
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year 

”State-based Control Language a

State-based, Interrupt-driven,

Concurrent Language with Error

Detection and Recovery”

George Hellstern
Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/22

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1995-003

State-based Control Language a State-based, Interrupt-driven,
Concurrent Language with Error Detection and Recovery

George Hellstern

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

STATE-BASED CONTROL LANGUAGE A STATE-BASED,

INTERRUPT-DRIVEN, CONCURRENT LANGUAGE

WITH ERROR DETECTION AND RECOVERY

George Hellstern
Systems Analysis Department

Miami University
Oxford, Ohio 45056

Working Paper #95-003 June, 1995

ABSTRQCT

STATE-BASED CONTROL LANGUAGE A STATE-BASED, INTERRUPT-DRIVEN,
CONCURRENT LANGUAGE WITH ERROR DETECTION AND RECOVERY

by George Hellstern

A programming environment to support interactive, concurrent programming for Miarni University's
Flexible Manufacturing System is described. The environment is intended to replace the existing extended
cell programming language (ECPL), which was sequential in nature, to a state-driven one in order to
support concurrency. The system has been altered from being sequential to reactive and is interrupt driven.
This also enhances error detection and recovery capabilities. This paper will address the topics of Flexible
Manufacturing Systems (FMS) and programming languages for manufacturing control, and will then
develop a criteria for analyzing a FMS programming language. Based on that criteria, the former ECPL
language will be discussed and analyzed to address problems in ECPL. The paper will conclude with an
analysis of the new system outlining areas for further investigation and improvement.

State-Based Control Language
A State-Based, Intemrpt-Driven,

Concurrent Language with Error Detection and Recovery

?

A Thesis

Submitted to the
Faculty of Miami University

in partial fulfillment of
the requirements for the degree of

Masters of Science
Department of Systems Analysis

BY
George Hellstem
Miami University

Oxford, Ohio
1995

Advisor B-L-J~~&P--

Reader

1. INTRODUCTION 1

2. DESIGN CFUTERIA FOR WORKCELL LANGUAGES 3

3. THE CPL SYSTEM 5

3.1 MIAMI UNIVERSITY'S FMS WORKCELL
3.2 HISTORY OF CPL

4. THE ORIGINAL CPL 7

4.1 PORTS DECLARATION
4.2 DEVICE DECLARATION
4.3 PROCEDURE DECLARATION
4.4 AN EXAMPLE OF AN ORIGINAL CPL PROGRAM
4.5 DEVELOPMENT AND EXECUTION OF THE ORIGINAL CPL

5. EXTENDED CPL 12

6. ANALYSIS OF EXTENDED CPL 18

6.1 ANALYSIS BASED UPON WORKCELL CRITERIA
6.2 SUMMARY OF EXTENDED CPL'S STRENGTHS AND WEAKNESSES

7. CONCURRENT SYSTEMS AND SBCL 22

8. STATE DRIVEN WORKCELL PROG-G PACKAGES 23

9. IMP1,EMENTATION OF SBCL 31

9.1 REVIEW OF PROBLEMS IN OLD CPL 31
9.2 A =ACTIVE SYSTEM BASED ON INTERRUPTS 32
9.3 THE FINITE STATE MACHINE APPROACH 33
9.4 STATE-BASED, INTERRUPT-DRIVEN, AND CONCURRENT INTERPRETER 35

10. VERIFICATION OF SBCJ' 37

10.1 IMPLEMENTATION
10.2 INTERPRETER CONSTRUCTION

10.2.1 THE EVENT LIST
10.2.2 THE ACTION LIST
10.2.3 THE STATE MACHINE

10.3 FUNCTIONALITY OF SBCL
10.4 EXAMPLE OF SBCL P-CODE
10.4 THE GUI INTERFACE

10.4.1 DECLARING THE DEVICE OBJECTS FOR A WORKCELL USING SBCL
10.4.2 DECLARING ACTION OBJECTS FOR A WORKCELL USING SBCL
10.4.3 CREATING A FSM IN SBCL
10.4.4 THE PvlAM WINDOW

10.5 TESTING OF SBCL

11. ANALYSIS OF SBCL 48

11.1 ANALYSIS BASED ON WORKCELL DESIGN CRITERIA
11.2 STRENGTHS AND WEAKNESSES OF SBCL

1 1.2.1 STRENGTHS
1 1.2.2 WEAKNESSES

12, CONCLUSION AND AREAS FOR FUTURF: RESEAIICH 5 1

APPENDIX A 55

I. Introduction

A Flexible Manufacturing System (FMS) defined by Buzacott, (1980) is, "a set of

machines . . . linked by a material handling system all under central computer control." A

typical FMS consists of one or more numerically controlled (NC) machines linked by an

automatic guided vehicle or a conveyor belt. Other components typical to a FMS

environment are as follows: machine queues, common storage areas, bar coding devices,

tool management systems, and databasefknowledge base and networking systems (Rau,

1993). FMSs have been designed as a means to automate manufacturing facilities

targeted for manufacture of a.1arge varieties of parts such as a job shop facility, operating

in the medium to small batch size range.

As technology continues to advance in the areas of NC machine tools and

robotics, FMSs are becoming more common in manufacturing. There are five specific

advantages a FMS can provide to the manufacturing environment (Groover, 1980):

1. Higher machine utilization

2. Reduced work-in-process

3. Lower manufacturing lead times

4. Greater flexibility in production scheduling

5. Higher labor productivity

Each of these advantages translates into greater potential for satisfying customer demand

at lower costs, making a businesses more profitable.

The key quality of a FMS is its ability to adapt to changes in production. The

FMS is able to be reprogrammed to allow for the creation of a new part, or for the

addition (and subtraction) to the set of machines with which the system is operating. One

major part of the FMS that must be reprogrammed is the factory floor workcells, using a

workcell programming language. This programming requirement can become a

disadvantage to the smaller manufacturing companies operating without a systems

programmer. The simplest of workcell programs require an intimate knowledge of

machine level coding and data communications lacking in most engineers. Also, most

workcells will contain more that one machine, each machine operating with a different

command language, making programming a workcell a complex task. To add to the

complexity, command languages for manufacturing machines are usually low-level

languages slowing down the process of generating and debugging workcell programs

even further. Due to these several considerations, easy to use workcell programming

languages are needed for the typical FMS environment. Such a language should provide

the workcell programmer with a high level of abstraction to hide the specifics of the

machine-level coding and enable fast generation of readable programs. -

The purpose of this research is to investigate and extend a workcell programming

language called CPL created for controlling the Flexible Manufacturing System in Miami

University's CIA4 lab. First, a criterion upon which to base an analysis of workcell

programming languages will be developed in order to more objectively determine the

functionality and usability of a workcell language. The history of the CPL system will

then be discussed, after which the latest version of CPL will be analyzed for strengths and

weaknesses. The paper will then conclude with the presentation of a new language

2

developed as a result of this research.

2. Design Criteria for Workcell Languages

This section presents the requirements for a workcell programming language.

These requirements are based upon the work of Rau (Rau, 1993):

1) A FMS workcell must be able to distinguish between differing types of

manufacturing devices. For example the language must distinguish between input

devices such as a limit switch or a photocell, and output devices such as a robot or a

conveyor belt. An "object construct" must be developed in order to account for the

differing objects attached to the control computer.

