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Abstract. This paper reports the results of two experiments investigating differences in comprehensibility 

of textual and graphical notations for representing decision statements. The first experiment was a 

replication of a prior experiment that found textual notations to be better than particular graphical notations. 

After replicating this study, two other hypotheses were investigated in a second experiment. Our first claim 

is that graphics may be better for technical, non-programmers than they are for programmers because of the 

great amount of experience that programmers have with textual notations in programming languages. The 

second is that modifications to graphical forms may improve their usefulness. The results support both of 

these hypotheses. 
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1. Introduction 

The increase in sophisticated graphical user interfaces for diverse systems can be attributed to maturing 

graphics software as well as affordable, powerful graphics hardware. There is corresponding activity in the 

application of graphical approaches to programming: in program visualization, visual databases, languages 

for image processing, visual environments for textual languages, and visual programming languages 

(Burnett and Baker, 1993). The search for a truly visual programming language (Kiper et al, 1996) with 

experimentally verifiable benefits to user comprehension has been less than successful (Moher et al, 1993, 

Pandey and Burnett, 1993, Petre and Green, 1993). However, intuition suggests that appropriate graphics 

may have positive effects on some aspects of program comprehension.. 

This paper describes an investigation of the ability of programmers and non-programmers to 

comprehend visual representations of certain aspects of programming languages versus their ability to 

comprehend corresponding textual representations. This investigation begins with a replication of a prior 

experiment (Green et al., 1991), then extends that study with a second experiment.. 



2. Background 

2.1 Visual Programming 

Visual programming is sometimes touted as one method to increase programmer productivity. 

LabVEWB (Vose and Williams, 1986) and PrographB (Cox and Pietrzykowski, 1988) are two 

commercially available visual programming environments. These languages use icons and arcs to represent 

programs1. Other visual programming languages have been developed by researchers (Clinert, 1990, 

Chang, 1990, Ichikawa and Hirakawa 1990, Meyers, 1990, Price et al, 1993), many for specific application 

areas. The quest for a general purpose visual programming language (Kiper, et al, 1995) has been a goal 

for others. 

It is a responsibility of the field of software engineering to validate the utility of new tools and methods, 

not just to propose them. BasiIi, Selby, and Hutchens (1986) describe scientifically sound methods of 

experimentation in software engineering. Fenton, Pfleeger, and Class (1994) recently appealed for 

scientific investigation of software engineering claims.. 

The next two subsections describe previous experiments studying the use of visual representations of 

programs. This is not an exhaustive list, but a set that is pertinent to our experiments described in 

subsequent sections. First, we describe the experiment that was replicated. 

2.1 Replicated Study 

Our work was motivated by experiments (Green et al., 1991) that compared textual languages and the 

visual programming language LabVIEW. These experiments used programmer as subjects to study the 

comprehensibility of decision trees in textual and graphical forms. The conclusions of this work are similar 

to ours, finding that a textual form generally was better than a graphical form for programmer's 

comprehension of decision statements. 

Green's experiment compared two graphical representations of decision statements to two textual 

representations. This study is distinguished from the majority of work in this area in that the graphical 

forms used were based on a data flow paradigm rather than control flow, and that the graphical forms 

examined were those of a commercially available language - LabVIEWB. 

The experiment used a within subject, randomized design in which a sequence of three tasks addressed 

several issues. The hypothesis of interest to us is that there is significant difference between the results of 

the graphics and text trials. The experimenters made no specific predictions about which would perform 

better. They also explored the difference between "forward" and "backward" questions, and "sequential" 

and "circumstantial" language constructs. These two aspects tie this work to that of (Green, 1977; Curtis 

et al., 1989). 

Languages such as VisualBasicB and Visual C++B are useful for development of graphical user 
interfaces, but still require textual programming. 



if leafy : 
if green : grill 
not green : 

if hairy : roast 
not hairy : boil 
end hairy 

end green 
not leafy : 

if cold : boil 
not cold : fry 
end cold 

end leafy 

Figure 1 : Sample of Nested If Text Form. 

A forward question is one that gives the user a particular true and false instantiation of input variables, 

and asked the user for the output condition produced by those inputs. A backward question asserted the 

truth of a particular output variables and required the subject to determine settings of input variables that 

would produce this output. 

