
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year

Librarian A Multi-User License Manager

Douglas Troy
Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/49

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1992-010

Librarian: A Multi-User License Manager
Douglas A. Troy

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

Librarian

A Multi-User License Manager

Douglas A. Troy
Systems Analysis Department

Miami University
Oxford, Ohio 45056

Working Paper #92-010

Librar ian
A Multi-User License Manager

w r i t t e n by
The Applied Science Software Support Team

Miami Universi ty
Oxford, OH 45056

Contact: Douglas A. Troy
Systems Analysis Department
M i a m i Universi ty
oxford, OH 45056
(513) 529-5934
E-mail: troydC!apsvax.aps.muohio.edu (I n t e r n e t)

datroy@miamiu (B i t n e t)

1.0 Introduction

A common problem in network administration is that there are often more
workstations on a network than there are available licensed copies of the
various software products. The purpose of the software described herein is to
provide the tools necessary to manage and enforce software licensing agreements
by insuring that no more that the licensed number of copies of any given
package are in operation concurrently on a network. In addition, these tools
collect usage statistics so that an administrator can determine where, when,
and how many copies of each product are used. This type of information can
prove invaluable in management and purchase decisions.

This software was designed to meet the following goals:

It should allow management of software products without modification to
those products. The tools allow a centralized license manager to be
queried before a product is run. Typically this is done through menu
system or a shell script.

It should run on systems that support public domain network protocols such
as TCP/IP and Remote Procedure Call. The software has been tested on IBM
RS/6000 (AIX), IBM PCs running Sun's PC-NFS, NeXT Workstations, and DEC
Vaxes (Ultrix).

It should support license management for IBM PC (MS-DOS) machines as well
as UNIX machines, given a UNIX based file serve.

To accomplish these goals, the system was designed as an RPC client server
application. In essence, each client that desires to run a licensed
application must first "check out" that software from the server. When
finished, clients "check in" the application. It is up to the client to follow
the procedure. Also, tools are provided for the administrator to perform
various management operations. The programs that constitute this package
include :

Name Usage Description

check c 1 ient

libraria server

pct ime

libmaint

client

Client program to check a software license
in or out. Runs on clients or servers. DOS
or UNIX.

server program that maintains a real time
database of the location and availability of
currently running software products. This
program also maintains a daily log of all
operations. UNIX only.

An IBM PC program that gets the current date
and time from the server and sets the PC's
clock. DOS only.

client or server ~llows the administrator to issue commands
from a client to the server process.
Commands include maintenance and query
functions. DOS or UNIX.

Thus, before running a licensed program, a client would first
issue a command like:

check myserver out lotus

This program sends an RPC request to the server program (running on the machine
"myserver") to see if a copy of lotus is available. The check program waits
for a reply and returns a status code to the operating system to indicate
either "yes" or "no". Based on the result, the client can then proceed to run
the application using whatever commands are required on the local network.
Note that the check and libraria programs do not manage the software itself --
they only count check-in and check-out requests. After completing use of the
application, a client then issues the command:

check myserver in lotus

To enforce the use of the check program, and administrator can embed the
check commands into a menu manager or into UNIX scripts. Examples of these are
shown in Section 7.

The license manager contains various safeguards to ensure the integrity of
its database. If a client issues two check-outs without an intervening
check-in, the librarian will automatically check the first product back in.
(This means that check-in requests are not really necessary. However, since
the libraria program logs all requests, explicit check-ins provide a good audit
trail on each client's activities.) Another safe-guard is that the server
program maintains an audit trail on disk of all client requests. If the server
machine must be restarted while packages are checked-out (perhaps due to a
crash) then upon start-up the server program will read the audit trail and
return itself to its state prior to the crash.

For site licensed products, the administrator can set the number of
licenses to zero to indicate "no limit." This is useful for tracking usage of
site licensed products. The following sections describe the installation and
operation of each of these programs.

2.0 Installation Procedures

The source code includes the following files:

check. c
1ibmaint.c
1ibraria.c
1ibraria.h
pctime. c
makef ile

The programs check, pctime, and libmaint may be made for either the MS-DOS
or UNIX environments. The program libraria can only be made for UNIX, as
MS-DOS machines cannot act as an RPC server. For both environments, a library
of Sun RPC functions and associated include files are required; This is
standard on many UNIX systems; For MS-DOS, a library such as Sun's PC-NFS
Toolkit must be purchased. The programs check, libmaint, and pctime have been
compiled by the developers using Microsoft C.

