EMPOWERING THE ARCHITECT TO ACHIEVE SUSTAINABILITY

A Thesis

Submitted to the

Faculty of Miami University

In partial fulfillment of

The requirements for the degree of

Master of Architecture

Department of Architecture and Interior Design

By

DALLAS PUCKETT

Miami University

Oxford, Ohio

2017

Advisor_____ John Becker

Reader_____ Scott Johnston

Reader_____

Murali Paranandi

Consultant_____

Gerald Granderson

Empowering the Architect to Achieve Sustainability

Empowering the Architect to Achieve Sustainability

ABSTRACT

On their current trajectory, the paths of sustainability and economics are set to collide. An architect needs to be the salesperson, rather than an advocate, of net-positive design. In order for sustainability to succeed, designers must push beyond certification program requirements. Sustainability must become affordable, and the world is relying on architects to solve the equation. However, the traditional client-architect relationship does not allow for an architect to implement the necessary freedom of design to take on this challenge. Through the study of developer-architects, who have complete and total control of all aspects of design and construction, I seek the meaning and empowerment brought about by the removal of the client from the architectural relationship.

Once architects are trained in sustainability, the opportunities to create a solution to environmental issues will increase. In this paper, case studies are investigated that have employed this new identity and its methods for creating elegant and affordable, net-positive housing. An analysis of waste-elimination theories, such as William McDonough and Michael Braungart's Cradle to Cradle theory of the never-ending cycle of technical nutrition, serves as a basis for designing with best practices in mind. Currently practicing developer-architects, for example Jonathan Segal, have provided insight into the advantages of expanding the role of an architect to include development and contracting. The resulting conclusions highlight the avenue by which architects shall be empowered to take on an active and expanding role in implementing sustainable design.

Keywords: Development, Sustainability, Economy, Net-positive

THE GOAL

Empowerment for architecture lies within sustainability. And conversely, the success of sustainability lies within the empowerment of the architect. No longer can architects merely advocate for sustainable building practices, but rather must become common sense business practice. Terms such as 'sustainability' and 'green' currently serve mostly as marketing tools. In Yung Yau's Economizing subsidies for green housing features: A stated preference approach, Yau found that minimally acceptable house rating systems are generally perceived as "effective in promoting green buildings", but may cause "market inefficiency and rent-seeking problems." Furthermore, Yao goes on to state that energy efficient buildings that become Energy Star or LEED certified seek an increase of selling price of 5.76% and 9.94% respectively.¹ What's the real motivation here? Architects must find an avenue by which 'green' can mean more to the average consumer than simply specifying the most popular recycled materials or slapping a solar panel on the roof. When sustainable practice results in a strategic economic advantage to owners and tenants, only then will sustainability truly prosper. Hunting for a few creative ways by which to earn LEED points in a building doesn't solve the energy crisis. Sustainability must become the core principle by which a design centers. This thesis will dive into a topic that demands an open discussion: the intersection of sustainability, economics, and quality design.

¹ Yung Yau, Shuk Man Chiu, and Wai Kin Lau, Economizing subsidies for green housing features: A stated preference approach. Urbani izziv, volume 25, no. 2, 2014. 107-109.

Needed is a business model that could make housing consumers incentivized to seek sustainable systems. The byproduct of such a model could make the architecture profession thrive more than the current model allows. An emerging profession of developer-architects is proving that the removal of clients can prove beneficial based on productivity levels. Questions surrounding this new avenue of design include: how does a developer-architect acquire startup capital? How was the conclusion reached that the eradication of client will do the profession a service? Most importantly, should the developer-architect business model yield power, how can that power be harnessed to produce a more affordable model of sustainability?

Over the course of the research phase, the study of sustainability and the architect/developer process will occur simultaneously so that one side doesn't weigh too heavily over the other. The first step has been – and will continue to be – researching the current and past history of sustainability, developers, clients, LEED, etc. Case studies will have the utmost importance in my research as well. Each will be broken down to fit into categories such as affordability, sustainability, and developer-architect studies. Through the lens of other architects who have created successful net positive buildings, I will conclude which practices could become more marketable. The same will occur in studying developer-architects who have economically feasible business models. I plan to gain first hand research by directly contacting known developer-architects such as Peter Gluck and Jonathan Segal. By the end of my research,

I plan to have in place a practical business plan reviewed by professors from Miami University's Farmer School of Business.

ROLE EXPANSION

For sustainability in the construction of buildings to flourish, the role and value of an architect must evolve. Sustainability needs a salesman someone to advocate in public realm, and San Diego's Jonathan Segal is doing just that. Segal works not only as an architect, but also as a developer and builder. "With the advent of the architect working for the contractor and developer, the architect has been regulated to just a messenger"². Over the course of his working career, Segal has saved the equivalent of two and a half years by not traveling on the interstate by simply working within an urban landscape. Segal found that his adopted city of San Diego had issues in addressing the need for apartment spaces large enough for families, so he used his power as a developer to make the changes he thought necessary.

Figure 1. Jonathan Segal's first project as a developer was 7 on Kettner, a threebed two-bath apartment that he and his family lived in.

² Jonathan Segal Documentary. Directed by Bread Truck Films. Performed by Jonathan Segal. San Diego, 2009. Documentary.