2) The language must be able to send messages to FMS workcell components

that are controllable, and be able to allow message passing between components if

necessary. A message data structure would enable control as well as error detection and

recovery.

3) The language must allow the programmer to specifl time-based actions. For

example a certain function in the workcell may require a pause for a certain period of

time, or an operation may be expected to be processed within a given time interval.

4) The language must process variable type information. The workcell may be

processing more than one part at a time, and need a variable associated with the differing

part types, or run times may require some user input, which would require a variable to

store and process such information.

5) The language must incorporate flow-of-control constructs such as conditional

execution (if. . .then) and iterations (loops).

6) Ease of use is another important criteria. The language should be easy to use

as well as complete; an appropriate interface should be created. A complex, unwieldy

language defeats the purpose of creating a workcell language.

7) The language should support concurrency. In a manufacturing environment,

efficiency is essential to success; building a system which will support concurrency is

needed to minimize the makespan of production (the time from start to finish to process a

part). By establishing concurrency, a lengthy task can be completed on one component

while another task can be under way at the same time on a different component.

The functionality and usability of a workcell programming language is greatly

determined by the degree in which that language fulfills these seven specific functions.

These functions are based upon the general characteristics inherent to all FMS systems.

The most complete workcell language will meet all seven criteria.

It is to be emphasized that it is the of the above criteria that are the

important "requirements" for a FMS workcell programming language and not those

specific language constructs. The language components themselves merely represent the

functionality a given workcell is inherently capable of possessing. For example: a

language consisting of state diagrams will not have a literal ' i r statement in it; however,

that language will posses the capability of making 'if. . . then' types of decisions.

The following sections provide a history of the CPL programming language, and

examine the former two designs of CPL, analyzing them for their strengths and

4

weaknesses.

3. The CPL System

3.7 Miami University's FMS WorkceN

The Miami University CIM lab was developed for the purpose of instructing

students in the new technologies of computer integrated manufacturing (CIM). Students

learn about computer numerically controlled machines (CNC), the use of Autocad for

Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM). The CIM

lab also includes a FMS workcell that was designed and constructed by Miami University

faculty and contributing companies. The workcell is used to introduce the students to an

automated manufacturing environment which they may encounter in a job shop or batch

production facility. The students are required to program the workcell as part of the lab

curriculum.

The Miami University's FMS workcell currently has two robotic arrns, an

Automatic Storage and Retrieval system (ASRS), and a CNC Mill and Lathe all placed

around a material handling conveyor-belt. The workcell is designed to simulate getting a

raw part out of stock, cutting it, and putting it back into stock. Around the conveyor-belt

are stops used to control the flow of a pallet within the system. Limit switches and one

photocell provide feedback involved in detecting pallet arrival at various stations. See

Figure 3.1.

Data
Aquisitions
Board

Figure 3.1 - Miami University FMS Workcell

The two robotic arms are currently operated using two separate control computers.

The first control computer is responsible for operating the AS/RS, and the second control

computer is responsible for the rest of the cell. The two computers function

independently of each other as two individual units; one controls loading and storage of a

part, while the other controls the manufacture of finished parts. The computer

responsible for the AS/RS is able to control the conveyor-belt and pallet stops through a

robot controller connected to an LPT port. The computer responsible for part production

is able to control all aspects of the conveyor system (pallet stops, photocell, limit

switches, and conveyor belt) through a data acquisition board connected to the bus.

3.2 History of CPL.

Before a cell programming language was utilized for the workcell, students were

responsible for programming the system using assembly language and the robot

controller. Few students were able to learn the language well enough to write workable

programs due to the limited lab time. The first cell programming language, the original

CPL, was created by Meghamala (1992) and Farooq (1992) in 1992 and was later

updated in 1994 into a version called Extended CPL by Wang (1994). Since the

introduction of Cell Programming Language, all students have been able to write one or

more programs for the workcell, there has been more time available for the students to

learn key principles of data communication, and students have had greater opportunities

to develop their own projects using the FMS workcell.

The following three sections describe the original CPL version and the extended

version and conclude with an analysis of extended CPL's strengths and weaknesses.

4. The Original CPL

The first version of CPL consists of three sections of programming code: the ports

declaration section, the device declaration section, and the procedure declaration section.

It is described in detail in Meghamala (1992) and Farooq (1 992).

4.1 Ports Declaration

The ports declaration section is used to identify the inputloutput ports being used

by the control computer to communicate to the workcell's components. This section

allows for any number of COM ports, LPT ports, or addresses on the data acquisition

board to be declared. The declaration requires the name of the port (user defined), the

address of the port, and an indicator as to whether the port is designated for input or for

output. A sample is shown in Figure 4.1 :

Ports
PortA 640 Input;
PortB 641 Output;
PortC 642 Output;
Coml COMl2400 7 1 2;

End

Figure 4.1 - Ports Declaration Section

Note that for COM ports and LPT ports, the baud rate, data bits, parity, and stop bits are

specified here in the Ports declaration section.

4.2 Device Declaration

The device declaration section of the original CPL is similar in purpose to a

Pascal var section, where all of the program's user-defined variables are to be declared.

The variables defined in this section are representative of the devices connected to the

control computer (not to be confused with a Pascal data type). There are five possible

data types a CPL programmer can use to declare device variables, each corresponding to

a generic type of workcell object. They are as follows:

Coil - A device which will either be energized or not energized.

Sensor - A device which will supply input to the computer upon sensing
an activity. An example of this type of device is a limit switch or a
photocell.

Pulse - A device which will change its state when it receives a short
on/off signal (or pulse).

Programmable - As the name suggests, this device will receive a list of
code which will in effect program it to do something. An example of this
is the robotic arm.

Wait - A time oriented data type for creating pauses between operations.

Each device data type has associated with it a set of commands (or methods) that it is

capable of processing. These are the only functions the given data type is capable of

performing. A command statement consists of the concatenation of the device name, a

period, and the command word. The commands are shown in Table 4.1 :

Table 4.1 - Devices and Commands

In order to declare a device, the user must first define the name of the device, give

9

the device type, then the port assignment, and the data acquisition bit associated with the

device being declared (devices connected to COM or LPT ports do not have any data

acquisition bits associated with them). All CPL statements end with a semicolon. Many

such examples are shown in Section 4.4.

4.3 Procedure Declaration

The final section of an original CPL program is the logic section, called the

procedure declaration section. Using the declared objects representing the connected

devices, a series of commands invoking the functions available on these objects are

coded, for example:

Notice the structure for a command is simply the name of the cell object, followed by a

period, followed by the function, its optional parameter, and a semicolon.

4.4 An Example of an Original CPL program

Figure 4.2 shows a simple program written in original CPL. This program is

designed to send the nest command ("NT") to the device named "Robot" which is

connected to the PC Coml port. The COM port is declared in the Ports section and the

"Robot" is specified in the Devices section. The program then turns on the conveyor belt

(also specified in the Devices section), and waits for the photocell to be triggered. This

operation has a 5000 millisecond time-out parameter. Upon activation of the photocell,

the conveyor is turned off and the robot is sent the sequence of commands needed to

move a part. The robot's commands are in the file named StorePart.CMD.

