externally visible action, and 

i names the process to  which this element is associated. If C represents output, then 

a j component is included to name the process that  receives the output. Lastly, Z 
represents the data sent or received. 

The enable condition is typically written in terms of the last element of the 

process trace sequence a t  any point in time, namely h;(l) .  Therefore, an  individual 

element as the enable condition means that  the current last element of the sequence 

is asserted to be of this form. Similarly, the effect lists the element which is added 

to  the process trace sequence for a particular action. To conserve table space, the i 



and j component is omitted from elements when their values are readily apparent. 

Additionally, the action initial will be omitted from the table when the process 

trace sequence is initialized to E.  

The notation, pi sat ti, indicates that  the process trace sequence values satisfy 

the predicate composed of the specification table entries a t  any point during the 

execution of Pi. The predicate ti is constructed as follows: Aj enablej =+ e f f e c t j  

where j ranges over the rows of the table ti. 

2.3 (De) Cornpositionality 

The individual process traces, h,, are combined to determine a co~icur~en t  pro- 

gram trace, h, representing the externally observable behavior of the concurrent 

system consisting of the composition of processes. The combining of the process 

traces must obey compatibility, e.g. if P, sends a particular value t o  P,, then 

this value must be recorded on bot,h sequences in an appropriate location. Essen- 

tially, compatibility (or mutual consistency) ensures that  the set of process trace 

sequences under consideration could arise during the execution of the correspond- 

ing set of processes. In fact, any program trace sequence can be used t o  define 

individual process traces by projecting out and colicatenating each element of h 

which involves that particular process. 

It is this observation which forrns the basis of the rule for composing the in- 

dividual process specifications into a concurrent program specification, where p is 

composed of processes [PI ( 1  . . . IIP,]. 

Pi sat t i? i = l ,  . . . ,  n 

3h. [ [ h,/l = hl A t l  A h/2 = hz tz A . .  . A  h/n = h, A t,] =+ t 1 

P sat t 

The following inference rule can be used t o  weaken the specification, ti. 

Pi sat t i ,  ti 3 t k  

P, sat t k  

This colicurrent program may also be a subsystem of a larger concurrent pro- 

gram. If so, the program trace sequence can be modified to  represent the externally 

7 



visible actions of the program by eliminating all actions involving pairs of processes 

that  are components of this program. The program trace sequence must only con- 

tain actions involving an internal process and a process which is external to  this 

program. 

Program trace sequences can be decomposed into partial process trace se- 

quences. The elements of the original sequences are partitioned and associated 

with individual process traces on the basis of the externally visible actions of a 

process. It is necessary to  preserve the original ordering of the elements in the pro- 

gram trace in the process trace. During the process of iterative refinement stages 

which continually adds implementation details, additional processes will be added 

t,o the concurrent program. Each additional process will have a set of externally 

visible actions which are new to the concurrent program. Those processes which 

inherit externally visible actions from the concurrent program may also increase 

their set of actions with additional externally visible actions involving this process 

and one of the newly created processes. 

P sat t 

Qi E ProcID(h). [ 3hi. [hli = hZxt A ti * ti] 1 

Pi sat ti 

The function, ProcID(h), returns the set of processes identified in the elements 

of the program trace sequence h. The notation ti defines a specification table 

consisting of those actions which are also externally visible actions of the process pi. 

Any references to actions in the remaining enabling conditions which are not shared 

by P and Pi must be eliminated. Finally, we can not assume that  the enabling 

condition as denoted in t refers to  the last element of the process trace sequence, 

hi. However, it does refer to  sorrle prior element; so the enabling condition, el must 

be modified as follows: Max{j : j 5 #hi and h;(j) = e). 

This inference rule ensures that  the order of elements in the program trace 

sequence h is preserved in the individual process trace sequences hi for those ex- 

ternally visible actions shared by both the process Pi and the program P. The rule 

also ensures that  the assertion corresponding to the portion of the specifica,tion 

table t of the shared externally visible actions implies the assertion corresponding 

to the new specification table ti. 



3. Examples 

3.1 Alternating Bit Protocol 

The Alternating Bit Prot,ocol is a classic network protocol [2]. It requires 

only one bit of control information t o  guarantee reliability. The original protocol 

consists of two processes which can send and receive data from outside users and 

a potentially faulty communication medium. To simplify the specification, we will 

only permit process Receive to receive data from users and only permit process 

Send to send data to  users. 