Before making the programs, edit the file 1ibraria.h and change the
following macros to suit your site:

#define IDLE-MACHINE /* Package name for nodes that have not
checked-out a package. This could be the
operating system or menu manager. */

#define LICENSE DB /* file name for number of licenses * /
#de f ine ERRORLOGNAME /* server error log file name * /
#define -PACKAGES / * Max number of managed software packages */
#define MAX-CLIENTS / * Max number of client machines * /

2.1 Make for UNIX

The programs libraria, libmaint, and check can be made for UNIX. They can
be simply compiled with 1ibmaint.h and individually linked with the RPC library
to produce the executables, or, optionally, the makefile, shown in Appendix 2,
can be used. For example, to build libraria, with 1ibraria.h in the current
directory, use:

$ cc -0 libraria 1ibraria.c
Repeat the above command for check and libmaint.

2.2 Make for MS-DOS

To compile the MS-DOS version of the programs, adjust the environment to
conform with the recommendations of your RPC toolkit supplier, and follow the
directions of the vendor providing you C compiler. We use Microsoft C and
Sun's PC-NFS Toolkit.

For example, to build check with 1ibraria.h in the current directory using
the Microsoft Quick-C compiler (small memory model), the Microsoft linker, and
the PC-NFS Toolkit, use:

C> qcl -c check.c
C> link
Object Modules: check c:\toolkit\sprotrtn c:\toolkit\syprtns
Run File: check.exe
List File:
Libraries: slibtk
C>

Repeat the above command sequences for pctime and libmaint.

3.0 Libraria

The libraria program must run on the UNIX based server machine. It
maintains the real time database of currently running applications and keeps a
log of all requests that can be used later to produce usage reports.

3.1 Input

The input to the librarian is a file showing the number of licenses
available for each product. The name of the file is given in 1ibraria.h by the
macro LICENSE-DB, the default name is software.lab. There is one line per
product of the format:

number name

The following is an illustration:

0 AutoMenu
10 LOTUS
5 WP5
12 WS4
1 DB3P
10 SK
10 GV
12 QC

In this example, there are an unlimited number of copies of AutoMenu, 10 copies
of LOTUS, 1 copy of D-Base 111 Professional, etc.

To initiate the librarian, place the following line in /etc/rc.local:

This will start the librarian at boot time. Note that the input file
software.lab (or your version of LICENSE-DB) must be in the directory from
which the libraria is started.

3.3 Output

Librarian generates a log, or audit file, for every transaction that it
processes. The filenames of the files are of the following format:

The audit log shows the time of day (hh:mm:ss), the command that the server
received, the IP address of the node issuing the command, and the package (if
applicable) the command referred to. As these files will tend to accumulate,
you may find it helpful to periodically delete older files. An example of the
log file is shown below.

23:21:34 SET-MAX 000.000.000.000 AutoMenu
23:21:34 SET MAX 000.000.000.000 LOTUS
23: 21: 34 SETIMAX 000.000.000.000 WP5
23:21:34 SET-MAX 000.000.000.000 WS4
23:21:34 SET-MAX 000.000.000.000 DB3P
23:21:34 SET-MAX 000.000.000.000 SK
23:21:34 SET-MAX 000.000.000.000 GV
23:21:34 SET-MAX 000.000.000.000 QC
23:23:29 CHECK-OUT 134.053.002.003 LOTUS
23:23:39 CHECK-IN 134.053.002.003 LOTUS
23:23:39 CHECK-OUT 124.053.002.003 AutoMenu

23:24:11 CHECK-OUT 134.053.002.003 DB3P
23:24:11 CHECK-IN 134.053.002.003 DB3P
23:24:11 CHECK-OUT 134.053.002.003 AutoMenu
23:25:20 QPACKAGE 134.053.003.002 LOTUS

23:25:33 QNODES 134.053.003.002

23:29:21 SHUTDOWN 134.053.003.002

0 These lines
10 show the
5 initialization of
12 the real time
1 database.
10
10
12

A user checks out a license.
lotus is checked-in,
and the default package is
automatically checked-out
Another license is checked
in and out

Using libmaint, the manager
checks the availability of
lotus.
Using libmaint, the manager at
134.53.3.2 asked what nodes were
known to the server.
Using libmaint, the manager
shuts down the server.

The librarian also generates an error log file. The name of the file is
given by the macro ERRORLOGNAME in libraria.h, the default name is 1icense.err.

4.0 Check

Check is the program that queries libraria to see if a package is available
for use at a given time. It may be compiled under both UNIX and MS-DOS.

4.1 Input

This program has the following parameters:

check server-name <inlout> <software package> OR
check server-name <software package> c-il-o>

where <software package> is the name of a package in the software-lab
(LICENSE-DB) file described in Section 3.1. The parameter "out" or "-0" is a
request to check to see if a license is available for the software package;
I* inn 11 mi" is a request to return a license to the available pool. The

parameter "server-name" is the internet name for the server machine running the
libraria program. When running check on a DOS machine under PC-NFS, the
"server-name" must be present in the local HOSTS file.