Ports
PortA 640 Input;
PortB 641 Output;
Coml COMl300 7 2 0;

End

Devices
Photocell Sensor PortA 7;
Conveyor Coil PortB 5;
Robot Programmable Com 1 ;

End

Procedure
Robot.Send("NT");
Conveyor.On;
Photocell.WaitOn(5000);
Conveyor.Off;
Robot.Do(StorePart);

End

Figure 4.2 - Typical, Simple CPL Program

Notice that a CPL program has the following limitations:

1 .) Execution is strictly sequential with no iterations.
2.) Execution of operations in a procedure occur serially fiom top to bottom, i.e.

there is no concurrency.
3.) There is no error recovery associated with time-outs.
4.) There are no sub-procedures.
5.) There is no operator interfaces for display of messages or input fiom the

operator.

4.5 Development and Execution of the Original CPL.

To write and execute a CPL program the user has to first write the program using

a text editor, compile it using the CPL compiler, and then use the CPL interpreter to

execute the code. The compiler transforms the source code into an intermediate form

called p-code, which consists of the original textual code interleaved with the numeric op-

codes for the interpreter. See Figure 4.3.

~ l f l - ~ ~ ~ [= H ~ ~ m s Source Compiler preter
Cell

Figure 4.3 - Execution of a CPL Program

Due to the limitations listed in section 4.4, the original version of CPL was

extended. The extended version, called "Extended CPL," is described in the next section.

5. Extended CPL

The extended version of CPL (ECPL) was created in an effort to develop error

recovery, flow control, an operator interface, and sub-procedures. Each of these features

are reviewed below, and described in detail in Wang (1 994).

5. I Procedures

Programs written in ECPL retain the organization of having a ports declaration

section, a device declaration section, and a procedure declaration section; however, the

procedures declaration section has been renamed to program declaration section and an

option of creating sub-procedures (or subroutines), called procedures, has been

developed. In the same manner that Pascal requires procedures and functions to appear

above the main program body, the subroutines (procedure sections) of an ECPL program

must appear above the program declaration section. The structure of an ECPL program

is shown in Figure 5.1.

Ports
. . .
End

Devices
. . .
End

Procedure A
. . .
End

Procedure B
. . .
End
. . .

Program
. . .
End

Figure 5.1 - Structure of an ECPL Program

5.2 Error Detection and Recovery

The original CPL lacks error detection or recovery. For example, it does not

allow for recovery from time-out error detection on a sensing device. The system will

wait forever for a signal that may never arrive. The user is therefore left to guess which

function the system is waiting for, if he or she had not been watching at the moment the

error occurred. Extended CPL allows for time-out error detection of sensing devices, and

has the option of specifying an error routine to take control of the system if such a

situation were to occur. This adds error recovery to simple error detection. An example

of such a statement that will send control to a sub-procedure named "ErrorHandler" upon

the timing out of the sensing device "PalletArrived" is as follows:

PalletArrived. WaitOn(5000):ErrorHandler;

See section 5.5 for an extended example of how this statement might be used.

5.3 Flow Control

One criteria discussed in Section 2 of this paper is the need for decision constructs

in a workcell language in order to allow for the functionality of flow control. Looping

constructs also are mentioned as a need in a workcell programming language to allow for

repetitive processing of manufacturing routines. ECPL includes both decision constructs

and looping constructs. The language components: 'If', 'While', 'Until', and 'For' have

all been included with ECPL, allowing for flow control not possible in the older version.

Section 5.5 gives an extended example of how these statements work together.

5.4 Operator Interface

Two new object types were added in ECPL to support an operator interface: I 0

and String.

The I 0 device, which can be thought of as an external device attached to the

central computer, is used for a textual display and for input from the operator. I 0 devices

use the monitor as an output device and the keyboard as an input device. Operations on

I 0 devices include "Get," "Put," and "Poll."

The String type is similar to a Pascal string data type. It allows for the declaration

of a variable to receive a string of information from the user, through the keyboard.

The commands associated with these two devices are shown in Table 5.1.

Table 5.1 - Devices and Commands for I 0 and String Data Types

Strings and 10's are both declared in the device declaration of the program.

Example declarations of these objects and their usage are as follows:

Devices
InputA String;
Terminal 10;

End

Procedure ProcedureA
. . .
End

Procedure ProcedureB
. . .
End

Program
Terminal.Put("We1come to Miami University's FMS");

Terminal.Put("Please Enter Part to processes. --->");
Terminal.Get(1nputA);
ProcedureA.Run(If InputA.EQ("OO1"));
ProcedureB.Run(If InputA.EQ("002"));

End

This program exhibits the usage of IO's, Strings, and decision constructs, demonstrating

one example of where these constructs might work together for flow control in a typical

FMS workcell.

5.5 An Example of an Extended CPL program

Figure 5.2 gives a thorough example of an ECPL program designed to utilize

many of the new design criteria emphasized in ECPL. This program processes two

individual parts "001" and "002." The user is prompted for the part he or she wants to

process, and how many times he or she would like to process it. Then the robot is told to

process the part by the command file in Part001.cmd or Part002.cmd. (Please note that

all files being sent to a programmable device must be stored with a file with ".cmd"

extension, although as a parameter the ".cmd" extension is not included explicitly. See

Wang (1994) for more specific details.) In the case of an error, control is sent to

ErrorHandler where processing is stopped until a key is pressed:

Ports
PortA 640 Input;
PortB 641 Output;
PortC 642 Output;

End

Devices
Conveyor Coil PortC 5;
PalletArrived Sensor PortA 6;
PalletLiftUp Pulse PortC 4;
PalletLiftDown Pulse PortC 6;

16

Robot Programmable COM 1 ;
InputA String;
InputB String;
Terminal 10;

End

Procedure ErrorHandler
Conveyor.Off;

Terminal.Put("ERROR, Pallet has not arrived!");
Terminal.Put("Press Any Key to Continue");
Wait(Unti1 Consol.Pol1);
Conveyor.On;

End

Procedure ProcedureA
PalletArrived. WaitOn(5000):ErrorHandler;
PalletLiftUp.Strobe;
Robot.Send(PartO0 1);
PalletLiftDown.Strobe;

End

Procedure ProcedureB
PalletArrived. WaitOn(5000):ErrorHandler;
PalletLiftUp.Strobe;
Robot.Send(Part002);
PalletLiftDown.Strobe;

End

Procedure Interface 1
Terminal.Put("We1come to Miami University's FMS");
Terminal.lt("Please Enter Part to processes. --->");
Terminal.Put("Press 'Q' To Quit");
Tenninal.Get(InputA);

End

Procedure Interface2
Terminal.Put("How many parts to processes. --->");
Terminal.Get(InputE3);

End

Procedure Subcontrol
ProcedureA.Run(If InputA.EQ("O0 1"));
ProcedureB.Run(If InputA.EQ("002"));

End

Procedure Control
Interface 1 .Run;
Interface2.Run;
SubControl.Run(For InputB);

End

Program

Conveyor.On;
Control.Run(While InputA.NE("Q));
Conveyor.Off;

End

Figure 5.1 - Example of workcell program written in ECPL

6. Analysis of Extended CPL

This section will examine ECPL to identi@ its strong and weak points. The

analysis will first use the design criteria developed in Section 2 of the paper and apply it

to ECPL, then a pragmatic summary of ECPL's strengths and weaknesses is presented.