The process Receive accepts data from an external unbounded source of data, 

adds a sequence bit to  the data to create a message, and sends this message to pro- 

cess Send by calling the method Forward. The process Send receives the message, 

strips off the sequence bit, and outputs the data to  an unbounded sink. Acknowl- 

edgments, defined as a sequence bit, are sent back to  the process Receive. The 

communication medium is modeled as single element buffers that  can change a se- 

quence number to the constant '%errorn (any integer other than 0 or I) to represent 

a corruption of the data. The specification of this protocol must demonstrate the 

delivery of the messages in the correct order despite possible corruption by the 

medium. 

1 Send 

{(?Forward,num,info) V (!Write, info)) (!RepIy,s_ack) 

Action 1 
Enable 

{(!Reply,s-ack) V E )  

Forward 

(?Forward,num,info) 

Write Reply 



The specification of the process Receive includes the datum to  be sent and r-ack 

which is used to  determine the receipt of the acknowledgement from the process 

Send. The specification of the process Send defines info to represent the message 

received and num which is used t o  determine whether info contains an uncorrupted 

new message. 

The specification of the Alternating Bit Protocol must ensure the delivery of 

these messages in the correct order. From examination of the process trace sequence 

hRes for the process Receive, a sequence of data items, F, can be constructed rep- 

resenting all data received from the outside source. Correspondingly, the sequence 

s, containing all data sent to the users, can be constructed from the process trace 

sequence hSend for the process Send. Therefore, the specification for the prot,ocol 

will ensure that  'i: i F for the protocol trace h. 

3.2 Byzantine Agreement 

The Byzantine Agreement problem, first introduced by Pease et a1.1221, illus- 

trates fault tolerance in distributed systems. A system which communicates by 

message passing has two different kinds of processes: reliable and unreliable. If 

there are m (m > 0) unreliable processes, then there must be a t  least 3 * m + 1 reli- 

able processes for a solution to  the Byzantine Agreement problem to exist. There 

is a designated process, called commander, that  may or may not be reliable. Each 

process i has a local variable byz,. Agreement is reached when every reliable process 

sets its local variable, byz,, to  a common value. If the commander process is reliable, 

then this common value is d,, the initial value of the commander's local variable; 

otherwise, the common value is N I L .  Since reliable processes are indistinguishable 

from unreliable ones, it is unltnown a t  the time of receipt whether an  individual 

message is arbit,rary or not. 

The specification of the Byzantine Agreement algorithm states that  

byzi = byzj, where i ,  j are reliable processes 

and 

commander is reliable ==+ byzi = d ,  

The algorithm assumes a function ma.joritywith the property that if a majority 

of the values v, equal d, then majority(v,, . . . , vn-,) equals d,. If no majority value 

among the v, exists, then majority(vl, . . . , vn-1) equals N I L .  For simplicity, we will 



initially assume that  m = 1. The specifications for the colnn~ander and an  arbitrary 

process PC from the n - 1 processes are given. 

Commander Action I 

In the first step, the commander sends a value vi to  all n - 1 processes. If the 

commander is reliable, t,he vi are equal to d,, the value of the commander's local 

variable. If the commander is unreliable, the values of the vi are arbitrary. Once 

the process Pi receives the commander's message, the value received is forwarded 

to the other n - 2 processes. Pi either receives a copy of the value that  each other 

process received from the commander or an arbitrary value. The majority function 

is then used t o  determine the value of byzi. 

Enable 

The complexity of the Byzantine Agreement algorithm grows significantly with 

larger numbers of faulty processes. By just increasing m t o  2, the specification 

table must be duplicated n - I times. 

RecC 

3.3 ISSA Command & Control Example 

I I 

As part of an ongoing project by NASA to  study the effectiveness of formal 

methods in improving the quality of software requirements, formal analysis of the 



software requirements of the Failure, Detection, Isolation, and Recovery (FDIR) 

system of the  International Space Station -4lpha (ISSA) has been performed [6]. 

This analysis focused on whether the dynamic interactions of the FDIR system 

were both consistent and complete and whether the most catastrophic failures had 

appropriate recovery measures. The difficulty of this analysis is compounded by 

the fact that  multiple subsystems are responsible for identifying, isolating, and 

recovering from just one type of failure. 