A sequential language is one that allows the user to move easily from input conditions to outcomes; a 

circumstantial language allows the use of a conclusion or outcome to determine conditions that produced 

that outcome. Some previous work had shown that, for experienced programmers, sequential programs 

were more appropriate for forward questions; consequential programs were better when the task was to 

answer backward questions (Davies, 1989). 

grill : if leafy & green 

fry : if 7 leafy & 7 cold 

boil : if ( 7 leafy & cold ) I ( leafy & T green & T hairy ) 

roast : if leafy & 7 green & hairy 

Figure 2: Sample of Do If Text Form. 

The two graphic forms and two textual forms used were used in our replication. They are described in 

detail here. One textual form was based on the "Nest-INE" notation developed by Sime at al. (1977). As 

can be seen in Figure 1, this form is comprised of a sequence of nested "if-then" structures in which 

indentation used to indicate the depth of nesting. This form was classified as sequential, and we will refer it 



as the "Nested If'. The second textual form, illustrated in Figure 2, is reminiscent of Prolog syntax since 

the conclusion of the decision is given first followed by an if condition. When the antecedent is true, the 

conclusion is asserted giving a circumstantial construct. This form uses symbolism for logical connectives: 

'&' for and, 'I' for or, '7' for not, and will be referred to as the "Do If '  form. 

The two graphic forms from LabVIEW will be referred to as the "Gates" and "Boxes" notation. (See 

Figures 3 and 4.) The "gates" form presents decision statements as a wiring diagram (Figure 3.) 

Antecedents are listed in a sequence of boxes along the left side of the diagram. Possible results 

(conclusions) are listed in boxes on the right side. These are connected using engineering symbols for 

AND, OR, and NOT gates. Green and his colleagues categorized these gates as sequential for the natural 

flow from inputs to conclusions. 

Figure 3: Sample of Gates Graphic Form. 

The boxes form is a series of nested boxes each of which represents a particular true or false setting of 

input variables The veracity of result variables is represented by highlighting of the 'T' and 'F' in the 

associated boxes on the right side of the diagram. (When a condition is true, the 'T' in its box is highlighted 

and the 'F' is dimmed; otherwise the 'F' is highlighted and the 'T' is dimmed.) When the user clicks on the 

truelfalse switch, the setting is toggled. By toggling these switched to various settings, a user can explore 

the entire decision structure (Figure 4). The gates form was categorized as a circumstantial form since it is 

relatively easy to see what inputs lead to a particular outcome. 

In addition to presenting a decision statement, each stimulus screen presents a question about this 

statement to be answered by the subject. These questions were used in two forms - forward and backward. 



In all cases there was a unique correct answer. The logical "or" operator in a decision condition allowed 

for two settings to produce the correct answer. 

Figure 4: Sample of Boxes Graphic Form. 

Subjects in this study were five domain experts who each had at least six months of experience in the 

use of LabVIEW. The small number of subjects is one of the reasons that a replication was important. 

The independent variables in this experiment were form modality (textJgraphics), structure 

(sequential/circumstantial), and direction of question (forward or backward). The dependent variable was 

response time which was used to quantify "comprehension." Thus, there were eight combinations of 

treatments. All subjects were presented with 16 questions representing two of each of these eight 

combinations of treatments. Two of each were required to allow for questions without an "or" that had one 

answer (single questions), and questions with an "or" that had two answers (double question). Subjects 

were asked to find both answers in the cases that an "or" was used. These were presented in a balanced, 

randomized design. 

Thus, for forward questions subjects were able to answer with a single button click that represented the 

outcome of the decision statement. Backward questions required subjects to indicate the settings of all 

input variables to the decision statement that would cause a given output. Thus, backward, single questions 

required six button clicks; backward, double questions required 12 clicks. The appendix contains sample 

screens. 



The experiment was conducted on a Macintosh computer with a 1152 x 870 pixel, black-and-white 

monitor. The stimuli were presented using a program written in  SuperCard 1.5. Portions of the screen were 

made sensitive to mouse clicks to simulate the behavior LabVIEW boxes decision statements. All 

responses were by clicking buttons with a mouse. An untimed practice session of eight screens allows user 

to experience all eight treatment combinations before beginning the timed portion. Subjects clicked a 

"Done" button when they were satisfied with their responses. After clicking "Done" they were presented 

with a blank screen with a single "Next" button. Clicking the "Next" button revealed the next screen. They 

were allowed to rest at this screen before proceeding to the next screen. The SuperCard program timed 

them from the time they click "Next" until they click the "Done" button. Subjects were given no feedback 

about the accuracy of their answers or their time to complete. 