6. I Analysis Based upon WorkceN Criteria

1) Ability to distinguish between differing devices and their types:

ECPL is able to recognize the various machines connected to the control computer

in the workcell. The Devices section includes the possibility of creating seven data types,

five of which apply to machines devices connected to the control computer. There is the

ability to create unbounded numbers of these devices, allowing for the workcell to grow

and expand at any time.

2) The language must be able to send messages to workcell components that are

controllable, and be able to allow message passing between components if necessary:

ECPL allows for simple message passing to programmable device types.

3) The language must allow the programmer to specify time-based actions.

The time component of the workcell is handled both by the sensing devices and

the wait device .type. The wait device type allows for pauses during operation. The

sensing device allows for error detection by a "timing-out" of the sensor.

4) The language must process variable type information.

ECPL supports variables, allowing for the processing of multiple parts at the s m e

time. Input can also be received fiom the user during run time into variables, for

processing.

5) The language must incorporate flow-of-control constructs such as conditional

execution (if. . .then) and iterations (loops).

Decision constructs necessary to process the string data type have also been

included in ECPL. The 'If,' 'While,' and 'Until' statements allow for comparisons of

values and for control of the program to be sent to subroutines. ECPL is able to control

the flow of a part within the entire system (macro), as well as through individual

components of the system (micro). The macro control is accomplished through the

program section as well as through the subroutines. The micro control is accomplished

through the use of programmable data types, which allows for entire files of commands to

be sent to a device. Looping, for sequential iterations of a given manufacturing process is

supported in ECPL in three ways: the 'While' statement, the 'Until' statement, and the

19

'For' statement.

6) Ease of use is another important criteria.

The language presentation style is a simple text editor. Run time interfacing is

performed in the DOS environment. With minimal compiler diagnostics, the language

can be difficult to write and compile successfully.

7) The language must support concurrency.

ECPL executes statements strictly in sequence. Internally the interpreter uses

polling to monitor the state of each external input device. Thus, the interpreter can react

to only one event at a time -- the one it is waiting for. If other events occur, for example

because of an error or because of concurrent operation of another device in the workcell,

that event is simply ignored. That makes ECPL incapable of supporting concurrent

control of more than a single operation.

6.2 Summary of Extended CPL's Strengths and Weaknesses

Extended CPL has brought the original CPL from being a simple programming

tool to being a language that enables modular programming. The original CPL served to

save the student from having to learn the lower level coding required in Assembly

language, and provided an interface to the cryptic numeric languages with which most

FMS workcell components operate. W i l e the original CPL is a useful tool to enable fast

generation of readable programs, on the other hand it lacks important functionality such

as subroutines, user inputs, looping, etc. With ECPL some of that functionality has been

replaced, bringing CPL back up to a level near a high level language.

The language's strong points are as follows:

extensive flow control with looping constructs, conditional branches,

and subprograms.

operator interface

an unbounded number of devices

range of computer communications

good timing elements

The biggest weakness in ECPL is its inability to support concurrent processing.

Processing is strictly sequential disallowing for multiple actions to occur at the same

time. This detracts greatly from the overall efficiency of the workcell being programmed.

For instance the control computer is unable to react to two input devices simultaneously.

If it has been programmed to wait for the pallet to arrive at a certain station, it is unable to

hear the pallet arriving at a wholly different station. Consequently if the control

computer were to get out of sync with the system, it would perhaps never recover. If two

processes were to be performed at the same time, the control computer would only be

able to react to one of the processes, and would be forced to ignore the other.

Another weakness in ECPL is that it disallows the detection of spontaneous or

unexpected errors. The only form of error detection in ECPL is "timing-out" error

detection. The control computer continually polls a sensing device waiting for a signal; if

the signal never comes, then an error routine can be given control of processing. For a

larger system this is an inadequate procedure due to the fact that the amount of

unexpected errors are increased as well as the potential for hazardous situations to arise.

Compiler diagnostics are also a major weakness of ECPL. There are few

diagnostics generated, all of which lack a definitive description of the error.

In the next sections, the design of State Based Control Language (SBCL), the

latest upgrade of the CPL system, is discussed.

7. Concurrent Systems and SBCL

In the Miami University's CIM lab there is a need for a concurrent system able to

simultaneously control both robotic arms as well as the CNC and ASIRS. This

concurrent system would enable the entire workcell to be integrated and placed under the

control of one single control computer.

In addition, in a production FMS workcell, concurrency is needed to minimize

time from start to finish for the system as a whole. By establishing concurrency, a

lengthy task can be completed on one component, while another task can be under way at

the same time on another component. A workcell that is able to react to all activities

occurring in its components enhances error detection and recovery, and increases

performance.

A polling system, such as that used in ECPL, is only able to hear one device at a

time and is clearly limited in these areas. In a polling system, input can only be fed back

to the control computer during a specific time window. This rules out both concurrency

and unexpected events, including errors.

A truly concurrent system is always listening to the system, and responding to the

events as they happen. This is called a reactive system. This type of system bases its

actions upon the state in which the system currently is in, and the events tapping it on the

shoulder. Error checking and recovery from errors are significantly improved in a

concurrent system due to the fact that it can respond to any event.

In an effort to make CPL support concurrency, the language was redesigned and

renamed to SBCL. SBCL, which stands for State-Based Control Language, aims at

making CPL concurrent and state driven.

8. State Driven Workcell Programming Packages

The concept of describing FMS workcells using state diagrams has been

implemented before. There are several state transition packages available for the purpose

of designing and programming a workcell. This section gives a brief overview of some

of those packages.

8.1 Ladder Logic

Traditionally the design of a sequential control system such as a FMS workcell

was expressed in the language of relay ladder logic. Relay ladder logic was used in

conjunction with a Programmable Logic Controller (PLC). The PLC is a micro computer

designed to accept input fiom sensing devices in a workcell, such as a photocell or a limit

switch, perforrn some logic on that input, and generate outputs to control other external

devices, such as .motors or valves. The PLC is programmed using relay ladder logic to

act as the controller, opening and closing switches in response to the sensing devices

connected to it. Relay ladder logic is a graphical language consisting of a series of rungs,

contacts, and coils. The solid lines making up the rungs represent the path the current

will take, the contacts represent the sensors, and the coils represent the devices being

energized. For example:

--------I --------- (>

Light switch Light bulb

W e r e ---- is a rung, --/ I - - is a contact (input), and --()-- is a coil (Output). When the

light switch is closed, the light bulb receives the current and turns on.

Programming with ladder logic is nonsystematic and for complex systems it can

become quite convoluted and often times erroneous (Devanathan, 1991). An example of

a more complex ladder logic program can be seen in Figure 8.1.