His first project as a developer/architect was 7 on Kettner, which served not only as a profit-driving startup investment, but also a three bedroom, two-bath apartment for himself and his family. Sustainability is the next issue that Segal is attempting to conquer in his apartment developments. "The q", which rents studio apartments at a rate of over \$1,200, features passive design that filters cross ventilation through exterior fins. More importantly to the owner (Segal) and the tenants, is the source of mechanical power. The building features enough solar power to run elevator, stair lights, exterior lights, common lights, garage mechanical systems, garage entry, exterior doors, etc. While the systems are not using energy from a power plant, they are also not prying money from the owner's pocket. Instead of leaving the tenant to decide when to turn lights off and running up energy bills, all utilities are subrogated to individual tenants. More expense at the onset of the development to do so, but saving the owner over the course of time while also incentivizing tenants to conserve energy.

Figure 2. The q features mix use programming and implements sustainable design to increase profit margins while also encouraging tenants to conserve energy.

The struggle of positioning oneself to work in a similar fashion to Segal is the initial investment. The demeanor of a businessperson is needed, along with the attention to detail of an architect. Instead of designing, architects typically divide their talents into slivers of career fields: psychologist, attorney, theorist, researcher, advocate, salesperson, engineer, and others. Quickly lost in the shuffle are the two most important traits for advancing the practice – architect & businessperson. The cause of such disunion is the traditional client-architect relationship, which hinders the spirit of free design. Once the hurdle is removed, architects will have greater control of not only what gets built, but how and why. More of Segal's time is spent designing, effectively positioning himself to use his education and training at a greater capacity than many architects. The AIA sponsored a study titled Managing Uncertainty and Expectations in Building Design and Construction based on interviews of 200 architects, contractors, and clients. The study found that while 86% of owners were satisfied with the building quality of their project, only about 63% reported satisfaction regarding cost and schedule.³ The effort to design a structurally sound building, while doing so at the variable satisfaction levels of a client, clearly is a strenuous task. Removing the traditional relationship could dramatically impact the career of practicing architects. Segal stated: "The dilemma most architects have is they need to get their first commission...and they have to start from the bottom and work their way up. It takes 20-30 years before you become a real architect and get a real commission. We basically just circumvented that. We shortcut it by doing our own projects and not having a client."

³ Davis, Clark S., FAIA, and R. Craig Williams, AIA. "Managing Uncertainty." THE JOURNAL OF THE AMERICAN INSTITUTE OF ARCHITECTS, January 29, 2016.

Imagine our profession and the implications of a young, vibrant workforce harnessing the power to forge positive change in our built environment.

Peter Gluck of the Manhattan based firm GLUCK+ echoes Segal's thoughts in Lisa Delgado's The DIY Approach to Housing.⁴ Gluck says that architects "sit in their office waiting for someone to call them to do a development- and they wait a long time." Gluck's firm has opted to take the developer-architect role as well, focusing on multistory residential spaces (similar to Segal). The TroutHouse features a contemporary facade and open floor plan, while also incorporating a number of sustainable features. A roof deck features a 5.5 Kw solar panel array, which even in the humid continental climate New York was able to produce more energy than the 6000 square-foot building consumes. Gluck reaps the benefits of TroutHouse's LEED Gold and Energy Star certifications. GLUCK+ principal Mark Mancuso expressed that working from a development standpoint also shortens the design and construction time and is more efficient. "Normally, we design something and then go to the developer-client, and then the design changes to tailor it to the way they want". Cutting the client from the process reduces design time and overall effort. Loadingdock5, a Brooklyn developer-architecture firm currently is in the process of building their own self-funded project similar in scale to TroutHouse. Their project incorporates inexpensive building materials such as corrugated steel roofing. Budget constraints usually equate to *less* design

⁴ Delgado, Lisa. "The DIY Approach to Housing." Oculus, 2015, 40-41.

experimentation, but when the architect becomes in control of the process,

architectural quality is not lost (Delgado, 41).

GLUCK+'s Urban Townhouse in Manhattan highlights the promise of adding freedom to an architect's repertoire. This project was one in which Gluck served a client, but the architect gained control of contracting responsibilities.⁵ The house sought to reinvent the spacing sequence of a typical urban row house. Most urban housing units feature a centrally located elevator (both longitude and latitude), with staircases along the sides.

Figure 3. GLUCK+'s Urban Townhouse experimented with patterned façade studies, ultimately referencing the typical brick typology of the neighboring buildings.

Shifting the entry sequence to the front of the building allowed the building to maximize an open plan. The occupant engages the architecture from sidewalk approach throughout circulation to the floor of choice via a spiraling staircase around the elevator

⁵ Koch, R., & Freeland, E. (2016, May 13). Urban Townhouse / GLUCK. Retrieved May 13, 2016, from http://www.archdaily.com/348932/urban-townhouse-gluck

shaft. Brick typology is referenced through apertures in a veil at the property line. A structural concrete wall then stores a vertical library, while also allowing light to enter the space through additional punched openings. The maximized space in such a tight site condition created highly valuable space. Architects, as Segal says, need to experiment and make mistakes. The freedom gained by owning the building or, in this case, constructing the building, lends itself to thorough and quality design.

