
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year 

Graphical User Interface Environment for

Developing Workcell Control Programs

Zhili Jin
Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/21

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1995-004

Graphical User Interface Environment for
Developing Workcell Control Programs

Zhili (Jake) Jin

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

Graphical User Interface Environment for

Developing Workcell Control Programs

Zhili (Jake) Jin
Systems Analysis Department

Miami University
Oxford, Ohio 45056

Working Paper #95-004 July, 1995

Graphical User Interface Environment for
Developing Workcell Control Programs

July, 1995

Author: Jake Zhili Jin

Advisor: Mr. Douglas A. Troy

Department of Systems Analysis

Miami University

Oxford, OH 45056

... ABSTRACT .. 111

...
ACKNOWLEDGMENTS .. 111

. ... 1 INTRODUCTION 1

........ . 2 A FLEXIBLE MANUFACTURING SYSTEM AND THE CPL CODING ENVIRONMENT: 3

3 . DESIGN OF THE NEW ENVIRONMENT: .. 10

. 4 IMPLEMENTATION OF THE NEW ENVIRONMENT ... 13

. ... 5 DISCUSSION OF USING MICROSOFT VISUAL C++ 21

. 6 CONCLUSION .. 24

7 . FUTURE WORK: ... 25

REFERENCES .. 26

Graphical User Interface Environment for Developing

Workcell Control Programs

Abstract

A forms-based development environment for writing manufacturing

workcell programs is described. The environment is a Microsoft Windows

application that allows a programmer to describe a sequence of operations and

associated preconditions to control a workcell by fi l l ing i n forms. T h e

environment then generates code to be loaded into a controller. Currently, the

environment generates a language called Cell Programming Language (CPL),

which is a workcell programming language used at Miami University. The

a i m of the environment i s to provide a n easier-to-use environment for

deueloping workcell control software.

Acknowledgments

It's been fun and exciting exploring many fine features of Microsoft C++

and creating the manufacturing worcell program. I want to thank the

Department of Systems Analysis and the Department of Manufacturing

Engineering for providing a very good working environment and lab facilities

for me to implement th is project. I n particular, I appreciate Mr. Troy's

guidance and suggestions on the target of this project, and exhaustive reviews

for improvements of this paper. Also Zhuming Wang gave many good points to

he lp m e to unders tand t h e operat ion of manufac tur ing sys tem i n the

Engineering Lab.

1. Introduction

A flexible manufacturing system (FMS) is a manufacturing system that is

reprogrammable and capable of producing a variety of products automatically. It can be

considered as a set of workcells that operate and are scheduled independently of each

other (Chang, 87, and Benhabib, 89). A workcell is composed of one or more machine

tools linked by a common material handling system and under the control of a centralized

workcell controller for the purpose of producing the given requirements of a family of

parts. The workcell controller is programmed to coordinate the interoperation of the

various devices in the workcell. The major advantages of FMSs are high machine

utilization, flexibility in production scheduling, and high labor productivity (Martin, 89,

and Groover, 80).

Meghamala (1992) developed an Object-Oriented High-Level Language called

Cell Programming Language (CPL) for programming an individual workcell controller.

CPL allows a user to program a workcell by referring to devices as objects (robot and

conveyor, for example) and using commands such as OnIOff to control the devices, and

hides the low-level programming details. Wang (1994) further extended this language to

support flow control, error recovery, and operator interface.

Computer Aided Software Engineering (CASE) refers to the application of

software to assist in some aspect of the software development process. The term

'software engineering' has become increasingly used in all types of software

development. Software used for such tasks as editing, compiling, test administration and

so on are referred to as 'software tools' (McDermid, 1991). The purpose of this project is

to develop a Windows programming tool as an aid for users to more easily develop CPL

code. The programming environment will replace the use of a simple text editor with

Windows dialogs and will then generate CPL code automatically. Furthermore, the user

will define the program as a series of steps, which mirror the manufacturing process to be

performed. In this way not only does a user understand the logic of each step, it is easier

to develop a CPL program and there are fewer typing errors during development stage.

