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Abstract

An algorithm for document clustering is introduced. The base concept of the
algorithm, Cover Coefficient (CC) concept, provides means of estimating the
number of clusters within a document database. The CC concept is used also to
identify the cluster seeds, to form clusters with the seeds, and to calculate Term
Discrimination and Document Significance values (TDV, DSV). TDVs and DSVs
are used 1to optimize document descriptions. The CC concept also relates
indexing and clustering analytically. Experimental results indicate that the
clustering performance in terms of the percentage of wuseful information
accessed (precision) is forty percent higher, with accompanying reduction in
search" space, than that of random assignment of documents to clusters. The
experiments have validated the indexing-clustering relationships and shown
improvements in retrieval precision when TDV and DSV optimizations are
used.

Categories and  Subject Descriptors: H.3.1 [Information  Storage and
Retrieval]: Content Analysis and Indexing - indexing methods; H.3.3.
[Information Storage and Retrieval]: Information Search and Retrieval -
clustering, search process

General Terms: Design, Performance, Theory

Additional Key Words and Phrases: cover coefficient, decoupling coefficient,
term  discrimination value, clustering-indexing relationships
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1. INTRODUCTION

An Information Retrieval System (IRS) tries to find documents that are
relevant to wuser queries. An IRS environment has similarities as well as
differences as compared to a Database Management System (DBMS)
environment. This is mostly due to the unformated nature of data (e.g., journal
and newspaper articles, reports, books, all of which are referred to as
"documents" or "text") managed in an IRS. In our modern times there have
been efforts for the integration of DBMS and IRS [12, 29, 30, 38].

Because document databases are huge in size IRSs normally perform
retrievals on document representatives. Documents can be represented in
various forms an example of which is the vector space model. In the vector
space model [36] documents are represented by a document by term matrix,
which is referred to as the D matrix. In this matrix each row is a vector that
describes a document by means of its elements which are index terms, or terms
for brevity. The D matrix can be generated manually or by automatic indexing
{30, 36, 46]. The individual entries of D, dij (1 «i<m 1 <j< n), indicate the

importance of term-j (tj) in document-i (di)’ where tj is a member of the
indexing vocabulary T, T= {t{» 5, -~ t; }. If indexing is binary dij will be either

0 or 1 indicating presence or absence of a term in a document. Otherwise (i.e.,
in the case of weighted indexing) dij may indicate the number of occurrences

of tj ind,. In other words, we are modelling a document by a vector in an n-

dimensional space defined by n terms. These descriptions are clustered to
narrow down search for retrieval. Documents can also be represented by
more  traditional ways such as inverted files constructed for terms.
Alternatively, we can map, by hashing, documents into what is called
signature files {[30].

These document representatives are stored in secondary storage, using a
structure that facilitates query processing [30, 36, 46, 49]. Query processing
retains documents that are relevant to the user request. Normally, relevant
documents are determined by use of a similarity function since, unlike DBMS,
exact match techniques are not suitable for IRS. In the vector space model [36]
the relatedness or similarity of a query to documents is determined by a
matching function such as the cosine function given in Eq. (1.1).

Cosine (X, Y)= Zx_ v |- Exf oy,

i=1 1=1 g

1
2

In this expression X and Y are vectors of length n, Cosine (X, Y) is the cosine of
the angle formed by the vectors X and Y in the n-dimensional space and
therefore gives a value between zero and one. One vector represents the query
and the other the document being compared. Documents that are found
relevant (i.e., most similar with cosine wvalue closer to ome) ito the user query
according to the matching function are presented to the user. For example, if
Eq. (1.1.) is used as the matching function, documents with a similarity (i.e.,
cosine coefficient) value greater than a threshold will be retrieved by the
system. The actual relevance of the document is then decided by the user. This
decision depends on various factors such as user background, type of
document, depth and style of document, author, etc.

o

(1.1)



In Information Retrieval (IR) we can theoretically search the documents by
brute force, that is, by full search (FS) which involves comparison of a query
vector with the vectors of individual documents representing the database.
Obviously, this is inefficient unless the database is too small. One way to
increase efficiency of the FS is the clustering of documents via their
representatives. In the context of IR, a “cluster® indicates a homogeneous
group of documents that are more strongly associated with each other than
those in different groups. The process of forming the groups is referred to as
clustering. It has been observed that "closely associated documents tend to be
relevant to the same request” [46] and this justifies clustering of documents in
a database. In a Clustered Based Retrieval (CBR), the queries are first compared
with the clusters, or more accurately with cluster representatives called
centroids. Detailed query by document comparison is performed only within
the selected clusters. CBR leads to efficient search spaces in comparison with
FS [30]. To further increase the efficiency of CBR, the documents of the same
cluster can be put into close proximity within a disk medium to minimize I/O
delays[17, 33]. In addition to being efficient a clustering system must be
effective in the sense of meeting user needs. In this article we will introduce a
new clustering methodology based on the Cover Coefficient (CC) concept. In
this regard we will first present CC concept along with the various concepts
and methodologies based on it. It will be seen that, in contrast to most other
clustering methods, CC methodology has a formal base and is useful in IR
applications.

In the following section an overview of clustering algorithms is presented.
The CC concept and methodologies, and the indexing-clustering relationships
indicated by it are introduced in Section 3. The CC-based Clustering

Methodology (CSM) is one of them and will be introduced here. In the fourth
and last section, we will cover our experimental design and evaluation. The
experiments were designed to wvalidate the indexing-clustering relationships

indicated by the CC concept, to evaluate performances of Cc3M and the CC-based
D matrix optimization methodology.

2. OVERVIEW OF CLUSTERING ALGORITHMS

Clustering or cluster analysis has a wide spread use in various disciplines {[1].
The vast amount of literature on cluster analysis [1, 18, 20, 23, 39] supports this
fact. To see the diversity of the subject the reader may refer to [18] which cites
more than three hundred publications (over two hundred and fifty articles
from seventyseven journals, forty books, and eighteen reporis).

At first sight one may think that an expert of a field would be able to judge
clustering of the observations at hand by enumarating all possibilities and
simply choosing the ones which look the best. However, the problem is not
that simple. The number of ways clustering m observations into n, nonempty

subsets is a Stirling number of second type and given as follows [1, p.3]

n
(nc) z n_- k n m
— c
Sm =1 / nc! (‘-1) (k )k
k=0
13

For m= 25, and n, = 5 the number of possibilities is approximately 2.44 x 107,

If we do not know the number of clusters n, the number of possibilities

becomes the sum of Stirling numbers [1]. For m= 25
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Ssﬁ’ > 4x10'®
25

=1
This is a very large number which indicates that all cluster possibilities
cannot be described with an expression having a length Dbounded by a
polynomial function of the input length. It is shown that the optimum
solution of the clustering problem is NP-complete [ 28, pp. 161-167; 45] which
explains the existence of various heuristics instead.

There are three elements to clustering which are the document
representation matrix, resulting set of nonempty clusters, and the clustering
algorithm which detects the association among documents.

In judging suitability of clustering algorithms the following questions must
be answered.

(a) Are the clusters stable? That is, are they unlikely to change when new
documents are added and/or are the clusters unaffected by small errors made
in the description of documents [5]?

(b) Is the composition of clusters independent of the order in which
documents are processed?

(c) Are the clusters well defined? That is, for a given set of data, does the
algorithm produce a single classification or a small number of compatible
classifications?

(d) Is document distribution in clusters as uniform as possible?

(e) Is maintenance of clusters practical and efficient? In other words, is the
clustering algorithm able to handle document growth efficiently [9]?

(f) Do the clusters produced result in an effective and efficient retrieval
environment?

The answers for these questions must , of course, be affirmative for a good
clustering algorithm.

Clustering algorithms can be classified in different ways. One possible
classification is according to the pattern or structure of clusters, as in the
following:

(a) Partitioning type: Clusters cannot have common members, i.e, C; N (‘j=@

forl<i,jg ., and 1 = j, © indicates the null set.
(b) Overlapping type: Clusters can have common members, i.e., C, ﬁCj =& for

somclsi,jgnc

(c) Hierarchical type: Clusters of the lowest level are clusters of documents.
The higher level clusters are clusters of clusters.

Another classification of clustering algorithms is by their implementation as
in the following:

(a) Single-pass algorithms: In this approach documents are handled only
once. The first document will form the first cluster. Then the consecutive
documents will be compared with the already formed clusters or more
correctly with their centroids. When a document is found close enough it is
assigned to the corresponding cluster(s) and then the centroid of the cluster is
modified accordingly [35].

(b) Iterative algorithms: A typical approach starts with the assignment of
documents into existing initial clusters or seeds. (There should be a way of
creating the seeds.) The centroid vectors are then modified. The documents are
reassigned 1o the related clusters iteratively. Each iteration improves the
value of an objective function measuring the quality of clustering. The
algorithm terminates when an acceptable quality level is reached.

,and i = j.
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(c) Graph theoretical algorithms: The concepts like "single link", "average
link", and "maximally complete graph"™ are used. Here, a link means a
similarity wvalue, greater than or equal to a threshold, between any two
documents. In the single link method, the members of a cluster are connected
to each other by at least one link. In the average link, and maximally complete
graph (clique) the number of links of a member to the other members in the
same cluster is expected to be greater than or equal to a minimum number, and
all the members should be connecied to each other, respectively. By changing
the similarity threshold from higher to lower values one may construct a
hierarchical scheme called dendrogram [46].

2.1 Partitioning Type Clustering Algorithms

63M clustering algorithm presented in this article is of partitioning type.
We will, therefore, analyze partitioning type clustering algorithms in detail.
As can be understood from the name a partitioning type clustering algorithm
generates a partition P, where

P,{Cf'cz'" ,C } and2|c|_

The set P can be formed in different ways. For example, a "suitable” threshold
value used with the single link, average link, or maximally complete graph
concept can lead to an acceptable partitioning. However, it is very hard, if not
impossible, to estimate the "suitable" similarity threshold value that will lead to
an acceptable partition. .

A generally accepted strategy to generate a partition is to choose a set of
documents as the seeds and assign the ordinary (non-seed) documents to the

seed documents 1o form the clusters. C3M uses this strategy. Imn the
implementation of a seed based approach, there exists a nonempty subset DS of

D called the set of seed documents and a relation Ry, called "the member of the
same cluster”. Ry, is an equivalence relation, i.e., it is symmetric, transitive,

and reflexive. This relation has the following properties:
(a) No two distinct seeds are the member of the same cluster, i.e.,

d =d and d RM d --->d E(D—DS)(-BdiE(D—DS)
1 1 1 1 1
where, - and @ indicate the “"set difference” and Boolean "exclusive-or"

operator, respectively.
(b) For each d& (D - Ds)’ there exists a seed document which is the member of

the same cluster.
Corollary:: For dkE(D - Ds)’ there exists exactly one seed document, d,

satisfying d Ry, d; .
Proof: 1t is stated in (b) that dk
and do . To test the above case, we will have dk RM d

has at least one seed d, satisfying dg RM d, . Let

us consider two seeds dl

and dk RM do‘ Since RM is an equivalence relation, dk RM dl and dk RM do">
d; Ry d, However, this contradicts (a).[]

Because seeds determine clusters the selection or creation of seed documents
is an important task. To contrast our seed selection method, that will be
presented in Section 3.5, with that of the earlier studies, a nomn-exhaustive list
of known seed selection methods are listed below [1, 15, 30, 36, 47], where each
list item corresponds to a different method:



(a) Select the first n, documents of a database as cluster seeds, where o, is

the number of clusters to be generated.