AFFORDABLE FOR MOST

Without affordability, there will be no sustainability. Joseph Eichler was an early pioneer of building architecturally pleasant residences at or below market rate. Eichler benefited from the suburbanization of California in the 1950's and 60's. In Gwendolyn Wright's *Performance Standards,* Wright emphasizes that Eichler had a "keen awareness of the needs and opportunities of his time and milieu." Post WWII brought about the advents of new inexpensive building materials, such as plywood and foam insulation.⁶ Eichler found that he could design with materiality as the base, and fit the consumer's need based upon budget. The American modernism approach involved a sweeping, massmarket single-family housing movement. 65 years later, America could lead the sustainability movement by launching affordable alternatives.

⁶ Wright, Gwendolyn. "Performance Standards." Places 14, no. 2 (2001): 46-47. Wilson Web.

Figure 6 & 7. The plans for the house shown can be purchased online at a modest \$4,500. Assuming the Eichler estate receives a generous 10% commission for his work, this house is only \$45,000, affordable to a large portion of the middle class.

Like Eichler, Frank Lloyd Wright used his talents to address concern of rising construction prices in the early 1900's. He performed a study and wrote an article for *Ladies Home Journal* in April of 1907, in which he sought a design for a single-family house for under \$5000. Wright removed all but the essentials, stating his design featured "No attic, no butler's pantry, no back stairway have been planned; they would be unnecessarily cumbersome in this scheme, which is trimmed to the last ounce of the superfluous."⁷ The 30'x30' plan was developed so that concrete forms could be used for each foundation wall. The United States Department of Labor provides an inflation calculator, which goes back to 1913, six years after Wright wrote that construction costs had risen 40% over the previous six years. The four-bedroom one bath's \$5000 price tag

⁷ Wright, Frank Lloyd. "A Fireproof House for \$5000 ESTIMATED TO COST THAT AMOUNT IN CHICAGO, AND DESIGNED ESPECIALLY FOR THE JOURNAL." Ladies Home Journal, April 1907.

inflated to 2016 rates is the equivalent of \$119,654.55.⁸ An incredibly modest price for a custom home by a world-renowned architect.

More current models show that sustainably driven design can also prove affordable. Llano Exit Strategy, designed by Matt Garcia, was constructed as four separate livable spaces with a budget of only \$40,000 each. A fifth space was built as a communal cooking, dining, and entertaining space. Resting on a plot of land adjacent to the Llano River, the group of friends were moved by the 'tiny house' movement, and created their vacation homes with inexpensive materials-notably corrugated sheet metal, concrete, and plywood interiors.⁹ Garcia formed the roofs to crease at the rear third, leading to metal trenches that connect the complex formally while collecting rainwater functionally. The small square footage of these living spaces show that comfortable living can exist without massive amounts of room. Downsizing allows for low budget constraints to not mitigate design quality.

The use of shipping containers as an architectural element is nothing groundbreaking. However, in the search for an economic, environmental sustainable model of development prove relevant. One such large-scale undertaking is 27boxes in Melville, South Africa. True to the name, the open-air mall employs 27 freight-shipping

⁸ "CPI Inflation Calculator." Bls.com. Accessed March 15, 2016. http://www.bls.gov/data/inflation_calculator.htm.

⁹ McLaughlin, Kelly. "Tiny Houses by Matt Garcia – Llano Exit Strategy." Humble Homes. Accessed March 15, 2016.

containers available for rent by merchants. Developer Arthur Blake said of the mall, "building with containers takes two thirds of the building time compared to conventional building and the costs are 80% of bricks and mortar." His statement is a testament to the economic and sustainable potential of the industrial reuse nature of shipping containers. They certainly come with their own new set of issues: need for cranes to place them, torches are needed to cut through the steel, new construction methods, and new engineering practices. The biggest issue at hand becomes the ability to efficiently heat and cool a container space. Warm climates like the one 27boxes is built in are capable of taking on a material that doesn't lend itself to being heated very well. However, if the containers were to be used in a climate near Cincinnati, the harsh winters and lingering cold of late fall and early spring would prove as a challenge. Still, the cycles of reuse as well as no need for new products are a William McDonough style Cradle-to-Cradle material use.

REMOVING THE GIMMICK FROM SUSTAINABILITY

The architecture needs to take a hard look at the way we are addressing sustainability. The accreditation system currently in place is not serving in a capacity to save the Earth, but rather as an unregulated gimmick. Take Las Vegas' Palazzo Hotel & Casino as an example. The casino's designers were able to cash in on the tax abatements accompany a LEED Silver rating. The building racked up points enough to receive a \$27,000,000 tax abatement over the span of 10 years. Here's the issue: many of the points the casino was able to earn do little to nothing in terms of sustainability. One point for being located in an urban environment. One point for being near public transit. Two points for using recyclable materials such as *steel and concrete*. One point for cards on hotel beds that informed when towels would be replaced (green design education program).¹⁰ Other buildings receive points for having parking spaces dedicated to hybrid cars, or posting signs indicating the building's rating. Besides tax credits, developers are rewarded with allowance to build taller than zoning codes typically allow. The system is a money grab that needs revamped. But architects don't need to wait for them to do so.