This is very important for engineering students who have limited experience in

programming.

The remainder of this report will describe the new programming environment.

Section 2 presents an example of a flexible manufacturing workcell and describe the

existing CPL workcell programming system. Section 3 describes the design of the new

programming environment, and Section 4 shows its implementation. Section 5 is a

discussion of issues encountered during the implementation of the new environment.

Section 6 summarizes the results of the project, and Section 7 suggests future work

related to it.

2. A Flexible Manufacturing System and the CPL Coding Environment:

The CIM lab in the Manufacturing Engineering Department at Miami University

is a typical example of an FMS workcell (Figure I). The flexible manufacturing cell

consists of an Emco Maier Compact-5 CNC lathe, a Span Tech XL Loop conveyor

system, RM-501 Mitsubishi robot, pallet stops, a pallet lift, and various sensors. A relay

is used to activate the conveyor, solenoids are used for the lathe chuck, the pallet stops,

and the pallet lift. The conveyor motor is powered by 110 VAC, while the pallet stops,

lift, and chuck are powered pneumatically. Sensors include a photocell used to detect the

approach of a pallet to the machining station on the conveyor, a switch to detect the

arrival of pallet to the station, and a switch to determine if the pallet has been lifted up to

the robot's pick-up position. The inputs and outputs of these devices are wired, through

external relay interfacing, to a data acquisition board in an IBM compatible PC. The robot

controller is connected to the PC's printer port, which is used to send the robot movement

commands in immediate mode. The CNC lathe is connected to a serial port on the PC,

which is used to program the lathe. The robot and CNC machine are programmed using

their native language.

\ CNC Lathe

7 -
Relays

Loading I \

Photocell

Figure 1. The Flexible Manufacturing System in CIM Lab, Miami
University

Cell Programming Language (CPL) is an object-like workcell programming

language developed at Miami University for senior undergraduate engineering students to

program the PC to control the workcell. CPL, consists of three parts: the CPL language,

the compiler, and the interpreter. The language allows a user to describe the sequence of

the operations required to manufacture a part in the FMS workcell. The compiler then

translates the CPL source code into intermediate code called p-code. Finally the

interpreter takes p-code as input and executes it to control the operation of the devices.

Figure 2 shows the CPL software architecture (Troy, 1992).

f CPL Program, Robot,

and CNC Command Files rn
CPL Compiler Q

p-code P

Data acquisition board,

Serial Ports, or Parallel Ports i
Figure 2. CPL Software Architecture (Troy, 1992)

A CPL program consists three major sections: port declarations, device

declarations, and procedure statements (Wang, 1994). The port declaration section is used

to assign a physical port address on the data acquisition board in the PC. The declarations

are made within a Ports ... End block. Following the keyword Ports is a series of

individual port declarations. Its syntax is as follows:

The port-name can be any user defined identifier consisting of a maximum of 30

characters. The port-address is a physical port address and the direction is either Input or

Output depending on whether the port is used to receive or send signals. An example of

port declaration section is given bellow:

Ports

PortA 642 Output;

Ports 643 Input;

PortC 644 Output;

End

The device declaration section is used to declare a device object and associate a

port and bit number with it. The device types are predefined and correspond to the

devices in the cell. The declaration block is bounded by the keywords Devices and End.

The syntax is as follows:

The device-name is a user-defined identifier and the device-type is a keyword in the

language. The port-name is defined earlier in the port declaration section and the bit-num

is a constant between 0 and 7 and corresponds to a bit within a byte on the data

acquisition board. For programmable devices, the port name LPTl or COMl is specified

instead of port variable and bit. An example of device declaration section looks like:
Devices

PalletLiftUp Pulse PortC 4;

Conveyor Coil PortC 5;

Robot Programmable LPTl ;

End

The last section in the program is the procedure section which consists of statement

constructs. Each statement represents one device operation and directly corresponds to an

actual operation of the real device in the cell. The syntax of a procedure statement is as

follows:

The device-name is an identifier previously declared in the device declaration section.