The software subsystem, Command & Control (C&C), of ISSA is mainly re- 

sponsible for station level control, command and data handling, and communica- 

tions functions. It is this system which issues the command to perform nonpropul- 

sive a,ttitude maneuvers; a maneuver which is performed as part of the docking of 

the Space Shuttle with ISSA. The ISSA subsystem, Guidance, Navigation and Con- 

trol (GN&C), is responsible for navigation, attitude determination, and attitude 

control. The following diagram illustrates the actions taken by these two subsys- 

tems when an attitude maneuver command is issued and a Caution & Warning 

(e.g. failure) event occurs. 

In the following diagram, nodes represent modular components of either the 

C&C or the GN&C subsystem and the arcs represent a subset of possible actions 

of the two subsystems. 



The tabular specification of the C k C  attitude controller and the GY&C control 

atlt itude subsyst,em follow 

C&C AC 

Enable 

Action 

XttMan ComRes 
I 



In the diagram, the GN&C control attitude subsystem is composed of four 

separate components: control attitude manager, torque command generator, CMG 

(control moment gyros) control & monitor, and the controller performance monitor. 

To illustrate the cornpositionality of individual component specification tables, the 

separate GN&C component specifications are given. Those actions which involve 

only GN&C control attitude subsystem components are internal t o  this subsystem 

and are not represented in the GN&C CA specification table. 

GN&C CA 

Enable 

{ ( ? ~ t t ~ a n , x )  V (!Att 

?CntlRes status 

Action 

AttMan ComRes 
I 



4. Application in Software Development 

The requirements specification of a software system is only one phase of the 

software life cycle. First, the specifications are written, analyzed for consistency 

and completeness, and tested. The specifications are then refined by iterative 

design stages into an implementation in a particular programming language. Next, 

the implementation is verified and processes are tested independently. Processes 

are combined into independent modules and tested. Modules are integrated into a 



system, which is tested and validated. Finally, the system is maintained. 

The proposed formal method is all encompassing in that  it can be  applied t o  any 

phase of the software life cycle. This formal method contains a specification model 

that  is both modular and compositional. A specification model possessing these 

characteristics supports the development process by driving the creation of smaller, 

disjoint system components of the concurrent program. One of the most important 

issues concerning specifications is the assurance that a particular implementation 

satisfies it,s specification. The verification model included in t,he proposed formal 

method provides this assurance by establishing either a postcondition or invariant 

of the implementation which can be shown to imply the specification. 

The productivity of the development process is improved by locating errors a t  

the earliest moment; ideally, when creating and analyzing the specification but cer- 

tainly when ensuring that  a particular implementation satisfies a specification. The 

specifications can be analyzed using the tool PVS [19] and the tabular specification 

notation is a natural origin for test case generation. Lastly, the maintainability of 

the system is simplified by providing a formal statement of the individual system 

component's behavior. 

To demonstrate the applicability of the formal method t o  other phases of the 

software life cycle, an  example of establishing that  an implementation satisfies its 

specification follows. 

3.1 Refinement of the Alternating Bit Protocol 

The implementation language chosen for the Alternating Bit Protocal is Java 

which supports thread synchronization through the use of monitors. In general, a 

monitor encapsulates data along with a set of access functions which support single 

thread access to  a data item. Critical sections are identified with the keyword 

synchronized and thread (delactivation is controlled by wait and notify commands. 

An implementation of the specification of the Alternating Bit Protocol pre- 

sented in sectlion I11 follows. 

class Receive 

{ 
private itein data; 

private int ackno, WaitAck = 1, LastSent = 0;  

private boolean progress = false; 
public synchronized void Acceptjiterri data) { 



while (LastSent == WaitAck && progress == false) 
wait () ; 

LastSent = (LastSent + 1) MOD 2; 
Forward(LastSent, data); 
while (progress == false); 
progress = false; 
while (LastSent == WaitAck) ( 

Forward(LastSerit,, data) ; 
while (progress == false); 
progress = false; 

1 
1 
protected synchronized void Reply(int ackno) { 

if (ackno == WaitAck) { 
WaitAck = (IVaitAck + 1) MOD 2; 
progress = true; 
notify(); 

1 
else 

progress = true; 

class Send { 
private i t em info; 
private int  messno, NextRequired = 1; 
protected void Forward(int messno, i t em info) { 

if (messno == NextRequired) { 
Write(inf0) ; 
NextRequired = (NextRequired + 1) MOD 2; 

1; 
Reply((NextRequired - 1) MOD 2); 

1; 
1; 

The class Receive includes the suspension of the execution of the method Accept 

when a new data item is received but notification by the class object Send confirms 

that the previous data item forwarded to Send has been corrupted. The current 

data item must be repeatedly forwarded to  Send until notification by Send confirms 

that the data itern has been received. At this time, any one of the suspended 

threads of execution can be resumed. 