The aforementioned William McDonough is the co-author of Cradle to Cradle, which describes the need for better design of products to feature never-ending lifecycles. He has formed a theory that designers of all things (products, cars, buildings, etc.) should do so with sustainability at the forefront of their process. McDonough describes the friction that currently exists preventing sustainability from achieving:

"...Industrialists often view environmentalism as an obstacle to production and growth. For the environment to be healthy, the conventional attitude goes, industries must be regulated and restrained. For industries to fatten, nature cannot take precedence. It appears that these two systems cannot thrive in the same world."

¹⁰ Schnaars, C., & Morgan, H. (2013, June 13). In U.S. building industry, is it too easy to be green? USA Today. Retrieved May 13, 2016.

McDonough goes on to describe his work for a Holocaust Memorial proposal in New York. He visited Auschwitz and Birkenau to feel the power of the 'giant machines designed to eliminate human life'. There, he "realized that design is a signal of intention". He brought that perspective back to the states and felt that he had to stop working to be 'less bad', and ultimately create buildings and products with completely positive intentions. These designs would be "loved by all children, of all species, for all time". The pair coauthored "The Hannover Principles", which spoke to the idea to "Eliminate the concept of a waste - not reduce, minimize, or avoid waste, as environmentalists were then propounding, but eliminate the very concept, by design. This prospect is one that might seem tough to stomach, but then the authors point to another industrial species that has had only positive effects on the environment.

"Consider this: all the ants on the planet, taken together, have a biomass greater than that of humans. Ants have been incredibly industrious for millions of years. Yet, their productiveness nourished plants, animals, and soil. Human industry has been in full swing for little over a century, yet it has brought about a decline in almost every ecosystem on the planet. Nature doesn't have a design problem. People do." (McDonough & Braungart, 16).¹¹

The issue with McDonough's work is that, per most problems, begins with money. McDonough works for the Chinese government designing entire city concepts. Sustainability must become more accessible to the user and architect than working directly for a global superpower.

¹¹ McDonough, W., & Braungart, M. (2002). Cradle to cradle: Remaking the way we make things. New York: North Point Press.

ZEB House in Oslo, Norway is one residential design that begins to use sustainability as the driver. The entire roof surface is comprised of solar collectors at an optimum 19-degree slope. The net positive house uses the panels to power all utilities in the house and even use excess energy to power their electric car. What's left is then sold back to the energy company. This house exemplifies what architects should be striving for: the elimination of energy bills. Take my own home instance. If my \$52,000 house had the same mechanical systems as ZEB, the energy savings over the course of the escrow (30 years) would be over \$92,000. Almost double the value of the home! No need to slap a sign on the outside boasting of a LEED accreditation when the house's design is paying for itself.

EMPOWERING THE ARCHITECT

Simple supply and demand points to increased value of the architect should a portion of the community take on ownership and development. Studies show that the economic climate currently, and historically, lends itself to allowing architects to do so. Jonathan Segal shoots for an average of only one project per year, in his case multi-family apartment units. Should more architects be willing to take on their own developments and not be required, from an economic standpoint, to seek several or even dozens of projects (per year), supply of architectural services will drop. Thus, the cost of such services will increase. Housing trends show that apartment units are in extremely high demand. "The State of the Nation's Housing 2015", conducted by Harvard University's Joint Center for Housing Studies, found that homeownership continues to fall, with a First Quarter rate of only 63.7%, which is the lowest in over two decades.¹² Cincinnati and Dayton, in particular, have seen a -3.6% and -3.8% change in homeownership from 2006-2013.¹³

Figure 12. The US Census Bureau reports record low homeownership.

However, rental vacancy rates are at all-time lows. The Harvard report shows that since 2004, renter household growth has averaged 770,000 annually. The age of this group may come as a surprise. Not only are millennials opting to rent at booming numbers, but also middle and retirement aged folk, which doubled the rental growth over the past decade of renters 35 and under. Millennials, however, provide the future of economic stability of multi-family housing units. Homeownership amongst 18-34 year-olds has dropped to an all-time low of 13.2%.¹⁴ Aside from a generation-combined trillion dollars in student loan debt, would-be homeowners are finding that their economic standing, as well as love for amenities and community, pushes them toward renting rather than owning. The burden of dropping anchor on a 30-year mortgage is one millennials are quick to pass on.

¹² Donahue, Kerry. The State of the Nation's Housing 2015. Report. Joint Center for Housing Studies, Harvard University. 1-8.

¹³ "Homeownership Statistics for Metro Areas." Governing.com. Accessed August 2, 2016.

¹⁴ Truly. "Why Millennials Love Renting." Forbes.com. October 7, 2014. Accessed August 2, 2016.

DALLAS PUCKETT

Cincinnati based 49Hundred Apartments have tapped into the growing pool of renters, of which are seeking high-end units. Notably, DINKS (dual income, no kids) and empty nesters are prominent tenants. These are not the type of renters that hunt for roommates and low cost apartment space. As Chris Oole stated in a recent Cincinnati Enquirer article, "I've owned a house before. I'm at a stage of my life where I want to acquire experiences, not things. The apartment setting is good for creating social opportunities to meet other people."¹⁵ Rental rates at 49Hundred range from \$1,200 to \$1,900 per month for one to two bedrooms. While rental rates have increased an average of 3.5% every year since 2010 that still hasn't stopped apartment occupancy rates from reaching 96.5% occupancy over those same years. 49Hundred's Blue Ash complex of over 250 units was 100% leased prior to construction completion.