{b) Select the seeds randomly from the database.

(¢) Generate the initial cluster seeds by a random process.

(d) Divide the database into partitions, then form the partition centroids as
the seed points.

(e) For each term, the term generality, i.e., the number of documents
containing the term, is calculated. Then for each document, the sum of the
term generalities of its terms is calculated. The documents with the largest sum
are chosen as the seeds.

(f) Use an inverted file structure which provides a list of documents per term
contained in the documents. Then select the documents related with the term
as a cluster. Construct the centroid for each resulting cluster and then use this
centroid as the initial seed. In the above process, terms containing too many or
too few documents may be eliminated.

2.2 Unresolved Problems of Clustering Algorithms

The clustering research in IR has produced various methodologies [13-16, 29,
33, 35, 44-47). However, as discussed in [19] clustering has yet many unresolved
problems. The following list summarizes some of these problems:

(a) Time (i.e., execution time) and space (i.e., memory) complexity of the

algorithms is high; time is in O(mz) for m documents in the database.
(b) Most graph theoretical based algorithms depend on determination of a
similarity threshold to generate cluster links which has a time complexity of

O(mz). A suitable threshold is hard to predict and determining it by computing
correlations in the database is costly in time [32].

(¢) Any atiempis of reducing O(mz) time complexity, such as using inverted
lists, introduce additional complexities if clustering and indexing are to be
done properly (e.g., exhaustive indexing) [22].

(d) Nongraph theoretical based clustering algorithms use concepts that are
mostly arbitrary in the way of determining cluster seeds, category veclors
(i.e., centroids), or use of inverted file structures. The result is dependence of
clustering on the order of documents (order dependence) or nonuniform
distribution of documents in resulting clusters.

(¢) In addition to order dependence and nonuniform distribution of
documents among clusters, it is not possible to predict beforehand the number
of clusters to be formed nor is possible to establish any relationship between
clustering and indexing.

(f) Clusters can be generated independent of the document description matrix
D. For example, the relevant documents of a query can be made a cluster.
However, such an approach may lead to clusters containing documents with
unsimilar  document description  vectors. This may be detrimental for
processing of queries in a general environment [16, 44].

3. CONCEPTS OF C°M

Cover Coefficient, CC, is the base concept of C3M clustering. The CC concept
can be used for the following purposes.

(a) to identify relationships among documents (and terms) of a database by C
(in the case of terms, C') matrix;

(b) to determine number of clusters within a document database;

(c) to select the seed documents using a new concept called cluster seed
power;



(d) to form clusters with respect to C3M, utilizing the concepts of (a) through
(c);

(e) to predict the relationships between clustering and indexing;

(f) to calculate the importance of terms and documents within a database
(these are referred to as term discrimination value and document significance
value, respectively);

(g) to increase the effectiveness of IR optimize the D matrix by use of the
term discrimination and document significance values.

Each of these items will be dealt with in this section.

3.1 The CC Concept

The CC concept has been introduced for clustering document databases [3, 6].
In this article a probabilistic interpretation for this concept will be
introduced.

Definition: Given is a D matrix representing the database {d;, d; , ... d )
using the index terms T= {tl, ys oo o 1n}. The cover coefficient matrix, C, is a
document by document matrix whose entries cij (1 < i, j £ m), indicate the

probability of selecting any term of q, from dj‘

< i<m 1 <] < n) satisfy the following

The entries of the D matrix, dij’ (1

conditions:
n

(a) zdij >0, 1= i = m (each document has at least one term)
=

m
(b) 2 dﬁ >0, 1= j =n (each term is assigned to at least one document).
i=

We will introduce the CC concept using binary indexing. Subsequently,
however, its behaviour will be analyzed also with respect to weighted
indexing.

From the definition of CC, at first glance, it seems that individual entries of
the C matrix, cij would be equal to (number of terms common to both d; and
¥

dj) / (total number of document frequency of terms of d;). However, this is not
true. For the calculation of cij one must first select an arbitrary term (or
column) of di (say 1k) and try to select document dj from this term, i.e., check
if dj contains t, . In other words, we have a double-stage experiment [24, p. 94]

and each row of the C matrix summarizes the results of a double-stage
experiment. Let $;x  indicate the event of selecting t,  from d; in the first

stage, and s'. indicate the event of selecting d. from t, in the second stage.

jk
(The problem can be equivalent to the following: Suppose we have many urns
-terms of d;-, each containing many documents -notice that individual terms

of d, appear in many different documents-. An urn is chosen at random, and
from it a document is drawn at random. What is the probability of getting dj‘)

In this experiment the probability of the simple event "s, ~ and s, " ie,
J

-3



P(s;p s’jk) can be represented as P(sik)xP(s'.k) [24]. To simplify the notation

we will use s, and s respectively for P(s; ) and P(s'. k)’ where

S;k~d: /(Ed ) -d /(E ) forls i=sm 1=<sksn

Considering the enme database (mcludmg dl itself) we can represent the D
matrix with respect to the double-stage probability model, as shown in Table 1.

Table 1. Double-stage probability model of the D matrix, where 1 < i < m

1 2 . i - m
s xs s X&' s. xs . S _ Xx§
i1 11 i1 21 i1 j1 i1 mil
s _xs s _xs s x+s s _x¢§
12 12 i2 22 i2 j2 i2 m2
s xs s xs ... S X5§ ... 8§ x¢§
in 1n in 2n in jn in mn

Figure 1 shows the hierarhical interpretation of this model. In Figure 1, we
start from d;, and end up at one of the documents of the database. In reaching

from d. to d. (1 < j < m) there are n possible ways (Sil’ Sigr - s sm) Choose one
of them eg s, then, the intermediate stop is t,. After this intermediate stop,
in order to reach dj we must follow S'jk' Accordingly, the probability of

reaching dj from d, via t, becomes s, X S’jk‘

Figure 1. Hierarchical representation of the double-stage
probability model for di of the D matrix



By using Table 1 we can find € (i.e., the probability of selecting a term of d,
from dj) by summing the probabilities in the jth column of the table.
Let us present an example by using the following D matrix.

-

6 0 1 O
1 1 0 1 1 O
0

D=|0 O 6 0 1
0o 1 1 0 0 1
0 1 1 1 0 1

To illustrate the concept let us follow the calculation of €15+ According to the D
matrix, d; contains three ierms {tl, ts, tS} and there are a total of eight
occurrences of these terms and three of this total appear in d,. An

enthusiastic devotee of "equally likely cases" might argue as follows.  There
are eight occurrences of the terms of dl’ any one of which may be drawn;

since three of them is in dy, the probability of getting a term of d, form d, is

3/8= 0.375 [24, p.92]. As we have stated previously, however, this is not true.
This is because one has no right to treat eight terms as equally likely.
According to the double-stage experiment model to calculate ¢y, We must first

randomly select each one of the terms of d, and then try to select d, from the
outcome (term) of the first stage. In the first stage, if we select t, or 15 then d2
has a chance of 1/2. However, if 1y is selected in the first stage, then the
probability of selecting cl2 in the second stage is 1/4. This is because t; and tg
appear in dl and d?_‘ On the other hand 12 appears in dl’ d2’ and two other
documents. In the first stage, the probability of selecting each element of {tl ,
ts ts} from d; is 1/3 and for the rest the probability is 0 ({13, 4 16} do not
appear in dl)' Pictorial representation of this experiment is provided in
Figure 2 (zero slj or s'ij values for 1 £ i £ 5, and 1 < j < 6) are not shown in the
figure). According to Figure 2,

c = Sslk xs 0= 1/3x(1/2 + 1/4 + 1/2)= 0.417

The C matrix is formed from the matrices named S and S', ie.,, C= S x S‘T (S'T

indicates the transpose of matrix §'), where Sik and s’jk were defined

and s' indicate the probability of selecting 1 from d;, and

ik jk
probability of selecting dj "from" t,, respectively. (In s', case we consider
the term definition vector, i.e., the jth column of the D matrix.) Accordingly,
the entries of the C matrix are defined as follows, by using the definition of S
and S' matrices,

previously. s



c. = Es, X s‘T, = (probability of selecting t from d)
ij - ik kj k i
(probability of selecting c} from tk) (3.1)

T
where s Kj= Sjk'

c=axn§d xp xd 1< i,jsm 3.2
k=1

where @, and Bk are the reciprocals of ith row sum and kth column sum,

respectively, as shown below:

a_=1/(zd__) l1<sism (3.3)
i = ij
Bkzl/(zdjk) 1sksn (3.4)
j=1
s.. .~ dl
4y AU
/w d2
$1171/3 5173
so=173 %,/ . __d
d1 12 ,2_,.,322 2
s.>~4
sie=1/3  3o22 4
15 52
\.ds
15 3'15‘,,1 dj
S12 N4y

Figure 2. Hierarchical representation of the double-stage probability
model for ci1 of the example D matrix

3.2 Properties of the C Matrix
The following properties hold for the C matrix:

(@ Forizj O0g cij ¢ 2 0 (i.e., the values of the off-diagonal entries vary
between O and c;; the value of c;; is always being greater than zero).

b

)] Ciq ¥Cp+ - -*C ) = 1 (i.e., sum of row-i is equal to 1 for 1 £ 1 < m).
(c) If di is unique, i.e., if pone of the terms of di is used by the other
documents then ¢y = 1, otherwise ¢ < 1.

~
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@ It cij = 0 then c; = 0, and similarly, if ¢ > 0, then ¢,

i j i > 0, but in general c;;

J
» Cji‘

The proofs of these properties are given in [3, 6]. Here we present the
interpretation of these properties.

Property (a): cij > 0 means that it may (cij > 0) or may not (cij: 0) be possible to

select the terms of di from dj' cij <6 is obvious, when one tries to select the

terms of di from the database, di itself will have higher chance than any
other document including dj' However, if dj contains all the terms of d; then

cij =¢;- We can, of course, always select a term of d; from itself, c;, >0.

Property (b): means that the entries of each row are the outcomes of a
double-stage experiment, and the sum of all the probabilities will be the
universal space with the sum being one.

Property (c): means that if some of the terms of di appear in the other
documents, dj’ then those cij entries will be nonzero for j = 1.

Property (d): means that if it is not possible to draw a term of d; from dj’ then
it is also not possible to draw a term of dj from di (since they do not have any
common terms). If a and dj have common terms, but they are not identical,

then Cij and cji will be greater than zero but not necessarily equal to each
other.