seconds 

Sequential Circumstantial 

Figure 5 Modality by Structure: Response times from Green et al, (1992) 

(cell means with 95% confidence bars) 

Green et a1 analyzed time scores of all responses including erroneous ones, which were few. Separate 

analyses of variance (ANOVAs) were performed for forward questions and backward questions. These 

were not combined since each forward question required only one mouse click to response, where backward 

questions required 6 clicks (for single path) and 12 clicks (for double path) questions. For forward 

questions, the two responses for each treatment were averaged. For backwards questions, response timings 

were combined with a weighted average: (2*single-path + double-path)/3. The ANOVAs showed one 

strongly significant main effect of Text versus Graphics with F(1,4) = 52.13, p = 0.002. There was another 

significant interaction, Direction versus Structure with F(1,4) = 1 1.41 and p = 0.028. Figures 5 and 6 

illustrate these analyses. Thus, the hypothesis that there is a difference between text and graphics is 



strongly supported, and, in particular, text response times were significantly less than graphic response 

times. 

Sequential Circumstantial 

20 - 

Figure 6 Question Direction versus Structure: Response times from Green et al, (1992) 

(cell means with 95% confidence bars) 

0 Forwards W Backwards 

2.2 Prior Studies 

One of the classic experiments in this area examined the utility of detailed flowcharts (Shneiderman et 

al, 1977). In this group of five experiments, Shneiderman and his colleagues studied the utility of detailed 

flowcharts in composing, comprehending, debugging, and modifying programs. They found no statistically 

significant differences between the performance of subjects who used flowcharts to those who did not. 

Scanlan (1989) reached different conclusions about the utility of structured flowcharts to aid program 

comprehension. He found a statistically significant advantage in using flowcharts versus pseudocode for 

comprehension of complicated algorithms. Scanlan also measured comprehension by using response time. 

The experimental work of Green and colleagues described above was extended to Petri nets (Moher, et 

a1 1993) with analogous results. Petre (1995) provides an excellent summary of experimental results in this 

area. Pandey and Burnett (1993) studied constructability of programs in visual versus textual languages in 

the domain of matrix manipulation, concluding that construction was easier in a visual language. 

Von Mayrhauser and Vans (1995) provide an extensive table of published observational studies, 

correlational studies, and experiments examining various aspects of program comprehension. These 

studies generally examine textual programming languages. However, they can serve as a baseline for 

comparison to visual languages, and a source for understanding of cognitive processes involved in program 

comprehension. 

10 I I 



3. Investigation Goals 

The goals of our investigation are threefold. First, we replicated the study of Green, et a1 (1991). Thus, 

we based our experimental design on theirs. The second goal was to determine if graphics are more easily 

comprehended than text for technical, non-programmers. This required a second experiment with alternate 

subjects whose performance was compared to that of the programmers in the first study. A third goal was to 

determine if some adjustments to the graphical forms used could increase their comprehensibility. Thus the 

hypotheses that were studied are: 

Null Hypothesis #I: comprehension of text and graphic forms of decision statements as measured 

by response time are equal. 

Null Hypothesis #2: Graphic rather than textual representations of decision statements have no 

affect on the comprehension of decision trees for technical, non-programmers compared to that of 

programmers. 

Null Hypothesis #3: An adjustment in graphical form does not change its comprehensibility. 

In the following section, we describe the replication that addresses hypothesis 1. Then we describe the 

second experiment and hypotheses 2 and 3. First, let us motivate why it was interesting to us to consider the 

use of graphical (visual) programming constructs with technical, non-programmers. 

This study distinguishes between programmers and others who are technically apt, but are not 

programmers. This distinction is based on the working hypothesis that these two groups view their tasks 

quite differently, even though these tasks frequently overlap and require inter-group technical 

communication and consultation. 

Programmers in this experiment are experienced software developers. Members of this group 

generally view solutions to problems as procedural algorithms. Technical, non-programmers regularly 

work with technology , but do not regularly develop or maintain programs. They may have had an 

introductory class in programming and have written small programs, but this is not a part of their daily 

work. This group, however, excludes users whose work does not involve the use or development of 

technology. That is, technical, non-programmers incorporates engineers, support staff for engineers, and 

technical managers. Another categorization of these users is that they are the experts in technical 

application areas from whom programmers obtain and validate requirements for new or modified software 

systems. 