R034 R033 ~031 ~017
1.3 ------ 111 ----- 111 -----I 1 ----- 1 I---

R034 R033 R031 ROlO
1.4 ------ 1 I me--- 111 ----- 1 1 ----- 1 I--- 2.4

Figure 8.1 - An example of Ladder Logic (Taken from (Devanathan, 1991))

8.2 State Transition Diagrams

Another programming method used in programming FMS workcells is to use

Finite State Machines (FSMs - not to be confixed with FMSs) which are expressed using

state transition diagrams (STDs). This method became popular in the eighties after being

used previously by circuit designers in the logical design of circuits. The advantages that

STDs provide to system design are in their ease of automation, ease of maintenance, and

ease of use for troubleshooting (Devanathan, 199 1).

State Diagrams are similar in nature to finite automaton diagrams. They are

composed of nodes and arcs with associated labels. The nodes of an STD represent the

possible states the system can be in. States represent a particular condition of the system,

where the current state is a result of what has happened in the past. For example, an error

state would be the resulting state if the system encountered an error in production. The

lines of an STD represent inter-state transitions that occur within the workcell, the

directions of the transitions are denoted by arrows. Actions to be taken during a given

state transition (as well as conditions that must be met for that transition) are labeled on

the inter-state transition lines. See Figure 8.2 for an example of a STD.

1-1 light switch CLOSED 1-1
LIGHT OFF LIGHT ON

STATE 1 STATE 2

Figure 8.2 Example of a STD

One example of a state-based control language are the two software packages that

work as a unit with state diagrams called PROLOC and AILISTD (Devanathan, 1991).

PROLOC takes a STD and transforms it into ladder logic for use on a PLC. AILISTD is

an English text based language that takes cause-effect sequence inputs from the user and

converts them into State Diagrams (therefore, AILISTD can be circumvented if the state

diagram has already been developed). An example of an AILISTD statement:

"When device-name_/ is{active, not-active), device-name-11 is {active, not-active)"

A restricted grammar input format is used, parsing from left to right. Key words such as:

"when" and "is" are used in determining the meaning of the statement. Logical operators

are also included to enable the specification for multiple conditions to be met. Each

entity of the system is assigned a variable for reference within the program.

8.3 Statemate

As STD diagrams became more popular, certain restrictions were discovered in

their implementation. In an attempt to make the state diagram more useable, a new

approach was investigated and discussed in (Harel, 1987) called "State-charts." State-

charts were designed to deal with the problem of STDs being too:

hard to read - need hierarchical decomposition

difficult to draw

unusable for stepwise refinement

non-decomposable to usable code

non-user fiendly

State-charts combined the STD with the three concepts, '"erarchy, concurrency, and

communication," which worked to, "Transform the language of state diagrams into a

highly structured economical description language" (Harel, 1987).

What State-charts do in summary is: 1) Reduce the number of arrows required in

designing a complex system by using clustering of nodes, 2) Represent concurrent

systems by using orthogonal representations of clusters, 3) Systemize entry into clustered

nodes to reduce the number of arrows, and 4) Provide hierarchical decomposition of the

STD by adding zooming. These refinements reduce the confusion involved in the use of

STDs, and systemize their creation, making the language of state diagrams more

descriptive and precise. See Figure 8.3 for an example of a State-chart. State-charts are

discussed in detail in (Harel, 1987).

f~itiren quartz multi -alarm 111 I

olarmf -status

ball aa(rlM

C 2

Figure 8.3 Example of a State-Chart diagram. Taken from (Harel, 1987).

Figure 8.3 is a State-chart representation for a Citizen quartz watch, where each square

represents a state the system can be in. The encompassing squares show aggregation of

states, a feature of State-charts. The dotted lines show orthogonality, and represent states

and actions which can occur concurrently. The largest square is the state of "being" for

the watch and inside of that state, the watch is either in the state of being dead or being

alive, represented by the two sub-squares immediately within the outer square.

In the software package Statemate, built upon the concept of State-charts, three

aspects of the system are analyzed by the programmer, and are graphically represented in

State-chart form through the tools in Statemate: the structural view, the functional view,

and the behavioral view (Chaar, 1990). The first view defines what components make up

the system, the second view describes the hierarchy of activities the system will perform,

and the third view describes how the various activities and modules of the system interact

with one another.

8.4 Petri Nets

A Petri net, named after Carl A. Petri and invented in 1962, is a graphical flow-

chart-like representation used to "specify, analyze, simulate, and evaluate" the changing

behavior of a given system. Petri nets allow for the modeling of concurrency, by giving a

separate representation for the hierarchies of possible events that may take place and the

corresponding states that may occur within each specific time frame. PN's are

particularly powerful in visually presenting synchronization between events, and in

detecting possible deadlocks or inadvertent exclusions of a machine or a module during

the development of a FMS workcell (Chaar, 1990). Since their creation, Petri nets have

been elaborated many times and many new versions have resulted: Modified PN's,

Augmented PN's, Timed PN's, and Colored PN's. PNYs are best for a smaller system

because they tend to become convoluted as the system grows larger and more complex.

As a language, PN's are missing the required data structures to create a

representation for the objects that may be connected to the system, as well as any data

structures at all, and consequently are only used as a design tool rather than an

inplementational tool for a FMS workcell (Rau, 1993). As a design language, they are

however, especially useful and are one of the few languages that represent concurrency.

8.5 A Comparison

Relay ladder logic, as a language, is lacking in its presentation style. As the

programs grow, so the complexity of the ladder grows, making a quick interpretation of

the design difficult. Relay ladder logic programming is often done in a non-systematic

way, and consequently is often codusing or erroneous.

The presentation style of STDs used in PROLOC and AILISTD, while an

improvement over relay ladder logic, become confusing as the system gets larger. On

smaller systems STDs are easy to create, easy to maintain, and easy to troubleshoot;

however on larger systems an alternative is needed. One other feature STDs lack is a way

to model concurrency within the system. In a STD it is the operational features of the

system that are emphasized. Statemate and Petri-nets provide an alternative solution to

the problems encountered with STDs, and both offer concurrency.

PN's neglect the representation of actions occurring within the system as a whole,

while Statemate makes special exception to include them. Both allow for the

representation of actions occurring inside the system, providing a local view of process

flows. As of 1993 only Statemate included timing constructs, while PN's had submitted

proposals to include them (Rau, 1993). Data structures, programming statements,

decision making based on user-defined variables (such as "if. . . then" statements), and

looping constructs are all included in Statemate, while PN's only include the looping

constructs.

The specific advantages associated with each package are as follows:

Relay Ladder Logic- the traditional approach

PROLOC and AILISTD- the English textual interface, and state variable

approach

Statemate- exhaustive, graphic approach (Rau, 1993).

Petri nets- provide for analysis capability, such as deadlock detection (Rau,

1993).

From this comparison it can be seen that a successful workcell programming language

will include concurrency, simplicity of design, and the various data constructs outlined in

the second section of this paper.

9. Implementation of SBCL

This section will describe the various design criteria used in the creation of SBCL.

The paper will then conclude with a detailed look at the strengths and weaknesses of

SBCL, analyzing them based upon the criteria developed in Section 2, as well as from an

overall standpoint of hctionality and usability.

9. I Review of Problems in Old CPL

The problem that had been plaguing CPL since its debut in 1992 was the error

recovery problem. The first two versions of CPL limit the control computer's ability to

detect errors because it does not allow input signals unless it is ready to receive them.