Another property of the C matrix is the following. If a D matrix is mapped
into a C matrix, then pxD, where "u" is a positive real number, will be mapped

into the same C matrix. This comes with the definition of the cij entries, Eq.

(3.2). Therefore, if we shift the document vectors with the same amount in the
vactor space, this is not going to affect the C matrix.

To have better intuition of the meaning of the C matrix comnsider two
document vectors di and dj' For these document vectors we can define five
possible relationships as shown in Figure 3. The relationships between cli and
dj in terms of the C matrix entries (i.e., in terms of C o cij . cjj , and cji )
are described in the following. (a) di and dj are identical: i.e.,

cikzjk’cki=ckjf0r15k5m ‘
(b) di and dj have some common terms and documents do not contain each

other: i.e.,
C; >cij s cjj >cji ) €45 af-*cjj ) cij = Cji
©) di is a subset of dj: i.e.,
N =Cij , cjj >cji ’cjj >, ,cij >cji

@) dj is a subset of di (the reverse of (c)):

on >cij , cjj = (:ji ) cjj <¢; o cij <cji
© di and dj have no common terms: i.e.,
¢ >cij ’ij>cji ,cij=cji=0

11



ORaY

a) d and d are identical b) d and d have common terms
<) di subset of <1j 4d) <1j subset of di e) diand dja.re disjoint

Figure 3-The possible relationships between two document vectors di and dj

From the properties of the C matrix and the CC relationships between two
document vectors (refer to Figure 2), Cij is given the following meaning:

extent with which d_is covered by d fori = j
(coupling of d with'd) J
i j

extent with which d_is covered by itself for i = j
(decoupling/uniquened$s of d)

Now let us revisit the interpretion of the individual entries of Figure 3.

(a) Identical documents: uniqueness and extent with which documents cover
each other are identical. Furthermore, the extent with which these documents
covered by the other documents is also identical (¢, = cjk , where 1 € k < m).

Similarly, the extent with which these documents cover the other documents
(cki = ij where 1 < k < m) is identical.
b

(b) Overlapping documents: each document will cover itself more than the

other (cu>cj, c”>c1}) However, this does not provide enough information to
compare ¢, with cM. and cJ with Cji' This is because these values are also
affected by the couplings with the other documents of the database.

{(c) A document is a subset of another document: Since di is a subset of dj’ the
extent with which di is covered by itself (Cii) will be identical to the extent
with which d, is covered by d'(cij)' Furthermore, since dj contains all the
terms of di as well as some additional terms, then the extent with which dj
covers itself will be higher than the extent with which di covers itseif (i.e., cjj
>¢;.). Because of similar reasoning, the extent with which dj covers d, is

)

higher than the extent with which di covers dj (cij>cji
(d) Identical with the discussion in (c).

12



(e) Disjoint documents: Since di and dj do not have any common terms, then
they will not cover each other (Cij= cji= 0). Obviously the documents will cover
themselves. However, because these documents may also be coupled with the
others ¢, and ij may nol be equal to 1.

In a D matrix, if d; (1 <i < m) is relatively more unique (i.., if d;  contains
terms which appear in less number of documents), then i will take higher
values. Because of this, ¢;; is called uniquness or decoupling coefficient, Gi,of
d;. If none of the terms of d, is contained in any other document, then b, =1
(i.e., d; is completely unique, or "decoupled” from the other documents in the

database). In terms of the double-stage experimentation, it is not possible to
select a term of di from the other documents of the database. Contrary would

mean nonzerc cij which in turn implies nondisjointness of documents.

The sum of the off-diagonal entries of the ith row indicates the extent of
coupling of di with the other documents of the database and is referred to as

the coupling coefficient, Y, of di‘ From the properties of the C matrix Y, = i-
6i. The ranges for Gi and wi are0<6i_<_1,0_<_wi<1for15i_<_m.
By using the individual 61 and Y, values, the overall or average decoupling

and coupling coefficients & and vy, respectively, of documents can be defined as

6=S§,/m and O0<d=<1
1

i=1

‘P=S’l{3./m=1-5 and 0 =sy<1
1
-

The C matrix corresponding to the example D matrix given earlier can then
be obtained with the following values, disregarding inexactness due to
rounding.

[0.417 0.417 0.000 0.083 0.083

0.313 0.438 0.000 0.063 0.188

C= | 0.000 0.000 0.333 0.333 0.333

0.083 0.083 0.111 0.361 0.361
0.063 0.188 0.083 0271 0.396

The entire C matrix is given for the sake of illustration. However, the

implementation of c3M and CC based concepts do not require complete
construction of the C matrix.
From this C matrix the decoupling coefficient of d is 8y= ¢q4= 0.417.

Accordingly, its coupling with the rest of the database, i.e., coupling cefficient
Is, p; =1-8; = 0.583. The overall decoupling and coupling coefficients for the

database are

(3.5)
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6=5_>:6_/5=1.945/5=0.389 y=1- 0=0611
1
i=1
Looking at the D matrix, we can see that ol1 is a subset of d2’ which
corresponds to case (¢) in Figure 3. As stated in the interpretation of Figure 3
cll-—.clz, c22 >621, c22 >cll’ and clz >c21 hold as can be seen in the C matrix.

3.3 The C' Matrix
By following a methodology similar to the construction of the C matrix, we
can construct a term by term C' matrix of n x n for the index terms. C' has the

same properties of C. This time, however, each row of the C' matrix summarizes

the results of a double-stage experiment. C' is defined as the product of s'Tand

S matrices the elements of which are obtained as

. T _ - :
c = Esik X Skj = (probability of selecting dk from ti) X

(probability of selecting § from 4:1k

T :
ik Sk

Notice that in the case of C', the stages of the double-stage experiment are
interchanged with respect to the order for the C matrix. By using the
definitions of the S and S' matrices

c'_.:B_xEd'xa x d . (1=ij=n)
ij i ki k kj
k=1
The concepts of decoupling and coupling coefficients of ‘j’ &', and w'j are the

]
counterparts of the same concepts defined for documents. Hence &',=c'.., and

ARSI

w’jzl -6'j. The concepts of overall or average coupling and decoupling are also

valid for terms and represented by & and ', respectively.
The C'  matrix resulting from the example D matrix is (ignoring rounding
€rrors)

where s

[0.292  0.292 0.000 0.125 0.292 0.000 |
0.146 0.292 0.146 0.125 0.146 0.146
0.000 0.292 0.292 0.125 0.000 0.292
0.125 0.250 0.125 0.250 0.125 0.125
0.292 0.292 0.000 0.125 0.292 0.000

10.000 0.194 0.194 0.083 0.000 0.528]
From this C' matrix the decouplind and coupling coefficients of t, are 6'1 =
c‘11 = 0.292 and w’1= 1 ~5‘1 = 0.708. The overall decoupling, &', and coupling, V',

of terms are
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0'= 26’3./ 6 =1946 / 6 = 0.324

j=1
¥'=1 - 0= 0.676
Notice that in the example D matrix 1, and tg are identical, i.e., d;;=d;5 (= ig
5). Accordingly, from the properties of the C' matrix c’1j = c’5j and c'jl = c:'jS
for 1 < j < 5 which can be easily observed in the C' matrix (i.e., the first and
fifth rows are identical, the same is valid for the first and fifth columns).

3.4 Number of Clusters Hypothesis

The determination of the number of clusters for a database has been an
unresolved problem of clustering theory[19]. With the introduction of the CC
concept it has been possible to assert the following hypothesis.

Hypothesis. The number of clusters within a database, n., should be high if

the individual documents are dissimilar and low otherwise. Furthermore, n

n =26_=6xm
[ 1

i=1
Similarly, the npumber of clusters implied by the C' matrix, n'

n' = Eé‘,:b’xn
c le ]

It is known that classifying documents imply classifying terms and vice versa
[40]. This is intuitively obvious that as we classify documents, the clustering
process will implicitly group the terms which are most frequently used by the
members of a cluster. The reverse is also true. That is, as we classify terms
this will also imply a classification among documents. The idea of classifying
terms using term clusters to form document clusters has been used in the
literature by various researchers [14]. This leads to the fact that n, and n',

should be identical and this identity has been proven [3, 6] to hold.

The equations (3.8) and (3.9) are consistent with the statement of the number
of clusters hypothesis. This is because a database with similar documents will
have a low & (decoupling) whereas a database with dissimilar documents will
have a high 8. Let us show the conceptual validity of Eq.s 3.8 and 3.9 with the
following propositions and . corollaries.

c
can be obtained as

e’ would be

Proposition-1: n.= 1 if all documents of D are identical.
Proof: From the properties of the D matrix dik >0forl<i<m 1 <kx<n This is

because a term exists if and only if it appears in at least one document. Since
all documents are identical dik =djk for 1 <1, j £ mand 1 € k < n. For simplicity

let us use dk for dik and d.., 1 < k < n. Then from Eq. (3.2)

ik’

2 . .
0=o0a x deﬁ i<sism
i i k k
k=1
where ﬁk= 1/ (mx d.), hence dk2 X ﬁk= d, /m. Accordingly,

[y
wn

(3-8)

(3.9)
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) dkxﬁkz(1/m)x(d1+d2+...+dn)
=1

On the other hand o, 1/((11 +d2 +...+dn). Hence 6i=1/mfor1 < i< m. This

implies that n, which is the summation of all 6i is equal to m x 1/m=1. O

Proposition-2: For a binary D matrix the minimum value of i (61) l«ci<cmis 1/

m

Proof: If ¢ ii < 1/m then this means that Cij < 1/m for i » j (since i zcij), then

Cj1 ¥ S +---+¢ < 1 which contradicts the property (b) of the C matrix, i.e.,

Ci1*Co2* - * %y = 1. Hence, the minimum value of ¢ = 1/m. 0O

Corollary-1: In a binary D matrix, n_ > 1 if we have two distinct documents in D.

c
Proof: Consider two documents d; and dj . If they are identical then c;; = € If
di and clj are distinct then cii >cij or cjj >cji. Assume that cii > Cij' Since the
minimum value of i is1 / m (notice that when ¢ = 1 / m, then <:ij =1/m is#]j

or else row sum will be greater than 1, which contradicts the property (b) of

the C matrix) then in order to have the inequality to hold ¢,; > 1/ m. If we
have at least one c;, value greater than 1/m it implies that =, is greater 1.

Since the lowest value which can be assumed by c;; is I/m. O

Corollary-2: The value range of n, is 1 <n, < min{m, n).