To use check, run the program. For example, enter:
check myserver out LOTUS

If a license is available for the package, check will silently return to the
operating system with an exit code of 0. If no licenses are available, check
will display a message to the standard output and return 1 to the operating
system.

4.3 output

This program returns to the operating system a value of 0 upon successful
request of permission to use a given package. If all licenses are in use,
check will return a message telling the user to try later and also return 1 to
the operating system.

5.0 Libmaint

Libmaint can be used t o exe rc i se a l l of t h e c a p a b i l i t i e s of t h e l i b r a r i a
program and t o make modificat ions t o t h e r e a l t i m e d a t a base "on t h e f l y n ,
without s h u t t i n g down t h e se rve r o r d i r e c t l y e d i t i n g t h e conf ig f i l e s .
Libmaint al lows t h e system adminis t ra tor t o a d j u s t a l l t h e running
c h a r a c t e r i s t i c s of t h e se rve r from any locat ion , e i t h e r on t h e s e r v e r o r on any
c l i e n t . It a l s o provides t h e a b i l i t y t o query t h e se rve r t o determine what
packages a r e checked out and what package each node is using.

5.1 Input

The l ibmaint opt ions a r e a s follows:

Usage: l ibmaint server-name <option>. The parameter server-name i s t h e
i n t e r n e t name of t h e machine running l i b r a r i a -- f o r PCs t h i s name must be
present i n t h e l o c a l HOSTS f i l e . The parameter <option> i s one of t h e
following:

check < in lou t> same a s t h e check program.
remove <node-number> fo rb id an IP address from u s i n g t h e server .
query node <node-number> see what l i c e n s e a node is us ing.
query package <package name> see how many copies of a l i c e n s e a r e

cu r ren t ly i n use.
query t i m e f i n d ou t t h e cu r ren t t i m e from t h e server .
query u s e r s f i n d out how many u s e r s a r e c u r r e n t l y on t h e

system.
query nodes f ind out what nodes a r e c u r r e n t l y us ing t h e

system.
query l i c e n s e d i sp lay t h e number of l i c e n s e s f o r each

package.
set max <package-name> <software-maximum>

change t h e maximum number of l i c e n s e s
ava i l ab le . This over r ides t h e LICENSE-DB
f i l e .
r e s t a r t l i b r a r i a .
c lean up and terminate.

r e s t a r t
shutdown

5.2 S ta r tup

To s t a r t l ibmaint , use t h e command l i n e format shown above. For example,
t o d i sp lay t h e l i c e n s e s ava i l ab le , use:

l ibmaint myserver query l i c e n s e

5.3 Output

The program w i l l d i sp lay t e x t t o t h e standard output appropr ia t e t o t h e
command. See t h e Appendix 1 f o r examples. The values r e tu rned t o t h e OS are :

Result Meaninq
0 no problems encountered.

1 node unknown.

- 1 unexpected problem was encountered.

6.0 PCtime

PCtime is a c l i e n t program t h a t allows an IBM PC t o query t h e t i m e from t h e
se rve r and set i t s i n t e r n a l clock accordingly.

No input is required.

6.2 S t a r t u p

To invoke t h e pctime program, use t h e command:
pctime server-name

where "server-name" is t h e i n t e r n e t name f o r t h e se rve r machine def ined i n t h e
l o c a l HOSTS f i l e . This command would r e s i d e t y p i c a l l y i n t h e AUTOEXEC-BAT
f i l e .

6.3 Output

Pctime d i sp lays t h e cu r ren t time a s shown on t h e s e r v e r s system c lock a s
w e l l a s s e t t i n g t h e PC's i n t e r n a l clock.

7.0 Example Use of Check

7.1 Use with DOS

To use check under DOS, two approaches can be followed:

1. Write a DOS batch file for each licensed application, or
2. Use a menu system such as AutoMenu that allows use of DOS batch
commands within the menu system.

In either case, the idea is to use the DOS batch file language to first call
check to see if a licensed copy is available and then to conditionally load the
application only if the return from check is affirmative. An example batch
file, which executes the program gwbasic from the network server "apsrisc" if a
license is available, is shown below:

Batch file to run gwbasic
check apsrisc out gwbasic
if errorlevel 1 goto DONE
net use r: \\server\appls\langs\basic
r :
gwbasic
C :
net use r: /d
check apsrisc in gwbasic
: DONE

Another approach is to build commands similar to the above into a menu system.
The program AutoMenu supports the use of the above batch file commands within
the menu system itself, eliminating the need for a separate batch file for
every licensed software package.