Architects entering the world of development will require a low-risk investment to maintain cash flow to provide for their own families. Multi-family units are a trend that won't be dying off anytime soon, if ever. Freedom of design allows architects to manipulate sites as they choose. Jonathan Segal's 'Charmer' was built on a 30,000 square foot lot, fully capable of housing 40+ units. Typically, a traditional developer would max out the lot. Segal, however, chose to only supply 21 units on the entire property, with two of those being live-work studios and three being commercial units.¹⁶ The result was an architectural piece that sits light on its' footprint, straying far from the typical blocky, heavy units. Creating multi-family units allows the architect to have a voice in what gets built, not just how. Better communities are established by finally being capable of implementing the design skills architects spent

¹⁵ Prevish, Val. "High-end Driving Growth in Region's Rental Market." Cincinnati Enquirer, July 15, 2016. Accessed July 16, 2016.

¹⁶ The Charmer / 7mns. Performed by Jonathan Segal. Vimeo.com. 2012. Accessed August 2, 2016.

years harnessing. All the while, increasing their own value in society as well as those in the practice who choose to stay client-based.

CONCLUSION

The architectural community needs to take a look at their role in society and ask ourselves if we truly are contributing to our full potential. If the answer is no, or not fully, the second question needs to be: are we willing to take on the business side of the industry to enhance our overall stake? Architects could take ownership; literally, of the social issues they truly want to address. My agenda is a desire to make the world a better place via net positive residential construction. Another architect might choose to go after impoverished communities in Haiti. Whatever the case may be, we have already established an ability to design. Our next task should be finding a way to make our art become reality. That can't happen without addressing the financial aspect of building. I look forward to furthering my research by conducting interviews and exploring designs with my research as the backbone.

Bibliography

¹ Yung Yau, Shuk Man Chiu, and Wai Kin Lau, Economizing subsidies for green housing features: A stated preference approach. Urbani izziv, volume 25, no. 2, 2014. 107-109.

² Jonathan Segal Documentary. Directed by Bread Truck Films. Performed by Jonathan Segal. San Diego, 2009. Documentary.

³ Davis, Clark S., FAIA, and R. Craig Williams, AIA. "Managing Uncertainty." THE JOURNAL OF THE AMERICAN INSTITUTE OF ARCHITECTS, January 29, 2016.

⁴ Delgado, Lisa. "The DIY Approach to Housing." Oculus, 2015, 40-41.

⁵ Koch, R., & Freeland, E. (2016, May 13). Urban Townhouse / GLUCK. Retrieved May 13, 2016, from http://www.archdaily.com/348932/urban-townhouse-gluck

⁶ Wright, Gwendolyn. "Performance Standards." Places 14, no. 2 (2001): 46-47. Wilson Web.

⁷ Wright, Frank Lloyd. "A Fireproof House for \$5000 ESTIMATED TO COST THAT AMOUNT IN CHICAGO, AND DESIGNED ESPECIALLY FOR THE JOURNAL." Ladies Home Journal, April 1907.

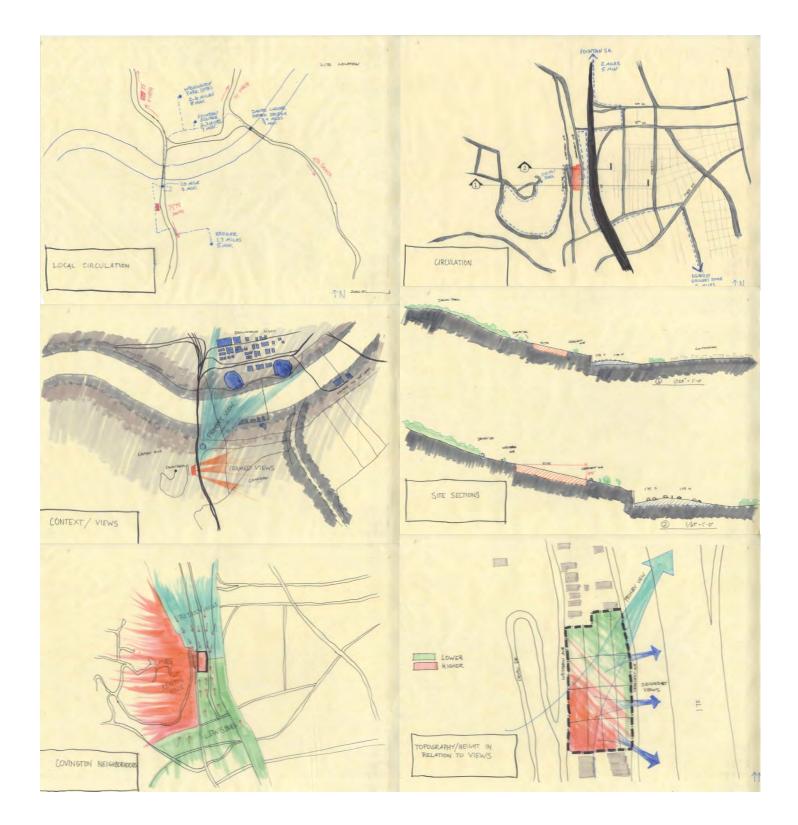
⁸ "CPI Inflation Calculator." Bls.com. Accessed March 15, 2016. http://www.bls.gov/data/inflation_calculator.htm.