The deviceJunction is predefined and a keyword in the language. Table 1 lists device

types and valid functions for each device type.

Table 1. Device types and their functions

DEVICE TYPE
Coil

Sensor

Pulse

Programmable

Wait

Function parameters are enclosed within parenthesis and are separated by

commas. Similar to the devices and ports section, the keywords Procedure and End mark

the beginning and end of the procedure block. Following is an example:

FUNCTION
On, Off

WaitOn, WaitOff

Strobe

Send, Do

Time

Procedure
Conveyor. On;
Robot.Send("NTN);
Delay. 1000;

End

With CPL, engineering students can program device objects with names that

directly correspond to their real-world counterparts. The predefined device functions are

named after the actual device operations. For example, a statement such as Conveyor.On

is an instruction to switch on the conveyor and a statement such as PhotoCell.Wait0n is

an instruction to wait for the photocell to be switched on. This way it is possible to write

a program and visualize the cell's operation.

To create a CPL program, students need to type their whole procedure source code

using a text editor, for example the DOS Editor. There are several disadvantages with this

environment: (1) Typing errors are common. The compiler is case sensitive and repeated

typing of the same port and device names can cause definition errors. (2) The editor does

not check for proper functions for each device, so error checking is deferred until compile

time. Different types of devices have different functions, for example, the robot is a

programmable type device, and has Send and Do functions, as shown in Table 1. (3) The

editor does not provide help facilities for creating CPL programs. (4) The environment is

not integrated -- the editor, compiler, and interpreter are all separate tools.

The purpose of this project is to develop a Windows environment and overcome

the above disadvantages. Under the new environment, students only need to define

devices and specify the corresponding types once. The device types are controlled by

program and allow selection from a list. The procedures are defined through a series of

dialogs. In this way, students can focus on their logical design, instead of typing, and the

resulting code is exactly what they want. Once the students finish the design phase, they

can generate CPL source code and save it as a file which can then be compiled.

Another goal of the new environment is that it will allow the workcell

programmer to organize the operation of the workcell into logical steps. A step will

consist of a number of preconditions, followed by one or more device operations. This

way, the new environment provides a higher level of abstraction in comparison to CPL.

This will be further explained in Section 3.

3. Design of the New Environment:

A complete CPL program can be seen to be a sequence of manufacturing steps.

For example, consider the CPL procedure shown in Table 2. Notice that most steps

(except steps 1 and 5) have an initial precondition that must be satisfied, followed by one

or more operations. For example, the precondition for step 3 is that the PalletArrived

condition be true, after which the Pallet will be lifted. Thus the procedure section consists

of one or more steps where each step consists of zero or more precondition statements

and at least one device operation.

Table 2: A typical Procedure Section of a CPL Program and its steps.

CPL Procedure
LatheG66inp.Strobe;
Delay .500;
Lathe.Do(loadpart);
Robot.Send("NT");
PalletStops.On;
Conveyor.On;
PhotoCell.WaitOn(500);
PalletStops.Off;
PalletArrived.WaitOn(500);
PalletLiftUp.Strobe;
Delay. 1000
PalletLifted.WaitOn(500);
Conveyor.Off;
ChuckOpen.Strobe;
Robot.Do(loadpart);
Delay. 1000;
ChuckClose.Strobe;
Delay .2000;
Robot.Do(moveaway);
Delay .2000;
LatheStart.Strobe;
Robot.Do(moveback);
Delay .2000;
ChuckOpen.Strobe;
Delay .2000;
Conveyor.On;
Delay .500;
Conveyor.Off;
PalletStops.Off;
LatheStart.Strobe;
LatheHandShk.Strobe;

Logical Steps
Step 1: Initialize

Step 2: Wait for Part

Step 3: Lift Part

Step 4: Manufacture the
Part

Step 5: Unload the Part

In the new environment, a user will group statements into steps. For a step

definition, the user is only allowed to select different devices and the corresponding

actions from lists and the new environment will combine device, action, and parameters,

and generate CPL statements automatically. Microsoft Visual C++ is used to implement

the Windows environment.