Proof: We know that n, = n'c, and n, and n'c are the summation of the
diagonal entries of C and C' matrices, respectively. C and C' are square matrices
with sizes m x m and n x n, respectively. Hence, the maximum value of n_ is m,
and of n', is n. On the other hand n,= n'c. This implies that max(nc)= min (m,

c
n). [

Notice that n, < min(m, n) is logical, since n, 2 min{(m, n) would violate the

c =
partitioning property of C3M that will be introduced later. For instance if n, >

m then some documents must be the member of more than one cluster, which

contradicts the definition of partition, i.e., nonoverlapping clusters.
After determining n_, it is easy to estimate the average number of documents

d. within a cluster as d.=m/mn, =1/ 8. The concept of decoupling coefficient
implies that increase in O or in individual éi (1 < i< m) will increase the
number of clusters ( n.= & x m) and hence decrease the average size of
clusters. The opposite is also true.The relationship between d, and 0 is shown
in the logarithmic scale in Figure 4. The value range of d  is m/min{m, n) <

< .
dc_m

16



log dc

» logd

Figure 4. The relationship between d. and d in the logarithmic scale,
log d, =]logd] (0<d<1)

Now, let us compute the number of clusters that will result from the example
D matrix:

&3
1

S 6 = (0.417 + 0.438 + 0.333 + 0.361 + 0.396)= 1.945
i
i=1

n_= 0xm=038x5=1945=2
If we use the C' matrix n', would come out as 1.946 which agrees with n, (the
difference between n, and n'c is due to rounding).

Before proceeding, the peculiarities of the C matrix corresponding to a
weighted D matrix will be pointed out. A weighted D matrix may lead to ¢;; < S0

which is very easy to prove. Consider ¢;; and Cij:
c.=a ‘E d B c. =0 X d xd xB
= X X = . .
ii i ik k ij i ik ik k
k=1 k=1
If mm(djk)= dik and if djk >dik for at least one k (1 < k < n) then Cij > ¢
Hence for a weighted D matrix §;, < 1/m can be observed. However, 1 < 0, <

min(m, n) is still valid since the proofs of proposition-1 and corollary-2 are
also valid for the weighted case. The identity min(n,)= 1 for the weighted case

is obvious.

3.§ Cluster Seed Power
The C3M is seed oriented, i.e., n, number of documents are selected as cluster
seeds and non-seed documents are concentrated around the seeds to form

clusters. The seed selection process depends on the cluster seed power, P;» of di

(1 < i < m) which is a concept introduced in C3M. The cluster seed power of d, is

defined as
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P, =f>i XY x zdij and

=1

pi =(‘)i xwixj_zl(dinf)jij)

The Eqs. (3.10) and (3.11) pertain to a binary and weighted D matrix,
respectively. In these equations 6, provides the separation of clusters (inter

cluster dispersion), v, provides the connection among the documents within a

cluster (intra cluster cohesion) and the third term (i.e., d;y +di2 + ...+ din’ or

dj; X0y x ¢+ 4, x 6'2 XY, + ...+ X G'n x Yy ) provides normalization. In a
weighted D matrix, the normalization factor (i.e., dil + cli2 + ...+ din’ which is
the number terms wused for the description of documents) should be

normalized further, and this is provided by the product 6’j X‘P'j for individual

terms, since there might be some over estimation of the weights of some terms
in d, . By such an approach a term with a high weight, but with a skewed

frequency (i.e., a very frequent or very rare term) will not contribute much
to the summation, i.e., the seed power of d,.

It should be noticed that some seeds might be identical, since they may be
described by nearly identical terms. To eliminate the identical (false) seeds
the following algorithm is provided.

An algorithm to eliminate the identical (false) cluster seeds:

[a] Calculate the cluster seed power of all documents and sort
documents in descending order according to their seed power

N.= 0 [* N_ indicates the number of equivalence classes

in the seed document set; in this algorithm we
want to use only one of the identical documents
as a seed */
[b] repeat;
if Nc <n. then

do;
Consider the next (n,.- Nc ) documents
with the maximum cluster seed power
as the new cluster seeds;

end;

Determine the number of equivalence
classes within this cluster seed
collection, and set Nc to this number;
untit N =n
c c;
The equivalence classes within the set of candidate cluster seeds are found by
using the relation "equivalent seed", Re . Two seeds, di and d}., are related to

i i if ¢c.. =c.. .. = C.. c.. =c¢... [t is
cach other with respect to the relation Re’ if i c:JJ » Cij 013 » G ji
obvious that the relation R, holds the requirements of an equivalence relation
since it is reflexive, symmetric, and transitive. This relation is illustrated in
the following:

(3.10)

(3.11)



(a) Rc is reflexive, i.c., d, Re g, is trivial.

(®) R, is symmetric, since d, R, dj and dj R, 4, imply that ¢;; =S * Sii =G
s cjj =cji’ hold for both directions by changing the order of the operands at
both sides of the equalities, therefore, R, is symmetric.

(©) R, is transitive, since d; R, dj and dj R, d, imply that d; R, d..d R,
. i i =G ..=C., ,C..=¢C.. ;d. i i L.o= ,C. =C. ,
dJ implies i c‘U ) €45 cU ’C.U c}] ,d} Re dk implies C.U CLk cJJ ik
gk = ckj' These equalities also imply that i = %kxe Sii = Sik’ Skk T Ski
Therefore, R, is transitive.

After showing that R, is an equivalence relation, it is then trivial to show
that Rc partitions the cluster seeds into equivalence classes [2, pp.87-88]. It is

obvious that within an equivalence class there might be two or more
(identical) cluster seeds. Only one of the seeds of an equivalence class is taken
as a cluster seed, and the rest are considered false, since all are compatible (or
equivalent) with the one chosen as the cluster seed.

The above algorithm might be applied as follows. To eliminate the false
cluster seeds, it is necessary to compare ecach cluster seed with the next
possible cluster seed. This assumes that the cluster seed powers are sorted in
descending order, the first seed is compared with the second seed and so on. It
will be enough to compare the cluster seed under consideration with the next
(lower) cluster seed, since they will be in consecutive order due to their close
similarity. If the seeds (documents) d;, and dj are the members of an

.. ,¢. ,¢.. ,andc.., will be almost
ii i ij ji
identical, i.e., for example absolute (c;; - cjj) < &, where € is a small positive

equivalence class, then the entries ¢

number chosen as a threshold.

In various experiments [26] it has been observed that documents with medium
number of terms are selected as cluster seeds (i.e., special general or
documents that are defined by too little or too many terms are not selected as
cluster seeds). This is what is expected from a seed selection methodology since
general or special documents are mnot appropriate for a cluster seed. General
documents do not provide inter cluster dispersion, and special documents do
not attract other documents.

Using the example D matrix the seed powers of the documents are calculated
according to Egq. (3.10) and listed in decreasing order in the following:

P, = 0438 x (1 - 0438) x 4 = 0.985 -

Ps = 0396 x (1 - 039) x 4 = 0.957
p, = 0417 x (1 - 0417) x 3 = 0.729
p, = 0361 x (1 - 0361) x 3 = 0.692
py = 0333 x (1-0333) x 1 = 0222

Since n, = 2, then dz and d5 become candidate seed documents. Our false seed

elimination algorithm determines that they are distinct (notice that the wvalues
Chy = 0.292 and cgq = 0.528 are significantly different). Hence d, and dg are

sclected as the cluster seeds. Notice that in this example there is no need 1o
check Crs and Cgy, WE Can decide by using only Cyn and 55 since they are

significantly different.

19



3.6 The C°M  Algorithm

C3M is a partitioning type clustering algorithm which computes in single-
pass. A brief description of the algorithm is as follows [3, 6].

C3M:

[a] Determine the cluster seeds of the database.

[b]i= 1;
repeat; /* construction of clusters */
if d; is not a cluster seed
then
do;
Find the cluster seed which maximally covers dji;
if there is more than one cluster seed that meets
this condition assign di to the cluster whose seed
power value is the greatest among the candidates;
end;
=i+ 1;
until i > m;

[c] If there remains unclustered documents group
them into a rag-bag cluster.

A multi-pass version of the c3m has been introduced and compared with the
single-pass version. In the multi-pass version cluster seeds are selected in the
same way, however, for the assignment of documents to cluster seeds a
similarity coefficient is used. After all documents are assigned to the seeds, the
cluster seeds are replaced by cluster centroids. This repetitive assignment is
performed until cluster definitions reach stability. Numerous experiments
showed that the computationally efficient single-pass version  generates
clusters compatible with those of the multi-pass version. The compatibility of
the generated clusters is valid in both binary [4, 6] and weighted [26] D
matrices.

Now, consider the construction of clusters for the example D matrix. In the
database Do = {dl’ d;, d, } is the set of documents to be clustered and Ds= {dz, ds}

is the set of seed clusters. To construct the clusters we need only to calculate

cijs where dieD0 and djEDs . For example, for d1 » €19= 0.417 and €15 = 0.083

since ¢, >¢;5. d; Will join the cluster initiated by d,. If we proceed in this
manner the generated clusters will be: C; ={d;, d,} and C, ={d;, d, ds}.

(,‘3M satisfies the desirable characteristics of good clustering algorithms as in
the following:

(a) It has been experimentally shown [5, 6, 26] that the clusters produced are
stable. That is, small errors in the description of documents lead to small
changes in clustering since small changes in the D matrix will lead to small
changes in the C matrix.

(b) The algorithm is independent of the order of documents. This is because
the coupling between two documents is not affected by the place of the
respective documents in the D matrix. Accordingly, the algorithm generates a
well defined clustering pattern, i.e, it produces unique classification.

(c) Implementation of the algorithm requires very small memory for the data
structures. as and fBs require m and n memory locations, respectively. m
memory locations are also needed for the diagonal entries of the C matrix and
to calculate seed powers. In the case of weighted indexing we need to calculate
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the diagonal entries of the C' matrix, requiring n memory entries (they are
required for seed power calculation). After determining cluster seeds all we
need are as and Ps, i.e., we can free the memory locations used for the other
data structures. Assignment of documents is done one by one and in this we
consider only the non-seed documents. Therefore, we calculate only n. x (m -

n.) many entries of the C matrix. On the other hand, a graph theoretical

approach to clustering would require calculation of similarity coefficients and

this requires (m?’-m)/Z memory entries plus the cost of cluster generation.

(d) The algorithm distributes documents uniformly among clusters, in other
words it does not create a few "fat" clusters and a lot of singletons (i.e., clusters
containing only one document), a classical problem encountered in
clustering.

The average complexity of C3M is O(mz/log m) and it is shown that [3, 6] the
worst case behavior of the algorithm would not be worse than the average
case. This complexity compares favorably with the complexity of the other
clustering algorithms [33].

