

Introduction

Phantom Power:

- Consumer electronics utilize electricity when off or not in use
 - Average American has 25 consumer electronic devices
- According to the Dept. of Energy, phantom load is responsible for average 10% increase in home electric bill

	Common Appliance	Avg. Phantom Load ⁱ	Annual Cost
	Laptop Computer	8.9 W	\$8.97
	Desktop Computer	2.84 W	\$2.86
	Computer Display (CRT)	0.8 W	\$0.81
	Speakers, computer	1.79 W	\$1.80
	Modem, cable	3.84 W	\$3.87
	Printer - inkjet	1.26 W	\$1.27
	Copier	1.49 W	\$1.50
	Fax - inkjet	5.31 W	\$5.35
	Scanner	2.48 W	\$2.50
	Surge Protector	1.05 W	\$1.06
	Phone - cordless with answering machine	2.92 W	\$2.94

The Internet of Things:

- Connects hardware devices to the internet.
- Uses data to monitor devices in real time and improve efficiency

Our Proposed Solution

High-Level Solution

- Utilize the internet of things to connect outlets to the user.
- Report consumption data and be able to remotely switch outlets ON and OFF.
 - Reduce phantom power to devices that are in standby mode by making smart decisions.

First Semester Goals

- Design control circuit and identify components
- Establish a websocket connection between power strip and server
- Toggle an outlet ON and OFF from a web application

Second Semester Goals

- Integrate LEM Sensor and report data to webpage
- Create graph's of each outlet's history and deliver to user on the web
- Create more ergonomic design, including printed circuit board

SHAND-Y: A Smart Power Strip Connected to the IoT

Chad Barth, David Jacob, and Thomas Wassel

Faculty Advisor: Dr. Mark Scott

Hardware

- The control circuit runs on 5 V DC from an AC to DC power supply • Switching the outlet ON/OFF is driven by a control signal and a MOSFET
- which allows the 5 V to activate a relay
- A LEM sensor is used to measure the current being drawn from the outlet The LEM uses the Hall effect to produce a voltage proportional to the current running through the outlet
- PCB was designed using Upverter
 - The AC circuit has wider traces than the DC circuit in order to withstand higher current

Software

<u>Server</u>

- Linux server running a JavaScript file via node.js
- Node modules used and purpose
 - Express Set up web application and server \bullet
 - Socket.io Create web socket
 - File System(fs) Log power consumption history

Web Application

- Standard HTML webpage with jQuery and CSS
 - Live data displayed for each outlet
 - Command buttons that can turn each outlet ON and OFF
- Power Consumption Graph
 - Implemented using the JavaScript library D3.js

[1]"Phantom load: How unplugging can save you \$100 or more | NativeEnergy.com/phantom-load-how-unplugging-can-save-you-\$100-or-more.html. [Accessed: 04- May- 2016].

Department of Electrical and Computer Engineering, Miami University, Oxford, Ohio, USA

C11

LEM Sensor Output and Yun ADC

•The Arduino Yun has a 8 bit analog to digital converter (ADC) •The LEM sensor outputs a voltage proportional to the current draw, which we read into the Arduino's ADC •Using a Kill-A-Watt[™] to measure power consumption, the values from the ADC were translated into power

SHANDY as a proof of concept

- accessing a web page
- socket
- and creation of this device

Future Work

- Improve sensor quality; more sensitive LEM, measure voltage for more accurate power calculation
- Allow users to set a schedule to turn each outlet ON/OFF automatically • Design more compact PCB to fit in a standard size power strip • Replace the controller with a more power efficient embedded system

Testing and Comparisons

- ADC resolution was found to be approximately 3 W per ADC value
- No current draw produced an ADC reading around 550
 - Caused by the 2.5 V offset of the LEM sensor

Conclusion

• The device reports back usage data and can be remotely controlled via

• The power used is calculated by the micro-controller and delivered to the

• The team achieved all goals for this semester with regards to the design