Eight dialog windows are created to handle user interface. The corresponding C++

dialog classes are shown in Table 3, and their hierarchical organization is shown in Fig. 3.

With the new environment, a programmer must define ports, devices, and procedures as

in CPL, but instead of using an editor, he or she will fill in forms using Windows dialogs.

These dialogs are described further in Section 4.

Port Section I

y ~ o r t Declaration I

1
Device Declaration

-4Procedur]

Steo 1

+condition I

+control I

Fig. 3. The Hierarchy of Statement Classes

Table 3: Eight Dialog Classes used for Specifying CPL Program

Dialog Class
CPort

CPortList

CDeviceEdit

CDeviceList

CoperateEdit

CPreconditionEdit

CStepEdit

CStepList

Purpose
to define and edit port name, address, and I10 type.

to list defined ports.

to define and edit device name, and to specify its type and port used

to list devices defined.

to select device, action, and to specify delay time.

to select device, its condition, and wait time.

to define a logical step and to list its preconditions and operations.

to list logical steps defined in CStepEdit Dialog.

4. Implementation of the New Environment

The top level dialog for the new environment is shown in Fig. 4. The window also

shows instructions how to use the program. In the following are the steps to specify a

CPL program and generate the code using the new environment.

TO develop your system functions
1 Flrst choose Port menu from Edzt or clzck Port Button

Usxng Port E d ~ t Dralog to specify your ports

2 Then choose Devlce menu from Edit or click Devlce Button

Uszng Devzce Edzt Dzalog to speczfy deuxces and thexr types

3 Before develop procedures arrange your procedures Into
d~fferent steps Fxrst defzne steps Then for each step

add corrssporrdlng prccondztxons and opcratzons

4 After E~nxshrng above three steps sequenc~ally ch~c;k each

lzst to make sure all are correct

5 Choose Generats from CPL menu to generate CPL code The fzle
1s prompted wxrh CPL extensLon Type 1x1 fxle name and clxck

OK or press return to vrzte code on dxsk
6 Choose Code vzew to see the CPL code on screen

7 Nodlfy your code unt~l satzsfzed

8 Rcmembrr to save specxfxcatron fxle from F11c menu also1

Fig. 4. The entry screen for designing and generating CPL code

Step 1. Port Definition

The user can either select Port under Edit menu or simply click the Port button on

the toolbar -- the fourth button from the left. Then the Port List dialog appears on screen.

If this is the first time to edit ports, the port list is blank. Figure 5 shows port list dialog

after adding two ports. To add a port, click the Add button. Then the Port Edit dialog

window appears, as shown in Figure 6. The user types in the port name and its address,

and selects the 110 type. The port number will be increased automatically. Once the user

clicks the OK button, the port item will be inserted into port list. The user can also edit

existing port definitions by selecting an item in the list, clicking the Edit button, or simply

double clicking the item. Once finishing the port definition, the user can click the OK

button to go back to the main window. If the user clicks the Cancel button, no new

definitions will be entered.

Fig. 5. Port List Screen showing that two ports are defined

Fig. 6. Port Edit screen showing that PortC editing

Step 2. Device Definition

Similar to port definition, device list and edit dialog windows are used to define

the devices. Figure 7 shows the device list dialog. The dialog is activated by clicking the

fifth toolbar button (Device toolbar), or selecting Device under the Edit menu to define

devices. It lists device names and types, the required port name, and the bit number. For

the device edit dialog, the user only needs to type in a device name and then and select its

type and the port from lists in the dialog. The device types are predefined, and the ports

are those defined earlier plus LPTl and COMI, as shown in Fig. 8. By using selection

instead of typing, there is no possibility of typing errors for this process.

Chuckopen Pulse
LatheG66inp Pulse
Robot Programmable LPTl 0

Fig. 7. The Device List Screen listing device name, type, required port name, and bit
number defined.