This implies that a programmer using the first two version of CPL needs to be able to

anticipate when an error will occur, set the computer in a listen status before it occurs,

and wait for the error. Not only does the programmer have to anticipate when the error

will occur, he or she has to anticipate where the error will occur in order for the control

computer to listen to that specific device to determine if it is indeed occurring. While the

control computer is listening for the error, no other processing can be accomplished,

because the first two versions of CPL don't support concurrency. This makes effective

error checking and recovery an impossibility.

A workcell language should be able to detect any and all activity coming from

every component at any given time, while the system remains in total control of product

flow. For example, if a signal from the pallet lift center were to come into the control

computer, the system must be able to know, given the state the system is currently in,

whether that signal is an appropriate one and, if not, what to do about it. A state-driven

approach would allow CPL to retain a record of the past occurrences in order to properly

respond to the present circumstances. A system able to accomplish this level of

performance would have to be a reactive, state-driven system.

9.2 A Reactive System Based on Interrupts

In order to make CPL a reactive control system, the interpreter was changed to

use an interrupt driven approach rather than the previously used polling approach.

Interrupts were generated by utilizing the data acquisition board's capability of

generating them in order to detect external events as they occurred. If, while in the

middle of an action, the control computer detects an interrupt (an event), the interpreter

will generate a corresponding event and put the event into a queue, finish the action it is

currently performing, refer to the queue, and process any pending events.

9.3 The Finite State Machine Approach

In order to make CPL retain its record of past history, FSMs were used. By using

a state-based design, such as a FSM, a system can be programmed to carry out different

actions for each particular event based upon its current state. The first two versions of

CPL, Original CPL and Extended CPL, were sequential, i.e. a series of actions were sent

in a 'list of things to do' to the control computer, which then drove the workcell. The

control programs acted like a recipe, telling the central computer what to do and when.

The state driven system gives the control computer a series of statelevent combinations

with corresponding actionhew state assignments. With a state-driven system the

computer is no longer forced to ignore an unexpected event, nor is it left guessing what

should be done in the case of that event. As soon as the event occurs, the computer looks

up in a table what corresponding action needs to be performed based upon what state the

system is in. From this point it can be programmed to respond accordingly. After

processing the action to be done, the computer adjusts its state by proceeding to the next

state it has been programmed to proceed to. The new state would then contain its

separate list of processes to do given an event, as well as the corresponding state

transitions. The states, therefore, provide the record of what has happened within the

system. The only way a given FSM can be in a particular state is if the computer has first

completed an action and then put the FSM into that state (see Figure 9.1).

As an example of how the event /state - action / new state cycle would proceed,

here is a scenario that a simple workcell may encounter. In this scenario the conveyor

belt is turned on by a starting event, Start-Key pressed. Then, the system waits for a

pallet to pass a photocell. Given that event, the pallet stops are turned on and the system

waits for the pallet to arrive at the station. When the pallet arrives at the station, it is

lifted and a part is loaded. Once it has been loaded the pallet is lowered and it returns to

the initial state to wait for another pallet to arrive. Figure 9.1 shows the FSM diagram as

a STD given the processing cycle just described.

Event => Start Key Pressed

Event => Part-Loaded P Y Event * Photo-Cell-ON

Action => Lower-Pallet Action* Pallet-Stops-ON

Event* Pallet-hves
Pallet-UP Pallet-IN State
State Acbon * Lift-Pallet

Figure 9.1 - FSM using a STD

As this workcell is in the "Pallet-IN" and is waiting for the pallet to arrive, suppose the

photo cell is triggered again to signify that another pallet is about to arrive. This could be

an error. The activation of the photocell will produce an event, and the control computer

will then search through its table to find out what it should do, given the state

"Pallet-IN." With the finite state machine in Figure 9.2, the control computer would find

that if it is in the state of having a pallet in the system, the photocell is activated, then an

error event is to be generated. This error event would also have its action and appropriate

new state (see Figure 9.2).

Figure 9.2 - FSM using a State Table

StartKeyqressed

Photo Cell Activated

Pallet-arrived

ParLloaded

Error

9.4 State-Based, Interrupt-Driven, and Concurrent Interpreter

Given the state/interrupt-driven nature of the system, concurrency is now possible.

The polling-based implementation of the previous two versions of CPL had the problem

of focusing the resources of the control computers on one particular action to be

processed. With the FSM approach and the use of hardware interrupts, SBCL addresses

this problem by allowing the system to be reactive.

The design approach for SBCL is as follows. In SBCL the control system is

Initial State

Act.-> Conv-ON

New-st->

No-Pallet

Act.->

New-st->

No-Pallet

Act.-> Pal-St-ON

New-st-> Pallet-IN

Act.->

New-st->

Pallet-IN

Act-> Gen-Error

New-st->Pallet-IN

Act.-> Lift-Pallet

New-st-> Pallet-UP

Act.->

New-st->

Pallet-UP

Act.-> Lower-Pall

New-st-> Init-State

Act.->

New-st->

modelled using separate machines for each autonomous manufacturing operations, one

for each concurrent activity. Then, when an interrupt occurs that indicates an external

event, the corresponding event code associated with that interrupt is placed in an event

queue. As soon as the SBCL has completed any currently in-progress action, it checks

the events queue; if there is a pending event, it will then examine each state machine (like

the one in the above scenario) in order of their creation, find the appropriate action / new

state to be performed for that state / event combination, perform the action, and change

the state of that machine. This method effectively creates a concurrent processing

environment. Figure 9.3 sumarizes this process.

Event

T -"&
Interrupt

FSM 1

Event
Queue

FSM n

Figure 9.3 - Illustration of FSM4nterrupt Concurrent Processing in SBCL

36

10. Verification of SBCL

In order to verify SBCL, the interpreter and interface were built and tested on the

FMS workcell in Kreger Hall, at Miami University. A description of the actual

implementation is as follows.

10.1 Implementation

SBCL uses object oriented techniques, The user-interface is written in Visual

Basic and the interpreter is written in C++ on an IBM-compatible PC. It consists of a

user interface for accepting the description of a FSM and an interrupt driven interpreter to

execute the p-code created by the interface. Interrupts are generated using the technology

built into the Omega Data Acquisitions Board, and a companion program that came with

the board, written for the purpose of redirecting hardware interrupts to user defined

procedures. The details about the design of the interpreter as well as a description of the

graphical user interface are as follows.

10.2 Interpreter Construction

SBCL was designed with four main objects used for control of flow within the

program. Input to the SBCL interpreter consists of a series of numbers. The first four

numbers tell the interpreter how many lines to read, as well as how many objects it is

going to create for control of the flow in the workcell. The objects used by the interpreter

3 7

are as follows: 1) A double array called the event list, 2) A single array called the action

list, and 3) A class called a "state machine." They are described below.

10.2.1 The Event List

The first object, a fixed length double array, is used for the purpose of storing

which event to place in the event queue in response to a hardware interrupt. Each field of

the array contains a number that corresponds to the corresponding event code to be placed

in the event queue. The array is initialized to zero, this is done so that the programmer is

not required to assign an event code to every possible interrupt, but only to those in which

he or she is interested. When an interrupt occurs, the registers AX and BX are loaded

with the bit number on the DAB where the interrupt occurred, as well as a logical One or

Zero to show whether the signal was fiom an activation or deactivation of a sensor.