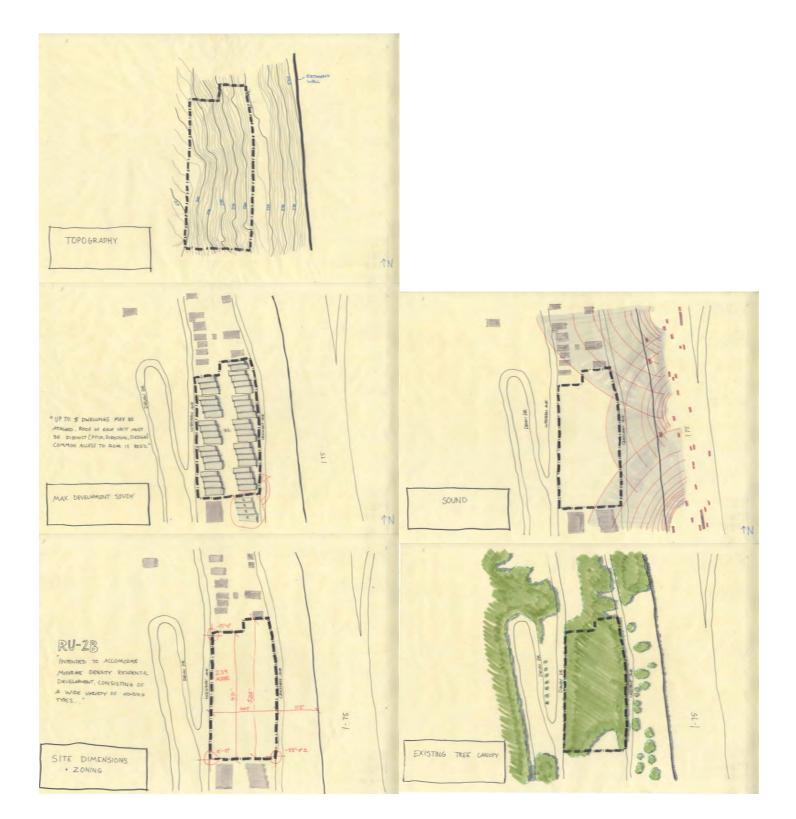
⁹ McLaughlin, Kelly. "Tiny Houses by Matt Garcia – Llano Exit Strategy." Humble Homes. Accessed March 15, 2016.

¹⁰ Schnaars, C., & Morgan, H. (2013, June 13). In U.S. building industry, is it too easy to be green? USA Today. Retrieved May 13, 2016.

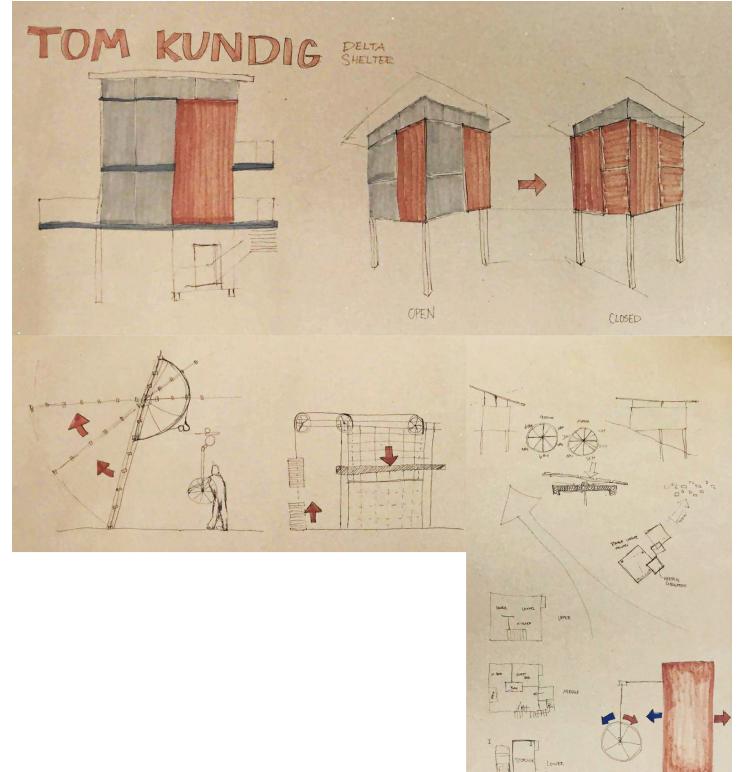
¹¹ McDonough, W., & Braungart, M. (2002). Cradle to cradle: Remaking the way we make things. New York: North Point Press.