3.7 Indexing- Clustering Relationships Obtainable from the CC
Concept
The CC concept indicates some relationships between indexing and clustering.
In this section we will show the analytical derivation of these relationships
using  binary indexing. In Section 4.2 it will be experimentally shown that
these relationships are observable using either binary or weighted indexing.
For the derivation of the relationships consider Egs. (3.2) and (3.8) for n_ :

5:5: 3.12
n =§:6_= d_z,.a, . B ( )
c i oot

i=1 i=1j=1
In the case of binary indexing dzijz dij' By substituting the values of a, (Eq.
(3.3)) and Bj (Eq. (3.4)) in Eq. (3.12) we obtain the following:
-1 -1
nc'-*-zz d. . zd, : Sd‘ (3.13)
= R sl

In the IR literature the summations

d
S, S,

k=1 k=1
are called, respectively, the depth of indexing X, for document d, and term

generality t_. for term tj [27]. With these definitions Eq. (3.13) becomes

g
“fzzdﬁ-{xdi' i r (3.14)

i=1 i=1
In order to proceed we need to define the average depth of indexing (x4) and

term generality (tg) for a database:

x=2x,/m, t=St_;’n (3.15)
d 4 di g £l



We can approximate Xgjet with x d‘t and rewrite (3.14) as follows:

jgjz tg]1="[xdig]4

i £
Eq. (3.16) indicates the chlanonships among number of clusters, n., total
number of term assignments, t, average depth of indexing, x4, and average
term generality, tg'
If we substitute t/n for tg and t/m for x, in Eq. (3.16), o, could be written in

the following way:

:(m,n)/t:m/tg=n/xd

Using d. and d', to indicate the average size of a document and term cluster,

respectively, we can write the following equations:

d =m/nc=1/6=m/(m/tg)=

[+

d' =n/n =1/8=n/@/x)=
Equations (3.18) and (3. 19) show that tg and x4 are the basic determinants of

document and term cluster size, respectively. In other words, they determine
the policy of indexing.
The value range of n., indicated by the indexing-clustering relationships, is

corollary-2 of Section 3.4). To show this consider Eq. (3.17), i.e., n, =1 / {m . n)

along with the possible max(t) and min(t) values, respectively. Obviously
max(l) = m . n which can be observed only if all documents of the database are
identical. On the other hand min(t)= max(m, n) holds if each term is assigned
to only one document and the document is described by more than one term
(i.e., n > m: consider Figure 5.a2) or each term is assigned to more than one
document and all documents are described by only one term (i.e., m > u:
consider Figure 5.b). Accordingly, the minimum value of n, will be observed if

consistent with the theoretical expectation, ie., 1 < n, < min (m, n} (see

we have the maximum value of t. Hence:
min (o )= (m . n) / max(t)= 1

Similarly, the maximum value of o, will be observed if we have the minimum
value for t:
max(nc)z [(m . n)/ min(t)]: [(m . n) / max(m, n)}: min(m, n)

1 0
1 1 0
D: D=1 0
o o 1 2
0 1
ayn>m: 3> 2t=n=3 b)m>n: 3> 2 t=m=3

Figure 5. Example D matrices for observing of min(t)= max(m, n)
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For example, if we consider matrices D1 and D2 shown in Figure 5, Egs. (3.8)

and (3.9) indicate that n. = n'c= 2. (In Figure 5.a, documents are unique, on the

other hand in Figure 5.b the terms are unique.) For Dl’ document clusters are
{dl} and {d,}; the term clusters are {t;» 1,} and {13}, For D,, the

document and term clusters are {dl, dz}, {ds}, and {tl}, {1,} respectively. The
indexing-clustering relationships also indicate the same value for n, since t=
max{m, n)= max(3, 2)= 3, and n,=(mxmn)/ t: 3x 2) / 3= 2= min(m, n).

If we apply Eq. (3.16) to the example D matrix the following will be obtained
n, =15/ (3x2)=2

Similarly, by using the expression in Eq. (3.17)
n, =(5x6)/15=5/25=2

In other words, the number of clusters depicted by the indexing-clustering
relationships is very close to the theoretically expected value, under the CC,
which is 1.95 (refer to Section 3.4). The same is also valid for Egs. (3.18) and
(3.19).

In this section we have derived the indexing-clustering relationships (Egs.
(3.16) through (3.19)) indicated by the CC concept. To do this we have used a
binary D matrix. However, as will be shown in Section 4.2, these relationships
are also valid for weighted indexing, with the exception of a little distortion
introduced by the noise effect of the weights.

It goes without saying “that ‘the indexing-clustering relationships are very
valuable for practical purposes. They can be used to control the number (or
equivalently the size) of individual clusters so that the cluster sizes can be set
according to the user requirements. In general, a user can be either recall or
precision sensitive and thus the indexing policy can be tuned in such a way
that higher user satisfaction can be obtained. (Recall and precision are,
respectively, the proportion of relevant documents that are retrieved and
proportion of retrieved documents that are relevant.) Furthermore, we can
vary n,

1) to accommodate physical storage constraints;

3m.

2) to control the computational requirements of C
3.8 Use of CC Concept for D Matrix Optimization
3.8.1 Term  Discrimination Value Calculation

In IR, an indexing concept called Term Discrimination Value (TDV) is used to
optimize representation of documents by index terms (i.e., D matrix) to
increase the retrieval performance of the retrieval system {33, 34, 36, 37]. A
TDV indicates the effect of an index term on the distinquishability (or
separation) of documents from each other. TDVs of individual terms can be
calculated by looking at the average similarity among documents, Q, which is
also referred to as document space density [36] and given by

-1 9
Q=2x{mx(m-1)} x E Es(d.,dj) 0=s0Q=<1lfor0=ss=<1
1
i=1 =1 +1

where  s(d;, dj) and Qy indicate similarity between document pairs d; and dj

(calculated by an expression such as in Eq. (1.1)) and the document space
density after the deletion of term t from the indexing vocabulary,

respectively. If the assignment of LY makes the documents more separated
from each other, then this assignment will decrease the document space
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density, hence Q < Qh' In the vice versa, i.e., if the assignment of th makes the

documents more closer to each other, then its assignment will increase the
document space density and hence Q > Qh' Accordingly, TDV of th is calculated

as follows [36]:

TDVh = Qh -Q
Q, - @, ie, TDV,, will be greater than zero and less than zero if the
assignment of th makes documents more separated from each other, and closer
to each other, respectively. A term t,  with no significance will have TDV =« 0

and hence it is referred to as an indifferent discriminator. Higher separation
of documents helps to distinguish the relevant and irrelevant documents from
each other in retrievals based on user queries[36]. Therefore, for an effective
IR we must have an indexing system whose terms have high, positive TDVs.
Such terms are referred to as good discriminators.

We can exploit the CC concept also in the computation of TDVs [8]. If we
consider the notions of document (term) coupling and decoupling we can
easily realize that the concepts of document space density (Q) and average
decoupling of documents (b or n.) are inverse to each other. (Even though

coupling is the direct counterpart, use of decoupling is computationally more
convenient.) Table 2 shows the interpretation of the related quantities with
respect to TDVh (where & and 8, are the average decoupling of documents

before and after the deletion of ty )
Table 2. Effects of type of index term(ty ) on
the values of Q, & and (n.)-

(3.20)

Quantity

Type of 11_1, QVSQP. S vs 62 n. vs ng}'3

Good discriminator (TDV, >0) Q‘S_h 6>€‘>E n.>n,

h
Indif. discriminator (TDVI“2 ~0) Q~Q1.1L §~€)2 n_ =~ ncg
Poor discriminator (TDVQ <0) Q>Clh 6<6£ n,6< ncgtL

'I'DVh of t (1 < h < n) is defined as the difference:
TDV =n -n
h c ch

Eq. (3.21) uses the same approach as Eq. (3.20). However, a deleted term will
have a reverse effect on n, with respect to Q as can be observed from the

respective expressions and Table 2. By Eq. (3.21) good, poor, and indifferent
discriminators  will, respectively, have a TDV of positive, negative, or
approximately zero values.

To implement Eq. (3.21) we need n, and n_,. These are provided by the

decoupling coefficients as follows:

2 2 2
nc-—Zﬁi:Z(}.ix(dnxﬁl+di2xﬁ2+...+dinxﬁn)
i= 1=

b2
o

(3.21)



2 2 2 2
d11x51+di2xﬁ +...+d x B

] +d x
i 2 ih-1 h-1 i, h+1
n_ = of = o x
ch ’ i ‘ i

= = 2
i=1 i=1 +...+d xB
in n

p

h

In the formula of D.p» the superscripts of éih and a; notate the absence of

th in di (1 < i g m). Also, aih can be easily defined as
-1

-1
h 5: -1 .
C'»i = le = [ai dih] ] = h

=
As can be seen, the two expressions for n. and n., differ only in the term

belonging to ty - D.p can also be expressed as:

2

h

n_ = a -d

ch 2aix[6i/ i ihxﬁh]
1=

In Eq. (3.23) , the term 'dzih -B,, climinates the contribution of ty on n, via its

individual term generality (Bh= 1/ tgh)' (Si/(xi eliminates the contribution of

iy 1o n., due to its effect on depth of indexing (o;=1/x4,) aih reintroduces the

effect of the modified depth of indexing. Notice that not all of the documents
contain the deleted term - By using this fact and Egs. (3.22) and (3.23),

f

2
TDVh=jz%§-a§xhi/%-dmxﬁhﬂ

i=1

where f, =|D,| and D, = {¢;] d,€ D and d;; = 0}, ie, f is the document
frequency of 1, ie, tgh' Obviously, TDVh is nothing but the change in the
number of clusters after the deletion of th-

For a binary D matrix, the expression of Eq. (3.24) will take the following
simplified form:

f
TDV, = S a?x{ﬁh-q}
1
i=1
The above simplification comes from the fact that for a binary D matrix
2 .
d° =d and o' -a'=1 if d =1
ih ih 1 i ih
It should be noticed that the CC approach for TDV calculation yields exact
values.  On the other hand, approximation techniques are based on centroids

rather than the individual document wvectors.

The consistency of CC approach for TDV has been tested and compared with
other methods [11, 48]. These tests revealed very satisfactory resulis [42].
Furthermore, the computational cost of the CC based approach is favorably
comparable [8] with the other approaches available in the literature [11, 48].
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3.8.2 Optimization of Document Representatives
Conventionally TDVs are used for the optimization of document descriptions.
Representing a TDV by the ratio of densities Qj/Q, instead of their difference,

as in [34, 36] each index entry in a document description is readjusied as

d' =TDV x d, (Isism 1sjsn)

13 J 1)
In Eq. (3.26) good, bad, and indifferent terms will have TDVs of greater than
one, less than one, and approximately one, respectively. It has been observed
that optimizing document representations in this manner helps improve IR
performance [36].