Fig. 8. Device Edit Screen allows a user to define a device name, and select its type
and required port name.

Step 3. Step Definition

Like the port and device list dialogs, a step list dialog window is used to create

steps by clicking the sixth toolbar or select Step under Edit menu to edit steps. Fig. 9

shows the screen after adding four steps. To add a step, click the Add button and go to the

Step Edit dialog window, as shown in Fig. 10.

Fig. 9. The Step List Screen showing that four steps are entered.

Fig. 10. The Step Edit Screen allows a user to define a step name, and addledit
a precondition or operation.

The user needs to type in a meaningful step name, like ManufacturePart, and then

add preconditions and operations by clicking the corresponding Add buttons. For a

precondition, a device defined earlier is selected from the list in a combo box, then select

the condition (Wait OnIOff), and specify a maximum waiting time, as shown in Fig. 11.

For an operation, once the user selects a device, its available actions, which are

determined by the device type, are listed a list box. The programmer selects a desired

action, and

Fig. 11. The Precondition Edit Screen allows a user to select a defined device from the
list box and specify waiting condition.

Fig. 12. The Operation Edit Screen allows a user to select a device from device box
and its action list on the right box, and specify delay time if necessary.

Step 4. CPL Code Generation

After finishing step definition, the user is ready to generate CPL source code. To

do that, the programmer selects Generate under the CPL menu. A File Save dialog will

appear as shown in Fig. 13 to allow the programmer to type in a file name for the CPL

code (the default extension is .cpl). After clicking the OK button, the source code is

generated and is saved in the file. To view the CPL code, select Code View under the

CPL menu, and the source code is listed on screen as shown in Fig. 14. The user also can

print the code out by selecting Print under the CPL menu. Fig. 15 shows a printout of

CPL code.

Fig. 13. The File Save Dialog allows a user to save CPL source code as a disk file. The
default extension is CPL.

~aller~lf tup pulse Portc 4
conveyor coz l PortC 5 .
Phoiocell Sensor PorrA 7
PallmtArrlued Sensor
Chuckopen

PortA 6.
Pulse

LathsG.56~~~
PorrC 1.

Pulrc
Robot

PortB 1.
Progrelalnable L F r I

Lathe Programmable con1

Fig. 14. The Entry Screen displays CPL code when a user selects Code View under
CPL menu.

Ports
PortC 642 Output;
PortA 640 Inout ;
PortB 641 output;

End

Devices
PalletLiftUp
Conveyor
Photocell
PalletArrived
Chuckopen
LatheG66inp
Rob0 t
Lathe
Lathestart
Lathestop
PalletLifted
Palletstops
Chuckclose
PalletLiftDown
LatheRunning
LatheHandShk

End

Pulse
Coil
Sensor
Sensor
Pulse
Pulse
Programmable
Programmable
Pulse
Sensor
Sensor
Coil
Pulse
Pulse
Sensor
Pulse

Procedure
//Step_One Precondition list:

//Step_One Operation list:
LatheG66inp.Strobe;
Delay. 500
Lathe.Do(loadlathe);
Robot .Send("NT') ;
PalletStops.On;
Conveyor.On;

//Step-Two Precondition list:
PhotoCell.WaitOn(S);

//Step-Two Operation list:
PalletStops.Off;

//Step-Three Precondition list:
PalletArrived.WaitOn(5);

//Step_Three Operation list:
PalletLiftUp.Strobe;
Delay.1000

//Step-Four Precondition list:
PalletLifted.WaitOn(5);

//Step-Four Operation list:
Conveyor.Off;
Chuck0pen.Strobe;
Robot.Doiloadpart);
Delay.1000
ChuckClose.Strobe;
Delay. 2000
Robot.Do(moveaway);
Delay. 2000
LatheStart.Strobe;

//Step-Five Precondition list:
LatheStop.WaitOn(5);