To prove this Java implementation satisfies the specification of the Alternating 

Bit Prot,ocol presented in section 111, one must verify that  the postcondition of each 



call and of each method called defines a process trace for the class that  satisfies 

the corresponding row of the class7 specification table. A full set of axioms and 

rules of inference for monitors are provided in [28] in order to  perform this task; 

however, highlights of this process follow. 

A process trace will be associated with each declared object of a class; for 

this example, hRec and h ~ ~ , ~ ~ .  The elements comprising the process trace sequence 

hSend are very similar to  those listed in the specification table for the process Send 

when including the information omitted when preserving table space. The major 

difference is in the elements representing either a call t o  a method or that a method 

is called. Instead of using a one action element, two trace elements are used to  

record the call being made and the subsequent return from the method called as 

well as the start and end of the execution of a method. 

On the other hand, the elements included in the process trace sequence hRec 

include several new trace elements, two of which are the new elements listed for 

hSend. Two more elements will be introduced to represent the suspensions and 

resumptions of the threads of execution which occur due t o  tlie wait and notify 

commands. Therefore, the execution of a wait command causes the addition of 

a suspensioll element to the class object trace sequence hRe, and the execution of 

a notify command causes the addittion of a resume element. These new elements 

contain additional information due to  the need to introduce incarnation numbers 

which represent particular incarnations of tjhe method Accept [28]. 

For the method Forward in the class object S e n d ,  the postcondition is as follows: 

Postcondition { h>,,,(I) = (!Forward) A h;.,,,(2) = (?Reply) A 

hrSend(3) = (!Reply,NextRequired - I Mod 2) A 

A NextRequired = messno + 
{NextRequired = NextRequired + 1 Mod 2 A 

hkend(4) = (?Write) A hkend(5) = (!Write,info) A 

/1;,,,(6) = (?Forward,messno, in f 0 ) )  

A NextRequired # messno + 
{h>end(3) = ( !Reply ,Ne~~tRe~uiTed - I Mod 2) A 

h2.,,,(4) = (?Forward,messno, i n  f 0)) ) 

After making the stlbstitution of the specification variable names with the corre- 

sponding implementation variable names, removing from hRec those elements which 

were added for the purpose of applying the verification mode1 tto this implementa- 



tion, and transforming the postcondition of the method Forward into an invariant 

for the class object Send, will allow this invariant tto satisfy the specification table 

in section 111. 

For the method Reply defined in the class object Receive: 

Postcondit ion { h&,,(l) = (!Reply) A {ackno # WaitAc t  + 
hh,,(2) = (?Reply,ackno)) A { ackno = WaitAck  3 

{WuitAck: = WaitAck  + 1 Mod 2 A 

hh,,(2) = {?Resume)) ) A progress = true ) 

For the method Accept defined in the class object Receive: 

Postcondition { kk, , ( l )  = ( !Accept)  A progress = false  A 

3k. {Vj.  2 5 j 5 2 * k .  [ Even ( j )  A (LastSent  + lMod2 = Wai tAck )  =s 

h g , ( j )  = (?Forward) A 

hk,,(j + 1 )  = (!Forward,LusCSent, data) ] A 

h&,,(2 * k + 2 )  = (?Forward) A 

hkec(2 * k + 3) = (!Forward,LastSent, data) 

[LastSent # WaitAck  + hhe,(2 * k + 4 )  = (?Accept,data)] A 

[LastSent = WaitAck  + hh,,(2 * k + 4 )  = (!Suspend) A 

h&,,(2 * k + 5 )  = ('?Accept,data)] )) 

Combining the postconditions of the two methods and handling the multiple 

in~arnat~ions of the method Accept make the determination of the class object 

invariant for Receive difficult. The construction of the invariant requires the appli- 

cat8ion of several proof rules found in [28] which are not presented here. However, 

the pattern of sequence elements imposed by both the Accept and Reply method 

is consistent with the specification table for Receive. 

The individual class object invariants will be combined with a compatibility 

requirement on the class object trace sequences to ensure that any action in which 

two objects participate is recorded on the two trace sequences in a mutually con- 

sistent fashion. The definition of C m p a t ( h l , .  . . , h,) is as follows. 