Although the technical, non-programmers do not create or modify software as a part of their work, they 

are application experts. As such, they often interact with software developers. Their involvement 

emphasizes requirements gathering and analysis, although their participation during design and 

implementation can be beneficial. Their active involvement in code or design walkthroughs is sometimes 

limited by lack of knowledge of programming or design languages. Visual representations of code or 

designs may aid comprehension more for this user class than for programmers. 



4. Empirical Studies 

4.1 Replication 

The subjects in this experiment were all programmers with more than three years of programming 

experience. None had more than cursory experience with LabVIEW programming. The experimental 

method used was the same as that of the experiment of Green, et a1 (1991). The 16 screens used as stimuli 

were identical to those used in that previous experiment. We were unable to obtain a working version of the 

original Supercard driving program, but were able to reconstruct it from pieces. 

The primary differences from this experiment and the study of Green et a1 were these: 

I .  Our replication involved nine subjects versus five of the original experiment. 

2. Our programmers were experience programmers, but were not experienced in the use of the 

graphical programming language LabVIEW. The subjects of the prior experiment had at least six 

months of experience with LabVIEW and five to fifteen years of general programming language 

experience. 

3. Our experiment was conducted on a PowerMac 840AV with a 1024 by 768 pixel color monitor. 

Their experimental apparatus was a Macintosh I1 with a 1152 by 870 pixel black and white 

monitor. 

4.2 Subsequent Experiment 

Hypothesis 2 required a two factor experiment: programmer versus non-programmer subject types. and 

graphic versus textual form of decision statements. Since the replication experiment described above 

included programmers using text and graphical forms, additional technical, non-programmers subjects were 

needed. Conclusions could then be drawn by comparison of data from these two experiments. 

In this experiment we again used the two text and two graphical forms of decision statements described 

previously. Each of these four forms is used to represent decision trees that give possible outputs 

(conclusions) for various settings of Boolean, input conditions (antecedents). The two text forms and the 

two visual forms allowed the evaluation of multiple forms with each subject in a balanced manner to 

address any bias the subject has toward one form or the other. 

To investigate Hypothesis 3, the gates notation was modified to allow users to click on an output 

condition. The software responded by color highlighting the wires that led into that boxes. A similar 

highlighting occurred when users clicked on input conditions. This modification seemed reasonable since 

subjects in the first experiment complained that the lines in the gates form were difficult to follow, 

especially when these lines crossed. 

This modified version of the experiment used both programmers and technical non-programmer as 

subjects. It also involved the modified gates graphical form. Comparison of the response times of 

program&ers and non-programmers in the experiment gave us data pertinent to Hypothesis 2. A 



comparison of the response times of programmers on the modified gates notation to that of programmers on 

the original gates notation in our first experiment gave data pertinent to Hypothesis 3. 

4.3 Experimental Design and Method 

The experimental design of the replication experiment was identical to that of the experiment of Green, 

et a1 (1991). That is, it was a within subject, randomized design. To obtain data that is relevant to 

Hypotheses 2 and 3 it was necessary to adapt this experiment slightly. The experimental design used to 

address Hypothesis 2 required a between subject study in which data from programmers was compared to 

that from non-programmers. For Hypothesis 3, the experiment was a between subject design comparing 

performance of programmers in the first experiment with the original gates notation to that of another group 

of programmers in the second experiment using the modified gates notation. In all cases, the randomized 

design presented 16 stimulus screens to all subjects. As described previously, response time were used to 

measure comprehensibility. 

The experimental method for the replication experiment was identical to that of Green and his 

colleagues (1991). The independent variables in this experiment were form modality (textlgraphics) and 

subject type (programmerltechnical non-programmer). The dependent variable was response time which 

was used to quantify "comprehension." The method used to conduct the second experiment was identical 

with the exception of the use of the modified gates notation and the fact that both programmers and non- 

programmers were used. We repeat the description of this method here. The experimental apparatus 

consisted of a Power Macintosh and software written in Supercard. Each screen presented to the subject 

one of four representations of a unique decision tree - two graphic forms and two textual forms. Each of 

the two graphic and two text forms were used in four different screens, for a total of 16 treatments for each 

subject. The order of screen presentation was randomized between subjects. Each of these stimuli screens 

was preceded and followed by a dark screen with a button labeled "Next." The software determined the 

length of time between the presentation of each stimulus screen and the subjects' indication that they were 

finished with that screen. 