These two values become the indices to the event list.

10.2.2 The Action List

The second object, the action list, is a list of numbered actions to be taken given

an event. The action list array is made up of pointers to objects derived fiom the sarne

base class, called action(). The common function all action objects share is the execute()

function for executing the designated action. When an action needs to be performed,

based on an eventlstate combination, the field containing the pointer to the appropriate

action object is called by the state machine and told to execute().

10.2.3 The State Machine

The third object, the finite state machine (FSM), is an object described using a

transition matrix of events and states. There can be as many FSMs created as needed for

a workcell (see Figure 9.3). Each coordinate in the state chart contains two values, the

first being the appropriate action to be called and the second being the appropriate new

state. The current state of the machine is stored in a variable and whenever an event is in

the event queue, the statelevent coordinate is checked for each state machine, and if there

is an action associated with that coordinate, it is executed. See Figure 10.1 for an

illustration of this objects and its functions.

Figure 10.1 - The FSM structure and its interaction with the Action Array

Finite State Machine Action Array

Action -- Object

0

1

1 Event = 1 2

3
-

10.3 Functionality of SBCL

SBCL has eight operations that can be performed by an action object. These eight

operations are each assigned a unique op-code. Each op-code has associated with it

certain parameters required for the action to be carried out. A list of the various

operations, their op-codes, and associated parameters are shown in Table 10.1.

Op-Code Function Parameters
0 Do-Nothing None

Send a string
Strobe a Bit
Set Bit On
Set Bit Off
Send an Error Message
Generate Event/Do Action
Timer
Send a File

Com Port, String
Port #, Bit #
Port #, Bit #
Port #, Bit #
Message to Send
Event #, Op-Code, Operation parameters
Atnount of time to pause (in Milliseconds)
Com Port, File Name

Table 10.1 - Op-Codes, Function, and Parameters for SBCL's Action Objects

10.4 Example of SBCL P-Code

Figure 10.2 gives an example of p-code used to run the SBCL interpreter. This

example includes comments for a better understanding of the numeric code; however, the

SBCL interpreter has not been constructed to allow for comments.

-- The # of events to be read into the event list
-- How big to make the Event Q
-- The # of actions to be read into the action list
-- The number of state charts

-- The event number followed by the interrupt #
40

-- note: that the interrupt # consists of the
-- interrupt bit on the DAB as well as the
-- logical operator 1 or 0 (for ON or OFF)

1 1 640 5 -- The action number followed by the op-code,
2 5 0 Error in Pallet lift -- followed by the parameters
3 2 640 7
4 4 640 0
5 3 640 2

-- The number of states for state chart #1
-- The number of evenustate comb. to be input
-- note: all other permutations will be given the
-- initialized values
-- The State, the Event, the Action, and New State

Figure 10.2 - Example P-code for the SBCL Interpreter

10.4 The GUI Interface

The examples in the following sections are taken from the Miami University FMS

workcell located in Kreger Hall, and demonstrate the SBCL interface.

10.4.1 Declaring the Device Objects for a Workcell Using SBCL

The user is required to first build a list of the devices that are connected to the

control computer. The purpose of this window is similar to the device declaration section

of the two older versions of CPL. The user names the device, chooses the object type for

the device (Coil, Sensor, Pulse, Programmable, and a new device type- FSM), specifies

its appropriate port, and chooses the DAB bit number if applicable. Once the appropriate

details have been selected, the user then presses the Add button. The object is then added

to the list on this screen as well as to a drop-down list box in the action window (see

Figure 10.4). Any devices declared as sensor are added to the finite state machine as

events in the state/event chart. For each FSM device declared, a corresponding FSM

machine will exist for the user to fill-out with the events already present. Multiple FSMs

must be declared in order for concurrent processing to exist. At least one FSM must be

specified and added to the list. Figure 10.3 shows an example of a completed list of

objects.

Figure 10.3 - The Object Window

10.4.2 Declaring Action Objects for a Workcell Using SBCL,

The user is required to create a list of actions for the workcell to perform. The

available actions correspond to the op-codes previously listed (see Table 10.1). In this

window an object is to be selected from the drop-down object's list box (created by the

previous window) and then an appropriate action is selected from the action list and given

a name. The user then presses the Add button and the action is added to the list on this

window as well as to a drop-down list box in the FSM window (see Figure 10.4 and

10.5). Parameter frames appear for the user to enter required parameters. For example,

the amount of time to wait during a timer action, or the string to be sent to a

programmable object. Available action choices are limited once an object is selected due

to the fact that the objects only have certain functions that can be performed (see Table

4.1). Figure 10.4 gives an example of a completed action list.

Figure 10.4 - The Action Window

10.4.3 Creating a FSM in SBCL

The user is required to build the various FSMs that have been declared in the

Device Object window. From the drop-down list box of FSMs created in the device

objects window on the Main screen, the name of the FSM to be specified is selected (see

Figure 10.6) and the "Build a F S M button is selected. The name of the FSM appears in

the upper left-hand corner of the screen and the appropriate FSM matrix appears. At this

point the matrix will be empty except for the events column, which was created

previously while sensors were being declared in the device object window. States must

be named and declared for the FSM, as they are added they appear in the FSM

sequentially as columns. Once the appropriate states have been declared, the FSM is

ready to be programmed.

44

Programming of the FSM is done by specifying the event - state coordinates, and

selecting an appropriate new state and action for that coordinate. Once the appropriate

coordinates and actionlnew states have been declared, the user must press the addedit

button to add it to the matrix. Figure 10.5 gives an example FSM under construction.

Action : [I . conveyor ON]

Figure 10.5 - The FSM Window

10.4.4 The Main Window

In the Main window, the user is presented with five buttons and a list of FSMs

that have been created in the device objects window (at start up the list is empty). The

user must navigate through the interface using this screen. The first two buttons get the

user to the windows that build the device objects list and the action objects list. The third

button gets the user to the FSM window, and the last two are used to generate the p-code

and to run the interpreter. At the present moment the run button is not implemented.

SBCL programs, like the ECPL version, must be run through an external interpreter after

the p-code has been generated. The interpreter is activated by running the executable file

"SBCL.EXE" and specifying the name of the p-code file. For example, typing the

command: SBCL DEMO.OUT at the command prompt in DOS will execute the SBCL p-

code in the file DEMO.OUT (please note that all generated SBCL code must have the

".outv extension). Figure 10.6 shows the main window for SBCL.

8 SBCL &%I

Figure 10.6 - Main Window for SBCL

10.5 Testing of SBCL

The SBCL interpreter and GUI interface have been run several times successfully

in the Miami University FMS workcell located in Kreger Hall. Error routines were

tested, as well as concurrent procedures. An example of a working demo for the Miami

University FMS workcell is shown in Appendix A.

11. Analysis of SBCL

This section will look at SBCL from the perspective of the design criteria laid out

in section two of this paper. Then SBCL will be analyzed from a usage standpoint, with

an elaboration of its strengths and weaknesses.