Therefore, the values for those elements recorded in the trace sequence hR,, 

when issuing a call to  the method Forward will indeed be recorded in the trace 

sequence elements for receiving the method call in hSend. The proposed two se- 



quences of data items, .r and s, can be constructed from the ?Accept elements of hRec 

and from the !Write elements of hSend to ensure that this implementation satisfies 

the protocol requirement, .r & s. 

5. Comparison to Related Works 

Trace-based semantics for networks are based on either individual channel or 

process traces. The majority of these proof systems are of the channel trace va- 

riety and unfortunately suffer from being incomplete [14]. In order Lo overcome 

incompleteness, some authors have resorted to abandoning first-order logic in favor 

of temporal logic [31]. The process trace-based model presented here is (relatively) 

complete [ 5 ] ,  relies only on first-order logic, and is modular [26]. It has been ap- 

plied to all forms of concurrency and in a production-quality, large-scale software 

development system [27]. This process trace semantic model is a full abstraction 

of the operational model (contains sufficient information t o  prove essential proper- 

ties of the model without containing too much information, e.g. the internals of a 

process). 

Lamport[l5,16] introduces specifications which consist of a collection of state 

funct,ions that  map program states into sets of values; a collection of initial values 

for these functions which define the set of states in which the system may begin 

computation; and a collection of properties, written using temporal logic, describ- 

ing both the safety and liveness conditions required of the system. Lamport's 

specification model significantly differs fi-om the proposed specification model in 

that  only externally visible behavior of the concurrent program is specified. An- 

other major departure lies in the use of control predicates and prograrn counters 

in the specification of a process. Conversely, the proposed specification model cap- 

tures a process' behavior a t  a higher level of abstraction. In the proposed model, 

a process can be viewed as an abstract data object where t8he externally visible 

actions change the value (i.e. state) of the object. Therefore, the specification of a 

process defines the ~emant~ics of this abstract data object without including infor- 

mation concerning its implementation. In order to verify a process, Lamport must 

introduce auxiliary state functions and use temporal logic whereas in the proposed 

model the corresponding verification method in [26] can be directly applied to  the 

original specifications. 

Leveson9s AND/OR Tables [91] are a tabular representation of the disjunc- 



tive nor~nal  form of a Boolean expression. Specifications are written in RSML, 

Requirements State Machine Language, which uses state transitions to capture 

the functional behavior of the software. Transition conditions are translated into 

AND/OR tables. Functions were chosen to  guarantee completeness and consistency 

and tools are provided to  support this analysis. However, trhis choice forces spec- 

ifications t o  be deterministic. AND/OR tables can become difficult t o  use when 

transition conditions are written using such first-order logic operators as implica- 

tion and equivalence. Lastly, the application of this specification model, as well as 

the remaining specification models in this section, focuses only on the requirements 

specification stage of the software life-cycle. 

Parnas proposes the use of tabular representations of relatioils [20,21] for cre- 

ating program specifications which describe a set of statte sequences in a finite state 

machine. A variety of table formats are used to  define the mathematical functions 

and relat,ions that  capture the state transitions of the software system. The table 

format is proport,ed t,o aid in the understanding of multidimensional expressions 

and simplify the inspection of requirements specification documents. Numerous 

rules are provided for changing table formats in order to  provide the most read- 

able function definition. The main emphasis for providing a tabular notation is to  

support the construction of readable systems requirements documents. 

The SCR, Software Cost Reduction, method [12] describes the functional re- 

quirements of software and is applied during the requirements specification of a 

software system. This method includes Parnas' tabular representations to describe 

system functions, timing, and precision; however, the SCR method attempts t o  

provide a formal basis through the use of a (deterministic) state automaton, mon- 

itored and controlled variables, conditions, and events. Table functions are used 

to define output variables, terms, and mode classes for condition, event, and mode 

transition tables. Tools are available for consistency and completeness checks. The 

main application of this method is to embedded process control systems. 

6 .  Summary 

A formal method is proposed that  meets many of the needs and desires of the 

industrial community: the method can be a,pplied throughout the software life- 

cycle, has been used during industrial software development, and uses a notation 

that  amppeals to engineers. The specification model proposed records the external 



behavior of a process in a tabular manner using process trace sequences which 

record the externally visible actions of this process. Using this model, the specifi- 

cation of the externally visible behavior of each concurrent program captures the 

program's behavior wit,hout examining the internal structure of the individual pro- 

cesses. The modular proof systems presented in [26] can be used to verify that a 

particular implementation meets its specification and current tools exist to  support 

this acti~it~y. 
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