We are proposing another concept which we call Document Significance

Value (DSV) to be used together with TDV in the optimization of document
representation, i.e., the D matrix. As in TDV, deletion of a document may

change n.. Obviously, documents exist a priori and cannot be deleted from a

database. However, conceptually, we may think of deletion of a document to
compute its significance value DSV.
Similar to that of TDV, DSV of d, is defined as (n, - n.,) Wwhere

n, : number of clusters in D,

n., : number of clusters in {D - dy }
Computing DSV in a way similar to TDV, but this time using n'c Egs. (3.7) and
(3.9) instead of n, we an obtain the following for DSV of dh as:

3

f
DSV 22 5 - ph [8/5 & cz}}
= - X .- . X
h 4 i il hj b
=1
where fh =I‘I‘h§ and Th ={tj ltjET and dhj = 0}, i.e., fh is the number of terms
used for the description of d,, and ﬁjh = (f’j-l - de)°1 (i.e., ﬁjh is  the

reciprocal of the column-j sum of the matrix that excludes dhj)'
As in TDV Eq. (b.25), Eq. (3.27) can be rewritten for a binary D matrix as:

£

- h - 5’]

DSV, = 2% x [ah j
J:

Then the proposed approach for D matrix optimization uses the adjustment of

d' =DSV x TDV xd .
ij i ] 1]

In the above expression DSV, and TDVj are taken as n./n ., and nc/ncj’
respectively. In this way DSVi and TDV. will assume values of <1, >1, = 1. This

approach for the calculation of TDV and DSV does not prohibit the use of
equations (3.24), (3.25) and (3.27), (3.28), respectively. Eq.s (3.24) through
(3.28) can be used to obtain the change in the number of clusters. The new
number of clusters can be calculated by using the old n. and the change in n.

which is indicated by Eq.s (3.24), (3.25), (3.27), and (3.28).
The product

2
DSVi x TDVJ_ = ( n_ / nci) x ( n_ / ncj_) =10 / (nci x ncj )
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is referred to as the "weight modification factor™ for the weight of tj ind; and

Accordingly, the D matrix will be redefined as

d =A xd.
ijo i i

The weight modification factor, Aij’ modifies the weight of nj in q by

is abbreviated as Aij‘

forlsism, 1<sjsn (3.31)

observing 1) the importance of the term and 2) the significance of the
document d; with respect to the other documents of the database.

Let us illustrate TDV and DSV using the example D matrix.
TDV_ =a! -0 ! -d
= 2B -0) va,x B -0,)

= 1/2 x (1/2 - 0.417) +1/3 x (1/2 - 0.438)

TDV, = 0.062 DV, = 0.055
TDV2 = -0.250 TDVS = 0.062
TDV3 = 0.104 TDVe= -0.035

DSV =B x (o - 8)+PBlx(a -8)+PBlx(a -0)

=1x (1/3 - 0.292) + 1/3 x (1/3 - 0.292) + 1 x(1/3 - 0.292)
DSV, =009 DSV, =-0042 _
DSV2 = -0.098 TDV5 = -0.195
DSV3 = 0.236

For the optimization of the D matrix consider entry dgs. The conventional

optimization approach (i.e., Eq. (3.26)) would increase dg5 since TDV3 > 0.

However, our proposed optimization (i.e., Egs. (3.30), (3.31)) observes both the
values of DSV5 and TDV3. According to Eq. (3.28), d; s considered insignificant

(DSV5 < (). Hence A

insignificance of dg is compansated by TDVj. Ag5 is calculated as follows:
Tva =n, - ncj ==>n,y =1, - TDV3 = 1.945 - 0.104 = 1841 i=3)

DSVi =n, -0, ==>N. =10, - DSV5 = 1.945 - (- 0.195)= 2.14 (i= 5)

A53= (1.945 ) / (1.841 x 2.14)= 0.960

53 will assume a value greater than one only if the

This shows that A53 < 1. In other words, in contrast to the conventional
approach our approach, decreases d53. In the experiments section it is shown

that the proposed approach is superior to the conventional approach Eq.
(3.26).

4. EXPERIMENTAL DESIGN AND EVALUATION
In this section we will present two sets of experiments:
(a) Validity experiments: to test the validity of the indexing-clustering
relationships;
(b) IR Experiments:

1) to measure the performance of cm 3
2) to evaluate the effectiveness of D matrix optimization by adjusting
term and/or document represantations.
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Dealing with item (b) involves evaluation of effectiveness as well as
efficiency. In an IR environment, efficiency involves issues such as cost,
time, and volume of operations (CPU cycles, disk accesses per retrieved
document) etc. [36, 46], which fall within the realm of a separate performance
study. The goal of this paper is to evaluate the validity and effectiveness of
the concepts and/or methodologies that have been introduced so far. In our
effectiveness evaluations we will consider the number of relevant documents
retrieved at various points during retrieval and effectiveness of c3M in
placing the relevant documents into fewer npumber of clusters.

4.1 Document Database

The document database used for the experiments contains the collection of
papers published in the journal of Association for Computing Machinery
Transactions on Database Systems (ACM-TODS), in the issues March-1976
through September-1984. The database consists of 214 documents. Each paper
in the database (we will call TODS214) contains the title, keywords given by the
author(s), and the abstract.

The index of this database is drawn from a set of terms obtained after the texts
are cleaned out of the noise words (i.e., stop words) and remaining words
stemmed. The details of the stemming algorithm and indexing software can be
found in [31]. For a stem in TODS214 database, to qualify as an index term, the
stem should appear within a range of frequencies in the documents. After
determining an indexing vocabulary, T, we have generated both a binary and
a weighted D matrix. For the binary and the weighted case dij indicates  the

existence or non-existence of term tj in di and the number of occurrences of tj

in d;, respectively.

4.2 Experimental Validation of Indexing-Clustering Relationships

Table 3 provides the information pertaining to the generation of D matrices.
In Table 3 the frequency pair (min, max) indicates the frequency constraints
that establish a stem as an index term. For example, the first row of the table
indicates that a stem which appears at least in two and at most forty documents
will be selected as a term. For this case the cardinality of T is 1060, which is
indicated by n. t is the number of non-zero entries in the corresponding D
matrix.  In the rest of this paper the D matrices of Table 3 will be identified by
their frequency constraints, e.g., the D matrix corresponding to the first row
of the table will be referred to as D2_40.

The results of the experiments on indexing-clustering relationships are
shown in Table 4. The second column of the table gives the estimated number

of clusters --refer to Eq. (3.17). n,, and n., indicate the number of clusters

calculated by the CC concept, Eq. (3.8), for the weighted and binary versions of
the corresponding D matrix, respectively. The quantities

X 222‘1--/’“ and t =22d._/n
dw ij gw 1]

1=l j=1 i=l j=1
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indicate the weighted depth of indexing and term generality, respectively.

Similarly, d., and d., indicate the average size of a document cluster for the

weighted and binary cases, respectively. The average size of a term cluster is
shown by d' . and d',,  for the respective term clusters. This table also

presents other information to observe the indexing-clustering relationships
of Egs. (3.16) through (3.19). The results of the experiments show that the
indexing-clustering relationships hold wvery closely in the case of binary
indexing (the reader can compare estimated n, (second colummn) versus ncb"g

versus dcb’ and X4 Vversus d'cb).

Experiments with the weighted D matrices also show that indexing-clustering
relationships hold in the case of weighted indexing. However, the weights
have slightly perturbed the indexing-clustering relationships. For example, in
Table 4, on the average the n., Vvalues are 15.4% higher than the estimated n,

values. Notice that in the binary case the estimated and actual n, values are

identical in six of the nine experiments.

Table 3. Characteristics of the generated D matrices

Frequency
Min Max n t

2 40 1060 7446
3.~ 40 757 6840
4 40 604 6381
2 30 1045 6916
3 30 742 6310
4 30 589 5851
2 20 988 5537
3 20 685 4931
4 20 532 4472

Table 4. Results of the indexing-clustering relationships experiments

1

Matrix (214.n) ney Dep to ty dew dep Xdw X4 d'cw d'cp
D> 40 31 34 30 1070 7.02 6.29 7.13 53.02 34.79 31.18 35.33
D3 40 24 27 23 13.90 9.04 793 930 49.15 31.96 28.04 32.78
D, 40 20 24 20 16.34 10.56 8.92 10.70 46.13 29.82 25.17 30.20
D, 39 32 36 32 10.01 6.62 594 6.69 4890 32.32 29.03 32.66
D3 39 25 29 25 1299 850 7.38 8.56 45.04 29.49 25.59 29.68
D, 30 22 26 21 1520 9.93 823 10.19 42.01 27.34 22.65 28.05
D, 5o 38 43 38 8.15 560 498 5.63 37.64 25.87 22.98 26.00
D3 10 30 35 30 10.55 7.20 6.11 7.13  33.78 23.04 19.57 22.83
D 23 30 25 1237 8.41 7.13 856 30.75 20.90 17.73 21.2
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4.3 Retrieval Experiments
4.3.1 Retrieval Performance Evaluation Measures
In CBR, the first step is to select the appropriate clusters, C,

matching function fm. As indicated in Section 1, in the IR literature there are

many different matching functions [36]. In this study, a CC-based matching
function [6, 7, 29], will be used. Basically, this matching function indicates the
mutual coupling between query and the individual documents of the
collection. It is experimentally observed that IR performance with the CC-
based matching function is comparable with the well know matching (or
similarity) function which uses Eq. (1.1) [10, 31, 42]. Its compatibility with the
Dice matching function [30, 36, 46] has been observed in [7, 31, 42].

Cs is the set of clusters having enough correlation (in our case coupling)

by using a

with the particular query, that is

C={C lfm @€ ,9>0 and rC) <ny, ,1<i<n.}
where,
o : number of clusters to be expanded (i.e., fully examined)
fm (Ci » Q) : correlation of Ci with the query,
r(Ci) : rank of C, in the sorted list (clusters arc assigned a rank

in the decreasing order of the fm (Ci , q) values).

After ranking the clusters, the same is done to the DS documents of the
sclected LI clusters: )
Dsz{dEC and CECS )

The set of documents examined by the user, Dsr’ is defined as follows:

| D, ={d€D | r(d) <r and f (& >0}
The members of D , are the documents coming from C, and having a rank,

r(d), which is less than or equal to the r number of documents that the user
wants to examine, and that the matching function must yield a correlation
value greater than 0. By increasing r(d) from 1 to r we can obtain different
recall, Rc , and precision, Pc , values which are described below.

R =Dy, N D |/]D |
Po =Dy, N D | /]| Dyl
where Dr is the set of documents relevant to the query (i.e., relevant

documents set, or relevant set). To obtain standard evaluation results, the
precision values are given at the predetermined recall levels, i.e., Ri (1<cig10)

at 0.1, 0.2, . . ., 1.0. When a compuied recall value, Rc’ falls in a range between
two consecutive recall levels Ri and Ri+l (1 £ i £ 9) then the precision value Pc
corresponding to RC is taken as the precision at Ri [36, p. 167].

If one replaces the definition of D, with D (ie., all documents), then the

foregoing discussion for recall and precision will be valid for full search, FS.
The maximum recall value (i.e., RC when 1= (Dsl and r=m for CBR and FS,

respectively) that can be observed for a query is called the "recall ceiling”.
In our CBR experiments, if recall ceiling for a query is greater than zero and
less than one, then the precision values P, of R; > RC are set to the average

precision value of all queries obtained at recall level equal to 1 in FS [14]. If
RC= 0 then Pi=0for1_<_i510.



For the similar case in FS, P, is set to the precision value calculated at RC of
the query under processing. If RC is zero, then Pi=0for 1<ig 10

After calculating the precision values at Ri (1 < i g 10), then the average
system performance is obtained by computing the average precision value Pi

at each corresponding recall level by using the precisions of all fifty eight
queries used in the experiments. This is done both for FS and CBR.