11. I Analysis Based on Workcell Design Criteria

1) Ability to distinguish between differing devices and their types:

In SBCL, the control computer is able to recognize an unbounded number of

devices connected to it. Devices can be connected through COM ports, LPT ports, and

internal ports, allowing for the addition of new objects as the workcell grows. All actions

are specified and associated with an external port and a specific signal for the purpose of

communicating with the various devices. The COM port specifications are made once in

a separate file, comsetup.ini, just as in the extended version of CPL. In this manner

communication parameters are specified once only, saving the CPL programmer from

added complexity and confusion. All other communication is accomplished through the

DAB.

2) The language must be able to send messages to workcell components that are

controllable, and be able to allow message passing between components if necessary:

Communication between devices is accomplished through the control computer.

Strings and files with the ".cmd" extension (note: while programming an action to send a

file, the ".cmd" extension does not have to be specified. For exmple to send the file

LOADPART.CMD, the user need only write LOADPART, it is assumed that the file has

been stored with a ".cmd" extension) can be sent to programmable devices connected to

COM ports.

3) The language must allow the programmer to specifj time-based actions.

There is a timing construct in SBCL, which will allow a pause for a specified

period of time. This timing construct can be used in situations such as an inspection

station where some sort of visual processing can be accomplished.

4) The language must process variable type information.

There is no explicit variable representation within SBCL.

5) The language must incorporate flow-of-control constructs such as conditional

execution (if. . .then) and iterations (loops).

Conditional execution and looping are incorporated within the language of FSMs.

6) Ease of use is another important criteria.

With the graphical user interface, SBCL has become an extremely easy

programming language to use.

7) The language must support concurrency.

SBCL was designed for the purpose of establishing concurrency. See Section 9

for more details.

11.2 Strengths and Weaknesses of SBCL

11.2.1 Strengths

SBCL has the following strengths:

Graphical User Interface

Concurrency

State-Driven Processing

Error Recovery

Error Detection

Simplicity of program design

As mentioned before SBCL is able to process two independently running sections

of a workcell concurrently. This greatly increases the efficiency of a FMS.

SBCL is reactive in nature, enabling the control computer to be aware of any

activity occurring within the workcell. This enhances error detection and includes the

added dimension of recovering from errors, a valuable characteristic in a FMS workcell.

The programming of SBCL has been reduced to the development of a state

machine. Due to the simplicity of state diagram, programming a workcell has been

simplified. This saves time by removing the need for proofreading, or debugging a long

textual program (with syntax and semantic rules).

SBCL also includes the feature of allowing the user to use the keyboard to enter

an event into the event Queue, which enables interaction with the user during run time.

11.2.2 Weaknesses

SBCL has lost the previous version's ability to time out while waiting for a given

device to register an interrupt, and in certain situations this may be a desirable feature.

At the present time SBCL has no way to prioritize events, they are simply

processed in the order in which they occur. The only event which has priority is the ESC

key being pressed, which will reinitialize the system and exit the program. A priority

system for differing events would further decrease the makespan of a part in high

demand. For example, by prioritizing the event of a high priority part's arrival, the higher

priority part could then be processed ahead of lower priority parts.

With the redesign of the compiler and interpreter, SBCL lost the variable

constructs. Although events can be considered variable constructs of a sort, they do not

store any data to be used in future processing. True variable constructs in SBCL could be

used to implement user input, a vision system, or a bar coding device.

12. Conclusion and Areas for Future Research

By virtue of its graphical user interface, workcell programming at Miami has

become a more user friendly process. By making the interpreter both interrupt and state

driven, SBCL is now able to support concurrency, as well as able to recover from errors

and to be more sensitive in detecting errors in comparison to CPL.

SBCL can be further validated and tested by using it to integrate the AS/RS into

the Miami workcell.

Some areas of further research for SBCL are:

1. Processing of Variable constructs and the implementation of a bar coding

device, a vision system, or a user interface during run time.

2. Incorporate a way to prioritize events in the system.

3. Incorporate timing-out error detection on sensor devices.

4. Develop a graphical representation of the state transition diagrams for the

development of programs.

5. Incorporate Printed reports of the state charts, programmed using the

compiler, or provide reports for cross referencing of events between finite

state machines.

6. Incorporate simulations of the user created FSM cycles that will display

what will happen during run time in the FMS workcell.

In conclusion, SBCL provides superior error detection and recovery, supports

concurrency, and is much easier to use than CPL.

52

REFERENCES:

Apt, Krysztof R., Logics and Models of Concurrent Systems, Springer-Verlag, Berlin,
1985.

Brown, Frank M. (1991), "An Improved State Diagram," Transactions on Education vol
24, No 2, May, pp. 199-203.

Chaar, Jarir Kamel, A Methodology for Developing Real-Time Control SoJtware for
Eficient and Dependable Manufacturing Systems, Doctoral Dissertation for PHD
in The University of Michigan Dept of Computer Science and Engineering, 1990.

% Devanathan, R. (1991), "Computer Aided Design of Sequential Control Systems Using
State Diagrams and A1 Techniques," Journal of Electrical and Electronics
Engineering vol 1 1, No 4, December, pp. 227-232.

Eilenberg Samuel, Automata, Languages, and Machines vA&B, Academic Press,
NewYork, 1974.

Farooq, Shabi, SoJtware Development for Manufacturing Systems - Language and
Networking Issues, Working Paper #92-013, Systems Analysis Dept., Miami
Univ., Oct., 1992.

Goos, G., Hartmanis, J., Lecture Notes in Computer Science v224 - Current Trends in
Concurrency, Springer-Verlag, Berlin, 1986.

Croover, Mike11 P., Automation, Production Systems, and Computer Integrated
Manufacturing, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1980.

Harel, David (1987), "Statecharts: A Visual Formalism for Complex Systems," Science
of Computer programming vol8, pp. 23 1-274.

Hatley, Derek J., Pirbhai, Imtiaz A., Strategies for Real-Time System SpeciJication,
Dorset House Publishing, New York, NY, 1987.

Harel, David, et a1 (1990), "STATEMATE: A Working Environment for the development
of Complex Reactive Systems," Transactions on SoJtware Engineering vol 16, No
4, April, pp. 403-413.

Meghamala, N., Development of an Object-Oriented High-Level Language and
Construction of an Associated Object-Oriented Compiler, Working Paper #92-
015, Systems Analysis Dept., Miami Univ., Dec, 1992.

Rau, Hsin, Modeling Automated Manufacturing systems @om SpeciJication to Simulation,
Doctoral Dessertation for PHD in The University of California Los Angeles Dept
of Mechanical Engineering, 1993.

Silver, Edward A., Peterson, Rein, Decision Systems for Inventory Management and
Production Planning, second edition, John Wiley and Sons, New York, 1985.

Wang, Zhurning, Cell Programming Language: Investigation of extension forflow
control and error recovery in the language, Working Paper #94-0, Systems
Analysis Dept., Miami University, November, 1994.

Ward, Paul T., Mellor Stephen J., Structured Development of Real-Time Systems vol 1,
Yourdon Press, New York, NY, 1985.

Wright, Paul Kenneth, Bourne, David Alan, Manufacturing Intelligence, Addison-
Wesley Publ. Co., Inc., Reading, Mass., 1988.

APPENDIX A
Working Demo for Miami Universities CIM Lab FMS Workcell

Device Objects, Action Objects, and Finite State Machines

Device Objects

Action Objects