7.2 Use with Unix

To use check under Unix, a shell script can be built using the appropriate
Unix shell language. An example Bourne Shell script is illustrated below.

f l /bin/sh
Shell script to run netlab
check apsrisc out netlab
if test $? = 0
then

net lab
check apsrisc in netlab

fi

A~~endix 1 -- Libmaint Commands
Below is session using all the commands available in libmaint. Comments are in
parentheses.

$ libmaint (What can I do?)
Usage: libmaint <server> <option>, where <option> is:

check in <package-name>
check out <package-name>
query node <node-number>
query package <package-name>
query time
query users
query nodes
query license
remove <node-number>
set max <package-name> <software-maximum>
restart
shutdown

$ libmaint apsrisc check out LOTUS (Check out a license.)
Librarian Result is 0
$ libmaint apsrisc check in LOTUS (Return the license.)
Librarian Result is 0
$ libmaint apsrisc remove 134.53.2.2 (Remove a node.)
Librarian Result is 0
$ libmaint apsrisc query node 127.0.0.1 (What license has a node?)
Node Number : 127.0.0.1
Software Package: AutoMenu (The default program for an idle node.)
$ libmaint apsrisc query package AutoMenu (How many licenses in use?)
Software Package: AutoMenu
Copies Available: 0 this means infinite copies allowed
Copies in Use : 1
$ libmaint apsrisc query time (What time has the server?)
Current date is Wed 11-14-1990
Current time is 21:26:57.00
$ libmaint apsrisc query users (What nodes have requested licenses?)
Machines Registered: 1
Machines in Use: 0
Machines Idle: 1
$ libmaint apsrisc query nodes
127.000.000.001 AutoMenu
$ libmaint apsrisc query license
AutoMenu 0 1
LOTUS 1 0 0
WP5 5 0
WS4 12 0
DB3P 1 0
SK 1 0 0
GV 1 0 0

QC 12 0
$ libmaint apsrisc set max LOTUS 3
Librarian Result is 0
$ libmaint apsrisc restart

(What is each nodes doing?)

(What licenses managed, How many in use?)

(Change number of licenses allowed.)

(Read in old log file & pick up where we
left off.)

Librarian Result is 0
$ libmaint apsrisc shutdown
$

(Terminate libraria program.)

Appendix 2 -- Make file for UNIX
Makefile for librarian

Tools w e need to use
RM = /bin/rm -f
CC = /bin/cc
CP = /bin/cp
INSTALL = /usr/bin/install -c

Locations of final files
DEsTDIR = /usr/local/librarian

-g = debug
-0 = optimize (precludes -g)
CFLAGS= -0

LIBRARIES TO LINK TO:

SRCl = 1ibrarian.c
SRC2 = check.c
SRC3 = 1ibmaint.c

OBJECTl= 1ibrarian.o
oBJECT2= check.0
OBJECT3= 1ibmaint.o
OBJECT4= 1ibtime.o

PROGRAM1 = librarian
PROGRAM2 = check
PROGRAM3 = libmaint
PROGRAMS = S(PROGRAM1) S(PROGRAM2) S(PROGRAM3)

JUNK =

$(PROGRAMS) *.audit *.o
OBJS =

S(OBJECT1) S(OBJECT2) S(OBJECT3)

compile

all: : $ (PROGRAMS)

install:; $(INSTALL) $(PROGRAMS) $(DESTDIR)

librarian: S(OBJECTS1)

$(CC) $(CFLAGS) -0 S(PROGRAM1) $(SRCl)
$(RM) S(OBJECT1)

check: S(OBJECTS2)

$(CC) $(CFLAGS) -0 S(PROGRAM2) S(SRC2)
$(RM) $(OBJECT21

libmaint : S(OBJECTS3)

$(CC) $(CFLAGS) -0 S(PROGRAM3) S(SRC3)
$(RM) $(OBJECT31

libtime: S(OBJECTS4)

$(CC) $(CFLAGS) -0 S(PROGRAM4) $(SRC4)
$(RM) $(OBJECT41

clean: :

S(RM) $(JUNK)

Edit the makefile to reflect where you would like the final package to
go. Also check to see if the tools are listed where they reside on
your system. The Makefile says that the -g and -0 compiler options are
mutually exclusive. That is only true if you are not using gcc, "csh>
make all" will compile all the source. "csh> make install" will put
the files where they belong. "csh> make clean" will remove the object
files from the directory where they were compiled.

Site specific macros that should be edited are contained in Libraria.h and are
listed below:

#define IDLE-MACHINE / * Package name for notes that have checked-out a
package. This could be the operating system or menu
manager. * /

#define LICENSE-DB / * file name for number of licenses */
#define ERRORLOGNAME / * server error log file name * /
#define %PACKAGES / * Max number of managed software packages * /
#define MAX-CLIENTS /* Max number of client machines * /