The software includes a set of screens in a pre-trial learning phase that presents two of each of the four 

forms before the timed screens are presented. These initial screens were used as a learning phase to 

introduce subjects to the environment and to each of the four decision statement forms. The experimenter 

was present during this pretrial phase to give brief instructions and to answer questions. When subjects 

finished these initial screens and were comfortable with the environment they proceeded to the trials. An 

experimenter was present during the entire session to give quick answers when subjects were had problems. 

5. Data Analysis 
5.1 Replication 

For this replication, we used the same analyses that Green and colleagues (1991) used for their 

experiment. Our original subject pool for this experiment consisted of 10 programmers. One subject 

seemed to have an extraordinary amount of trouble with some of the stimulus screens - particularly the 



graphical ones. His data was excluded from the analysis since it skewed the averages and standard 

deviation significantly. 

Table 1: Means and Standard Deviations from Replication Experiment 

as were used in the prior experiment. This procedure used a weighted average for the response time of 

backwards questions since some question types ("double path") required twice as many response clicks as 

others ("single path"). The ANOVA showed a strong significance to the effect of Text versus Graphics 

with F(I, 16) = 15.87 and p < 0.01. We used this form of analysis since this was the test used in the 

replicated experiment. Since it is not obvious to us that the samples have the same variances, we also used 

a t test assuming unequal variances in our analysis. The differences in means were significant at the 0.01 

level with a pooled variance of 3.5 and t = 3.98. (The critical value of t  is 3.106). 

Table 1 gives the means and standard deviations for the four notations. Figure 7 presents 95% 

confidence these results in the same format as does Figure 5 for the original experiment. In particular, the 

data of Table I and the ANOVA supports the rejection of null Hypothesis 1 - and thus replicates the results 

of the original experiment. 

Notation 

TY pe 

gates 

boxes 

if-then 

do-if 
, 

seconds 

Boxes 

The same analysis of variance statistical procedures were used to examine the resultant response times 

mean 

193.027 sec. 

106.85 sec. 

66.8 sec. 

57.24 sec. 

Do-If 1 

standard 

deviation 

82.25 

5 1.4 

37.38 

19.46 

Sequential Circumstantial 

Figure 7 Replication Experiment - Modality by Structure: Response times 

(Cell means with 95% confidence bars) 



5.2 Extension 

Null Hypothesis 2 is that graphic rather than textual representations of decision statements have no 

affect on the comprehension of decision trees for technical, non-programmers compared to that of 

programmers. The second experiment describe previously collected data from both programmers and non- 

programmers on both text and graphic notations. The statistic used was the percentage of change from text 

to graphic. We calculated this as (average graphic response time - average text response time) / average 

text response time. Note that for both programmers and non-programmers, text response times were less 

than graphic response times (Table 2). Thus a smaller percentage of change meant that the graphic notation 

response time increased less. An ANOVA showed that the difference was indeed significant at the 0.05 

level (F(1, 15) = 4.9389 and p = 0.0421). The t test gave a pooled variance of 3.5 and a t value of 2.300 

which exceeds the critical value (a = 0.05) of 2.1-79 allowing us to reject null Hypothesis 2. We conclude 

that the difference between programmers and non-programmers is significant. The means shows that this 

difference favors the non-programmers. 

standard deviation 

Null Hypothesis 3 is that an adjustment in graphical form does not change its comprehensibility. To 

obtain data relative to this hypothesis we examined the performance of programmers from the first 

experiment on the original gates notation to that of programmers in the second experiment on the modified 

gates notation. Note that only data for programmers from the second experiment were used to make this a 

fair comparison. Table 3 reports the relevant statistics for comparison of these two graphical notations. An 

ANOVA showed that the difference was significant at the 0.001 level ( F(1, 16) = 11.86 and p = 0.00334. ) 

The t test assuming unequal variances gave similar results. The t value was 3.44 which exceeds the a = 

0.01 p critical value of 3.17.) 

Table 3: Original gate notation versus mod~tied gate notation. 

subject category 

Original gate 

notation 

modified gate 

notation 

number 

9 

9 

mean 

193.03 sec. 