The foregoing evaluation approach is to obtain the effectiveness when a
fixed number of clusters are examined. We will also obtain the changes in
recall and precision as we expand more and more clusters. In the experiments
section 0 m will be varied from 1 to 10 (Tables 8 and 9).

Target Clusters:

In CBR, assuming that ideal conditions hold for document description, gquery
formulation, centroid generation, and matching function we expect to select
the clusters that contain only the relevant documents for our query. These
clusters will be referred to as "target clusters.” If C, and Cj are two target

clusters containing the same number of relevant documents and if |C| < lel
then C; will be preferable since its size is smaller. Therefore, the best target

cluster for a query is the one that 1) contains the highest number of
documents relevant to the query, and at the same time 2) has the smallest
cardinality.

In the target cluster experiments we will first expand the best cluster for the

query under consideration then calculate recall, precision, and the percent of
the database to be expanded. This will be repeated until we retrieve all the
target clusters containing all the documents relevant for the query. Then we
will calculate average performance for all queries.

In the target cluster experiments (i) For a query with relevant set size of k,
the maximum number of target clusters is k; (ii) Smaller cluster size will
increase precision; in the extreme case, i.e., each cluster containing only one
document, the precision will be one for all target clusters of a query. If
cluster size is two for all the clusters, then for any target cluster the minimum
precision will be 0.5; (iii) If the relevant set size for a query is one, then the
recall will be one upon retrieving only one target cluster. This indicates that
if the average relevant set size for all queries is small, then the average
number of target clusters to be retrieved will be small; (iv) For a query of
relevant set size k the average number of clusters to be retrieved can be
approximated as k/dc’ where dC is the average cluster size.

In our experiments we will also compare the performance of M with
random clustering. Comparisons of the performance of a clustering algorithm
with that of the random case have been made in previous studies [25, 28, 44,
457, To perform this comparison we will obtain averages of the following
quantities for all the queries: number of clusters to be expanded, percentage
of the database to be expanded, and precision when  all target clusters are
retrieved.

To obtain the random performance we will use the theorem given in [43].
Given are m records (documents) grouped into n, number of blocks (clusters)

where l<n <m with each cluster containing m/n, number of documents. If k
documents (k < m - m / nc) are randomly selected from the m records (in other
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words if the relevant set size of a query is k), then the expected number of
blocks with at least one record selected is given by

n_ x 1-Ik'“-1—‘9-g——:-;i—-—t—1- where d=1-1/n
c i=1-~m—1+1 ¢

This formula assumes that all blocks (in our case clusters) have the same size.

CgM distributes documents uniformly among clusters [5, 6, 26]. However, as it
would be expected, cluster sizes are not identical. To employ the above theorem
we may force documents into equally sized clusters. However, such an
approach will impose adverse effects on our performance results. To alleviate
the problem, in random clustering we will place documents randomly in the

clusters of the partition formed by c3m using the given D matrix in an
experiment. To justify this the following corollary of the foregoing theorem is
introduced.

Corollary: Given is a partition of m documents with n, number of clusters

and each cluster having a size of ]le for 1<j<mn,. If k documents are randomly
selected from m documents, the probability Pj that cluster Cj will be selected is

given by
m -i+1
P={1-}J}—4——|  wherem =m-|C|]
] m-i+1 ] ]

i=1

Accordingly, in random clustering with varying sizes of clusters and a query
with relevant size of k we will have the following:

n

a) the number of target clusters= SPJ,

T

b) expected size of the database to be expanded <
(i.e., the total size of all target clusters) = lel X Pj

=1

n

c) precision when all k documents are retrieved= k x E |C | x P
. i i
=1

4.3.2 Experimental Environment

In the retrieval experiments we used the weighted D matrix as defined in the
second row of Table 3. The reason for using a weighted matrix is its generality
as compared to a binary matrix.

In cluster base retrieval (CBR) after clusters are formed by C3M we generate
the centroids of the clusters by following the CC approach [4, 6]. This
approach for centroid generation will emphasize the terms with higher
uniqueness values. The terms which have a uniqueness value (i.e., the

diagonal entries of the C' matrix, é’j =ij') greater than or equal to the average
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uniqueness value of the terms, 0, will appear at least in one of the centroid

VeCtors. Weighted centroids are generated making the weight of a term, tj’
appearing in a centroid equal to the total weight of tj in the member

documents divided by the corresponding cluster size. The statistics for the
clusters and centroids are provided in Table 5 under the heading "original D".
This table shows that the indexing constraints of D3 ,q,  yield an average

cluster size of 7.93 which is approximately equal to log,m (log,m= 7.74). This is

the expected size of a cluster for a database of the size of TODS214 [33]. The table
shows similar information also for the optimized D matrix.

Table 5. Statistics for the clusters and the centroids
used in the retrieval experiments

Quantity Original D Optimized with A
Number of Clusters 27 28
Average Number of Documents/Cluster 7.93 7.64
Average Number of Terms Used in Clusters 253.33 244.29
Average Number of Distinct Terms in Clusters 172.37 167.25
Average Number of Terms Used in Centroids 58.00 56.82
Number of Distinct Terms in Centroids 445 447
Proportion of Terms Used in Centroids 0.588 0.591

The query set contained a total of fifty-eight queries. We will refer to this
query set as QS58. Thirty nine of these queries are constructed from five
textbooks on databases. If a chapter contained two or more references to a
TODS214 article the titles and subtitles of that chapter are used as the query
text. The documents corresponding to these references are assumed to be
relevant to the query. The query set is almost evenly distributed among the
five texts. The other set of eighteen queries are taken from [31]. The natural
language text of the queries is mapped into a query vector. A query vector Q is
obtained from the intersection of Qg and T where Q, and T are, respectively,

the stems corresponding to the query text and indexing vocabulary. In the
experiments, binary query vectors are used and this is reasonable since most
terms appear only once in a query text.

In the target cluster experiments we used the query set Q58. To validate the
results obtained with respect to Q58 we have augmented the query set in Q58
with another query set containing 110 queries. This query set will be referred
to as Q110. Q110 is created by using the citations of the papers published in the
journal of ACM-TODS. 1If a TODS article cites three or more papers which are
contained in our TODS214 collection, then it is taken as a query. We are
interested only in the relevant set of the individual queries of Q110, i.e.,, Q110 is
used only in target cluster experiments. Q110 queries almost evenly
distributed in the year range of 1979 through 1987. The detailed information
for the query sets are given in Table 6. Table 6.A indicates that in Q58 there is
one query with relevant set size of one while for Q110 the number of queries
with relevant set size of one or two is zero. The number of queries with
relevant set size of three is eleven and thirtyone for Q58 and Q110. Q168 is the
union of Q58 and Q110 respectively.  Table 6.B indicates the number of queries
that will retrieve all of the relevant documents if we expand sufficient
number of clusters. For example, if we expand one target cluster at least one
query will be satisfied for Q58, and therefore in Q168 since there is only one
query with a relevant set size of one (refer to Table 6.A). The number of
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queries with relevant set size of one or two is twelve, hence if we expand two
target clusters obviously twelve queries will retrieve all of their relevant
documents. (Notice that target clusters contain at least one relevant document
for the query under consideration.) An effective clustering algorithm must
satisfy high number of queries with less number of target clusters expanded.
The entries of Table 6.C are self explanatory.

Table 6 - Characteristics of the queries
A. Relevant set size statistics for the gueries

Query Relevant set size
Set 1 2 3 4 S 6 7 8 9 10 11 12 13 14
Number of| Q58 1 11 11 s 6 S5 5 3 5 2 3 1 0 0
Queries | Q110 0 0 31 32 19 16 8 0 2 O 1 0 0 1
Q168 1 11 42 37 25 21 13 3 7 2 4 1 0 1
B. Number of queries that will be satisfied when h number of clusters
expanded
Query No of Clusters Expanded (h)
Set 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of] Q58 1 12 23 28 34 39 44 47 52 54 57 58 - .-
Queries Q168 1 12 54 91 116 137 150 153 160 162 166 167 167 168

C. Other information for the queries

Query Set
Information Q58 Q110 Q168
No of distinct doc. retrieved 126 134 165
Tota 1 no of relevant docs. 305 511 816
Avg. no of rel. doc./query 5.259 4.645 4.875

4.3.3 Experimental Results
Using the Conventional Measures:
In order to see the effectiveness of CBR, first the average precision values at
the recall levels are obtained and the values are compared with those of FS.
Then CBR is repeated for the D matrices optimized with respect to Egs. (3.26)

and (3.31). In these experiments ng o (the number of clusters expanded) is

three. In a database of the size of TODS214 the user is assumed to be either
completely satisfied or dissatisfied after examining about twenty documents.
He (she) would either quit using the system afterwards or reformulate a new
query for the same request. (Notice that in the experimental environment the

average cluster size is 7.93 and non= 3 which will provide the user

approximately twenty documents to examine.) The results of the CBR
experiments are provided in Table 7. The table also shows the percentage
difference with respect to FS. As can be seen, CBR with both the ordinary D
matrix (designated as CBR) and the optimized D matrix (designated as CBR’, and
the other primed entries are also associated with optimization) is worse than
those in FS. However, CBR' is slightly better than CBR. In these and in the
following experiments, it is observed that D matrix optimization with TDV alone
(Eq. (3.26)) did not have any improving effect on CBR behavior.




Table 7. Precision vs recall for FS, CBR, and CBR'

Recall FS CBR CBR’
0.1 0.40688 0.34849 0.37247
0.2 0.33010 0.29303 0.31220
0.3 0.26042 0.24369 0.26026
0.4 0.23240 0.23127 0.24208
0.5 0.22745 0.22088 (.22464
0.6 0.19427 0.18498 0.18375
0.7 0.19312 0.17906 0.17887
0.8 0.18265 0.16617 0.16359
0.9 0.17198 0.14917 0.14609
1.0 0.16585 0.14038 0.14609

% differnc. w.r.t. FS: -8.51 -6.12

Table 8. Recall ceiling vs n
RC RC

0.27818 0.25963
0.35623 0.36094
0.40938 0.41675
0.46655 0.46464
0.48915 0.51019
0.53399 0.53762
 0.55125 0.56136
0.57294 0.59158
0.58656 0.60364
0.59037 _0.60058

=]
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Table 9. Precision vs ng o

n Precision Precision’

sm
0.28598 0.27306
0.21904 0.23345
0.21436 0.22571
0.19955 0.22049
0.19117 0.21437
0.18301 0.20229
0.18543 0.20518
0.19232 0.21626
0.18580 0.21173
0.16745 0.18840
% improvement: 8.92

SV IOL S W

o

Table 8 shows the behavior of CBR and CBR' in terms of recall ceiling (RC)
with respect to different n - (Average RC for all gqueries in the case of FS is

0.69.) These experiments showed that RC' values are slightly better than RC
values. In other words, the matrix optimization using Eq. (3.31) slightly
improves the performance of the system in terms of recall ceiling. However,
the improvement is negligible as expected. This is because, D matrix
optimization does not introduce anything to improve the performance of the
system in terms of recall (e.g., it does not introduce new terms to describe the
documents).
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In order to see the precision improvement of D matrix optimization we have
performed a set of experiments for finding the average precision for various
n .. The results are provided in Table 9. This table shows that our D matrix

optimization is effective for precision improvement. The average CBR'
precision wvalues are 9.01% higher than those of CBR.
Using Target Clusters:

Table 10 shows the results of the target cluster experiments. The experiments
are performed for all D matrices defined in Table 4. Since the results are quite
similar for all matrices, we will give only the results for three D matrices with
the number of clusters varying from 27 to 43 to show the effect of cluster size
on performance. The results of the experiments are given both with Q58 and
Q168. As we have indicated earlier, Q58 is a subset of Q168. Table 10 contains
the following information: number of target clusters expanded, number of
queries satisfied (i.e., the queries that retrieved all of their relevant set),
average recall and precision, and the percentage of the database expanded.
Let us look at Table 10.A for Dy 4o of Q38. We are able to retrieve all of the

relevant set for eight queries by expanding only one cluster. The same is valid
for twenty-six queries with two target clusters. The reader can compare these
values with the values provided in Table 6.B. The comparison indicates that

the clustering of c3M is effective in putting the relevant documents of a query
into the same cluster.