//Step-Five Operation list:
Robot.Do(moveback);
Delay.2000
ChuckOpen.Strobe;
Delay.2000
Robot.Do(getpart);
PalletStops.On;
PalletLiftDown.Strobe;
Conveyor.On;
Delay. 500
Conveyor.Off;
PalletStops.off;
LatheStart.Strobe;
LatheHandShk.Strobe;

End

PortC 4;
PortC 5;
PortA 7;
PortA 6;
PortC 1;
PortB 1;
LPT1;
COMl ;
PortC 2;
PortA 4;
PortA 5;
PortC 0;
PortC 3;
PortC 6;
PortA 2;
PortB 0;

Fig. 15 CPL Code Generated by the New Programming Environment

5. Discussion of Using Microsoft Visual C++

Microsoft Visual C++ contains a very powerful Windows-based application

framework -- the framework on which programmers build applications for Windows. At a

general level, the framework defines the skeleton of an application and supplies standard

user-interface implementations that can be placed onto the skeleton. It is an integrated

collection of object-oriented software components that offers all that's needed for a

generic application and is a superset of a class library (Kruglinski, 1993, p18). It defines

the structure of the program itself. Microsoft Foundation Class (MFC) Library version 2.0

is an important part of Visual C++ and the core of the application framework. The MFC

Library consists of a library of C++ classes and global functions with source code

included. Other components -- including AppWizard, ClassWizard, AppStudio, Visual

Workbench, the compiler, and the linker-- are the tools used to construct applications.

Some of the classes encapsulate a large portion of the Microsoft Windows application

programming interface (API). Other classes encapsulate application concepts such as

documents, views, and the application itself.

AppWizard is a code generator that creates a working skeleton of a Windows

application with features, class names, and source code filenames. Its purpose is to get a

programmer started quickly with a new application. AppWizard creates all of the

necessary files and classes for the application type.

App Studio includes both a WYSIWYG menu editor and a powerful dialog box

editor. Use App Studio to design an application's user interface and create the

application's resources: menu, dialog boxes, custom controls, accelerator keys, bitmaps,

icons, cursors, and strings.

ClassWizard is a program that operates both inside the Visual Workbench and

inside App Studio. ClassWizard takes the drudgery out of maintaining Visual C++ class

code. ClassWizard writes the prototypes, function bodies, and code to connect the

messages to the application framework. The ClassWizard sets up the "message map"

structure necessary for connecting the application framework to your function's code.

Following are a summary of the sequence of steps in building an application with

Microsoft Visual C++:

1. Run AppWizard to create the files for a skeleton application, including source

files for your application, document, view, and frame windows, a resource file,

and a project file (.MAK).

2. Use AppStudio to visually edit the application's user interface, including menus,

accelerators, dialog boxes, bitmaps, icons, cursors, and other resources.

3. Use ClassWizard to connect menus and accelerators to handler functions, insert

message-map entries and empty function templates in the source files.

4. Use Visual Workbench editor to fill in the code for your handler functions.

5. Create additional classes if necessary. ClassWizard adds these classes to source

files and helps programmers define their connections to any commands they

handle.

6. Implement application-specific document class(es). Add member variables to

hold data structures. Add member functions to provide an interface to the data.

The framework already knows how to interact with document data files. It can

open and close document files, read and write the document's data, and handle

other user interfaces.

7. Implement Open, Save, and Save AS commands by writing code for the

document's Serialize member function. The framework displays dialog boxes for

the Open, Save, and Save As commands on the File menu. It writes and reads

back a document using the data format specified in your Serialize member

function.

8. Implement one or more view classes corresponding to documents. Implement the

view's member functions that will be mapped to the user interface with

ClassWizard. The framework manages most of the relationship between a

document and its view. The view's member functions access the view's

document to render its image on the screen or printed page and to update the

document's data structures in response to user editing commands.

9. Enhance other features, like printing, print preview, scrolling, splitter windows, if

necessary.

10. Use the facilities of Visual Workbench to build, test, and debug the application.

Visual Workbench is closely coupled with AppWizard, App Studio, and

ClassWizard. It lets programmer adjust compile, link, and other options. And it

lets them browse their code and class structure.