¹² Donahue, Kerry. The State of the Nation's Housing 2015. Report. Joint Center for Housing Studies, Harvard University. 1-8.

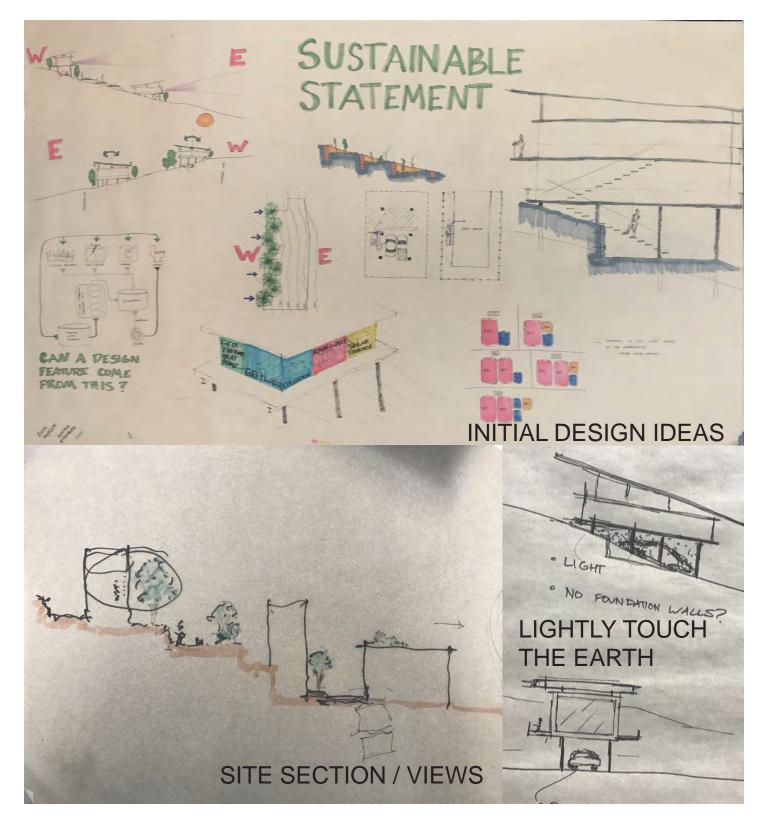

¹³ "Homeownership Statistics for Metro Areas." Governing.com. Accessed August 2, 2016.

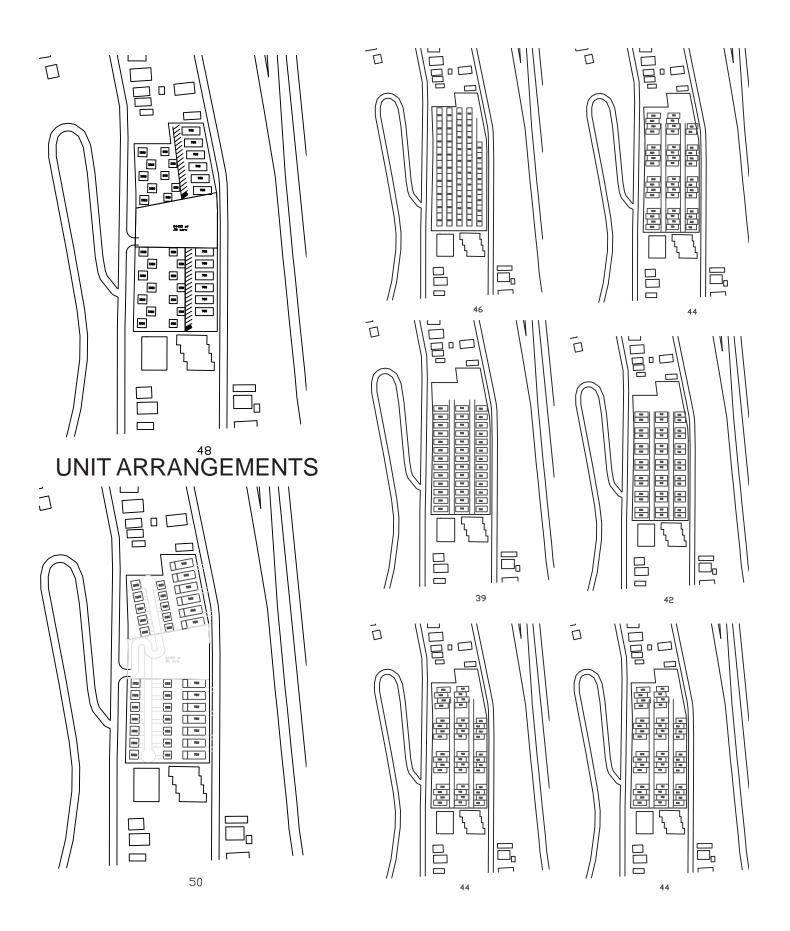

¹⁴ Truly. "Why Millennial Love Renting." Forbes.com. October 7, 2014. Accessed August 2, 2016.