The results of Table 10 show that relevant sets of queries are concentrated in
a very few clusters. For example in the case of D3-40 of Q58, if we expand one

cluster, or on the average 4.9% of the database, recall is 0.537 and precision is
0.267.

For D3_40 C3M generates 27 clusters and the average cluster size is 7.93
documents. In the other extreme, i.e., with DZ-ZO’ there are 43 clusters and the
average cluster size is 4.98, which is 63% of the case with D3-4O‘ However,
notice that when we expand one target cluster, the recall in the case of D2~20

is 0.430 which is still high. That is, although our cluster size is now 60% of that
of Dy_4» We are still able to obtain 80% (0.430/0.537= 0.801) of the recall value

of D3-4D' Also, because the cluster size is smaller with D, ,, the percentage of
the database to be expanded drops and precision increases. The results of Table

10 indicate a good performance for C3M since relevant sets of documents are
concentrated in a small number of clusters.

The comparison of the results of C3M with those of the random case (RnC) is
provided in Tables 11.A and 11.B for the query sets of Q58 and Q168,
respectively. In this table, the columns "Avg. nc", "% DB", and "Avg. Pre."

indicate, respectively, the average number of target clusters, the percentage
of the database expanded, and precision when the relevant set of all queries is

retrieved. The improvement due to c3M s computed as the percentage of

performance differential with respect to M.

The results of Table 11.A indicate that C3M decreases the pumber of clusters to
be expanded in comparison with the random case. The percentage decrease
varies between 17% and 29% with the average being 25%. The clusters

generated by C3M are almost uniform (equally sized). This can be seen from

the decrease in the percentage of database to be expanded. The decrease in the
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Table 10. Retrieval with target clusters

A. For Q58
No of Target No of Qry. % Database
D-matrix Clusters Exp. Satisfied Recall Precision Expanded
D3 40 1 8 0.537 0.267 4.9
(n,.=27) 2 26 0.769 0.222 8.4
3 36 0.870 0.200 10.8
4 44 0.929 0.189 12.5
S 50 0.962 0.182 14.0
D, 30 1 4 0.478 0.316 3.6
(n. = 36) 2 22 0.745 0.266 6.5
3 32 0.858 0.237 8.5
4 42 0.927 0.224 10.1
) 52 0.965 0.213 11.2
Dy 150 1 2 0.430 0.351 2.7
(n .= 43) 2 18 0.709 0.291 5.4
3 30 0.843 0.269 7.1
4 41 0.915 0.253 8.5
5 49 0.952 0.245 9.4
Table 10. Retrieval with target clusters (cont.)
B. For Q168 P — )
No of Target No of Qry. % Database
D-matrix Clusters Exp. Satisfied Recall Precision Expanded
D3 40 1 16 0.516 6.250 4.9
(n,=27) 2 63 0.757 0.205 8.6
3 106 0.891 0.185 11.7
4 142 0.956 0.175 13.9
5 153 0.977 0.171 14.8
D, 39 1 9 0.464 0.287 3.6
(n. = 36) 2 50 0.721 0.242 6.6
3 95 0.872 0.217 9.1
4 134 0.950 0.205 10.8
5 155 0.979 0.198 11.7
D; 10 1 4 0.420 0.334 2.7
(n = 43) 2 34 0.681 0.272 5.4
3 91 0.858 0.245 7.7
4 130 0.939 0.231 9.2
5 155 0.971 0.226 10.0
database size to be expanded is approximately equal the decrease in the
number of clusters to be expanded. The increase in precision due to c3m

compared to the random case varies between 33%
With query set Q168 the decreases in the number of target clusters

being 50%.

and the size of the database to be expanded are 22% and 20%, respectively.
increase in precision with respect to the random case is 42%.
the performance figures for Q168 are worse than those of QS58.

due to the diversity of citations in the queries of Q110.
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the references cited in an article may be less relevant than others. (Notice
that Q110 is constructed using TODS articles.)

The results of C°M are significantly better than those of the random case.
This can be explained by about 20% decrease in the number of clusiers to be
expanded and about 40% improvement in precision, as compared to the random
case, It is our belief that a comparison such as the one provided in Table 11
can be wused as a standard benchmark in the evaluation of a clustering
algorithm.

Table 11. The comparison of c3M and random clustering (RnC) when we
retrieve all relevant documents for all queries

A. For Q58
M RnC % imp. of CCM
D matrix |Avg n, %DB Avg Pre | Avg n, %DB Avg Pre n, %DB Avg Pre
Dy 40 3.379 13.3  0.206 4.757 18.4 0.129 -29 -28 60
D3_40 3.37¢ 16.0 0.178 4.643 21.9 0.108 -27 -27 65
D, 40 3.293 16.6 0.168 4.605 23.1 0.102 -29 -28 65
132_30 3.603 12,7 0.209 4.808 16.9 0.142 -25 -25 47
D3-3O 3.397 14.6 0.184 4.706 20.0 0.119 -28 -27 55
D4_30 3.586 16.3 0.164 | 4.683 20.7 0115 -23 -21 43
DZ-ZO 3.879 11.0 0.237 4.901 14.0 0.172 -21 -21 38
D3_20 3.707 13.1  0.200 4.813 16.7 0.143 -23 -22 40
D4_20 3.931 153 0.172 4,755 18.5 0.129 -17 -17 33
Average % improvement of C3M over RnC: -25 -24 50
B. For Q168
M RnC % imp. of C°M
D matrix |Avg n, %DB Avg Pre Avg n, %DB Avg Pre n, %DB Avg Pre
D2-4O 3.286 132 0.193 4.466 17.4 0.128 -26 -24 51
D3_40 3.268 16.2 0.167 4.375 20.7 0.107 -25 -22 56
D4‘40 3.387 17.2 0.150 4.345 21.9 0.101 -22 -22 49
D2-30 3.482 12.6 0.195 4.507 15,9 0.141 -23 -21 38
D3_30 3.304 14.8 0.171 4.426 18.9 0.118 -25 -22 45
D4_30 3.548 16.2 0.154 4.408 19.6 0.114 -20 -17 35
Dz_zo 3.738 10.9 0.222 4.580 131 04171 -18 -17 30
D3_20 3.583 13.2 0.188 4.511  15.7 0.142 -21 -16 32
D4_20 3.708 14.2 0.176 4465 174 0.128 -17 -18 38
Average % improvement of C3M over RnC: -22 -20 42

The target cluster experiments are repeated for the binary version of the
same D matrices. The performance results for the binary case are slightly
worse than those of the weighted case. D matrix optimization is also tested for
the target clusters. The results obtained are almost the same as those given in
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Tables 10 and 11. This is because, the clusters obtained with the ordimary D and
optimized D matrices are almost identical. The effect of D matrix the
optimization is observed in the document and centroid vectors. The results of
FS retrieval with the optimized D matrix are the same as FS retrieval using the
original D matrix. This means that optimization improves CBR.

As we indicated earlier the comparisons of the performance of a clustering
algorithm with that of the random <case can be found in other studies
especially in those on record clustering. In these studies the records likely to
be retrieved for the same query are put into as few as blocks possible [25, 28,
45]. The study of [45] reported 100% improvement over random clustering for
an adaptive clustering algorithm. The same algorithm is also tested in [28] and
various improvements over the random case ranging between 5% and 52%
with an average of 40% have been reported. For the same data the same study
reported an average improvement of 59% over the random case using ils own
algorithm. Although these results are impressive, some comments are in
order. The algorithm given in [45] is affected by the order of query execution.
The algorithm given in [28] "deteriorates when there is an increased overlap
of records between several queries" as quoted from the same study [28, p. 71].
This might be the case in a real life environment if we consider the 80-20 rule
[45]. More importantly, the same set of queries are used [28, 45] for both
generation of clusters and goodness test of the generated clusters in terms of
percentage decrease in the number of clusters to be expanded. Approaches
similar to that of [45] were used also by others [44, 16]. However, the approach
used in this study is more generic. Furthermore, use of queries for cluster
generation may produce undesirable performance for a different application.

§. CONCLUSION
The NP-completeness of the clustering problem has lead to heuristic
approaches. In the study reported here a new clustering methodology called

M has been introduced. C3M relies on its heuristic called the cover
coefficient (CC) concept which is used in various aspects of clustering theory.
A few examples are 1) the number of clusters within a document database can
be determined, 2) a new method for selection of cluster seeds is introduced, and
3) new methods are introduced for the optimization of the document
description matrix. The CC concept also relates indexing and clustering

analytically.  The computational cost of CSM is comparable with that of the

other clustering algorithms available in the literature. C3M has all the

desirable properties of good clustering algorithms. More importantly, with

OM it is possible to analytically determine the number of clusters and cluster
size  beforehand.

In the experiments conducted, the indexing-clustering relationships
indicated by the CC concept are validated. And, these relationships are
strongly observed in the case of binary indexing. In the case of weighted
indexing, the relationships are slightly distorted due to the noise effect of the
weights.

The retrieval experiments have shown that CBR using C3M improves the
retrieval effectiveness and efficiency of an IR system. The comparisons made
with respect to random distribution of documents among clusiers have shown

that, on the average, C3M provides 40-50% improvement with respect to the
random case in terms of precision. The improvement in terms of the reduciion
of the search space is 22-25%. This reduction can be significantly extended
with hierarchical clustering {29]. The CC concept has been used also in index
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vocabulary construction and optimization [31]. Also, advanced optimization
techniques such as term discrimination value and document significance
value, a concept introduced in this study, have been constructed using CC
concepts  [8]. The retrieval experiments performed wusing the document
matrices optimized using both of these advanced optimization techniques have
shown improvements in retrieval precision, as shown in the paper.
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