6. Conclusion

The following are the results of this project:

1. The new working environment provides a visual and straight forward

environment for developing CPL code. It completely overcomes typing

errors from text editor environment.

2. During CPL code development, students design their logical procedures on

the computer using forms and the concepts of steps.

3. Device types and actions are given as prompts (lists) by the program, so for

each type of device, only legal actions can be selected. This is a form of help

for the student programmers and helps eliminate typing errors.

4. Visual C++ provides very powerful tools for programmers to develop

Windows application quickly. It fully supports object-oriented

programming.

5. A weakness of the new environment is that the CPL compiler and interpreter

are not integrated into the environment. After generating CPL code, the

programmer must compile and execute it outside of the Windows

environment.

Table 4 below summarized the new environment in comparison to the old .

Table 4. Comparison of New and Old Environments

Features
GUI

Typing Errors

Checking Device Functions

Help

View Control Using Steps

Integrated Compiler and Execution

New
Yes

Eliminated

Yes

Yes

Yes

No

Old
No

No Control

No

No

No

No

7. Future Work

The new environment can be improved in several ways, as listed below.

1 . Currently, the program can only generate CPL code. It should have the

ability to run the CPL compiler and interpreter to execute the CPL code.

2 . Wang (1994) extended the CPL to include flow control and conditional

execution. Correspondingly, the program needs to be updated to coordinate

with this capability.

3. Additional rules could be added. For example, the environment could check

that the same bit is not used more than once for a specific port.

4. This program is mainly used for the workcell of CIM Lab. It is possible to

extend this program to more general manufacturing systems.

5. Context-sensitive help can be added. Most Windows-based programs take

advantage of the powerful WINHELP help engine that is included with

Windows. The MFC Library version 2.0 application framework allows

programmers to use this same help engine for context-sensitive help in

applications. Manufacturing knowledge and terminology can be added for

students reference.

References

Benhabib, B., C. Y. Chen, and W. R. Johnson, An Integrated Manufacturing Work

Cell Management System, Manufacturing Review, Vol. 2, No. 4, 1989.

Chang, T. C., R. A. Wysk, H. P. Wang, Computer-Aided Manufacturing, Prentice-

Hall, Inc., Englewood Cliffs, N.J., 1987.

Groover, M. P., Automation, Production Systems, and Computer Integrated

Manufacturing, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1980.

Kruglinski, D. J., Inside Visual C++, Microsoft Press, 1993, p 7- 13

Martin, J. M., Cells Drive Manufacturing Strategy, Manufacturing Engineering, Jan.,

p.49-54, 1989.

McDermid, J. A., Software Engineer's Reference Book, Butterworth Heinernann, p

3313 -17, 1991

Meghamala, N., Development of an Object-Oriented High-Level Language and

Construction of an Associated Object-Oriented Compiler, Working Paper #92-015,

Dec. 1992.

Troy, D. A., M. Nugehally, S. Farooq, D. Hergert, Object-Oriented Flexible

Manufacturing System at Miami University, Proceedings of lCOOMS'92, May

1992.

Wang, Zhuming, Cell Programming Language Investigation of Extensions for Flow

Control and Error Recovery in the Language, Working Paper #94-005, 1994.

7257 i2'orth Lln~oin Ax enue
L~ilcolnn ood, Illinol\ 60646
708 673-31 13
F'ix 708 679-4804

Jake Zhili Jill
2702 S. Uliio:? i\\ e.
Chicago, IL t;'%lh
(3 13) 842-66':'l

Dcar Mr. Troi

Illcl~ci,,i :IIX copy of my updated paper and tlie disk. Fig. 4 to Fig. 15 are in zip
files. I hope I!-~.: J c-i3r have some time to look it. So I can make any changes necessary and
finish it before :!ic ci:d of this semester. Thank you!

Oflices in: Illinois, Ohio, Georgia, Indiana, Kentucky9 Alabama, lo-, Nebraska