92.21 sec. 

standard deviation 

82.25 

30.78 



Despite that fact that a distinct set of programmers was used for the second experiment from the first 

avoiding any learning effect, and the fact that the boxes, if-then, and do-if stimulus screens were identical in 

the two experiments, there was a general improvement in programmer subject performance, i.e., lower 

response times, in the second experiment. We increased the modified gates responses times by this 13% 

general improvement to adjust for this general improvement. The difference between the mean of response 

times for gates and mean for response times of modified gates with this adjustment was still significant with 

F(1, 16) = 8.90 and p = 0.00878. The t test assuming unequal variances gives a pooled variance of 3.5 and 

a t value of 2.983. Since the 0.01 critical value is 2.764, the difference in means is significant at the 0.01 

level. Table 4 reports the means and standard deviations with this adjustment. 

5.3 Threats to Validity 
In terms of internal validity, these experiments are based on the commonly used assumption that 

response times are a valid measure of comprehensibility. This has been an accepted measure of 

comprehensibility of programming notations in many prior experiments including those of Shneiderman et 

a1 (1977), Scalan (1989), Green, Petre, and Bellamy (1991). Thus, its validity is accepted here. The 

validity of our replication may be questioned because of our subjects lack of experience with LabVIEW 

programming, where subject in Green's experiment had at least six months' experience. Thus, our 

programmer subjects may have been more biased toward the textual forms used. However, the fact that 

non-programmers also comprehended the textual forms more quickly than the LabVIEW visual forms gives 

more validity to the experiments. The fact that color monitors were used in our experiments where black 

and white were used in the replicated experiment was not viewed as significant since color was not used to 

give visual cues except by highlighting. Highlighting can also be accomplished with reverse video on black 

and white monitors. Another threat to the internal validity is that our two experiments were carried out 

several weeks apart. However, this is not significant since different subjects were used, and the comparison 

of response times for the two style of gates were adjusted for overall differences in response times for all 

notations. 

The primary threat to the external validity of this experiment is that subjects' response times were 

measured in a laboratory environment rather than in a typical work environment. This is a typical problem 

necessitated by the need to control other aspects of the environment. The general applicability to visual 

programming languages is limited by the fact that this experiment used decision statements from a data flow 

Table 4: Original gate notation versus modified gate notation with adjustment. 

subject category 

Original gate 

notation 

Modified gate 

notation (adjusted) 

mean 

193.03 sec. 

104.22 sec. 

number 

9 

9 

standard deviation 

82.25 

34.79 



programming languages. The implications of this research to functional or more typical imperative visual 

languages and to other control structure, e.g. loops, is limited by this. 

6. Conclusions 
The general conclusion that we have to draw from the analysis of these experiments is that textual 

notation for decision statements are easier to comprehend for both programmers and technical, non- 

programmers than are the visual representations of decision statements used in the commercially available 

programming language LabVIEW. However, the other two hypothesis that were supported by the 

experiments' data indicate that visual forms have some advantage for some groups, e.g. technical, non- 

programmers, and that performance can be improved by adjusting the visual notation. 

The value and power of visual forms of representations in other fields leads us to the intuition that there 

may be some task and audience for which some visual programming notations are useful. It seems that the 

great amount of experience that programmers have had with textual representations of programming 

languages will obscure any beneficial effects of visual representations for comprehension. However, we 

have not yet studied the effect of visual notations on program recall, or on comprehension or recall of other 

syntactic constructs, e.g. loops. These remain for future work. 
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Appendix: Sample Stimulus Screens 

Gates Notation: (File Ela) 

I is 0 crawl 

hungry 1 O J U ~ P  
sleepy 

I cold I 0 f l y  

I IS NOT: 1 0 run 

thirsty 0 sail 

' 0 walk 

Boxes Notation: (File E3a) 

IS: 
curved 
wavy 
narrow 

IS NOT: 
square 
pointed 
round 

0 hap 

0 reach 

0 kick 

0 turn 

0 skip 

0 bend 

0 leap 



Do-If Notation 

. . . . 
rt & curly & ( t 

n h curly h - thick & - f lne  

I T  short h - curly & t glossy h wavy! -g lossy  6 - wavy : 
i . I f  short  h - curly & glossy & - wavy 

~f short a - curly & -g lossy  & wavy 
i f  -short & ftne 

p .  i f  - short  & - f ine 

True False lrrelsvcnt I 

Outcome: 

FLY 

Nested-If Notation: 



not thick : r oa r  

not ta l l  : hiccup 

Object is: 

T- Tall 

High 

Deep 

/ Action: 

c- WEEP 

r CLUCK 

GASP 

r ROAR 

r BURP 

C HICCUP 

Object is NOT: 

* Wide 

a Thick 

m Long 