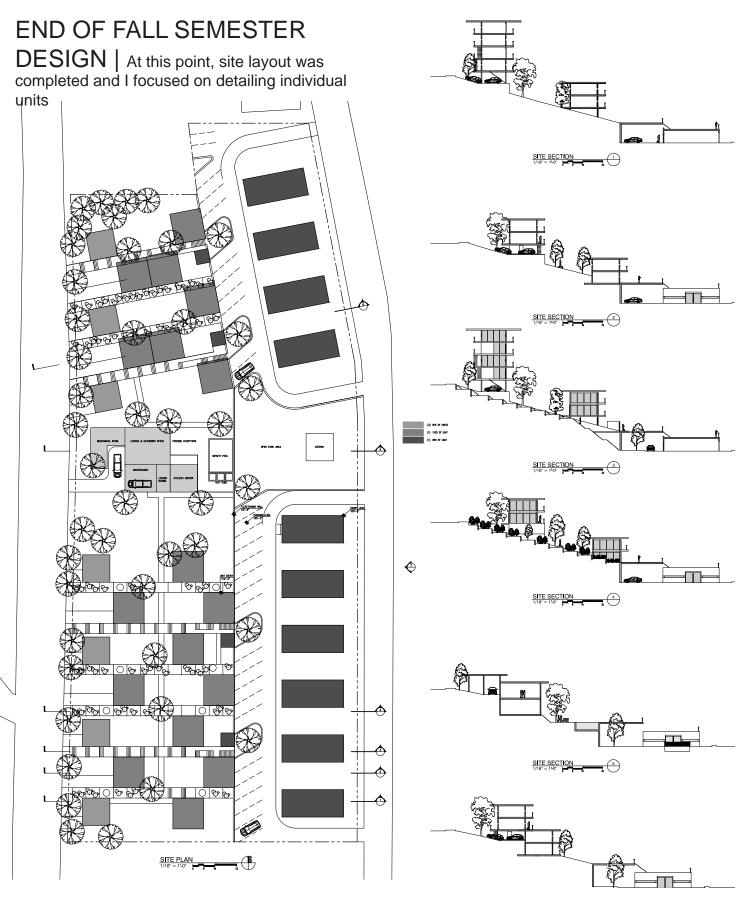
¹⁵ Prevish, Val. "High-end Driving Growth in Region's Rental Market." Cincinnati Enquirer, July 15, 2016. Accessed July 16, 2016.


¹⁶ The Charmer / 7mns. Performed by Jonathan Segal. Vimeo.com. 2012. Accessed August 2, 2016.

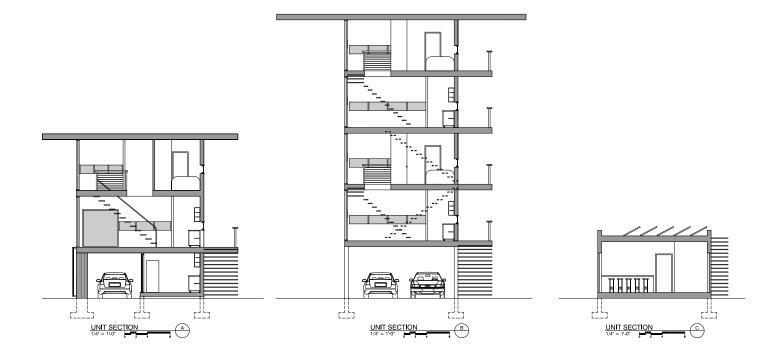
SITE ANALYSIS

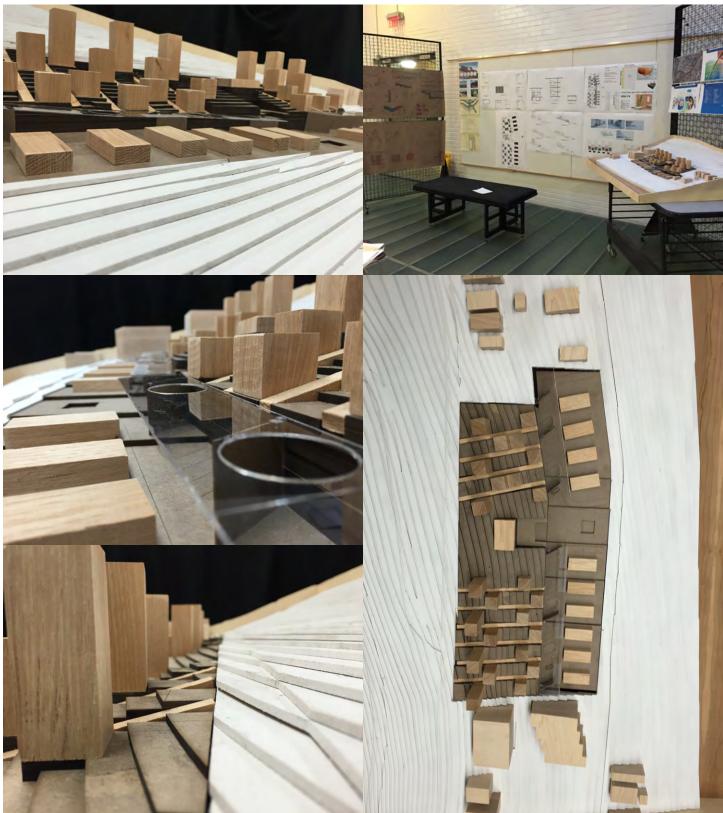


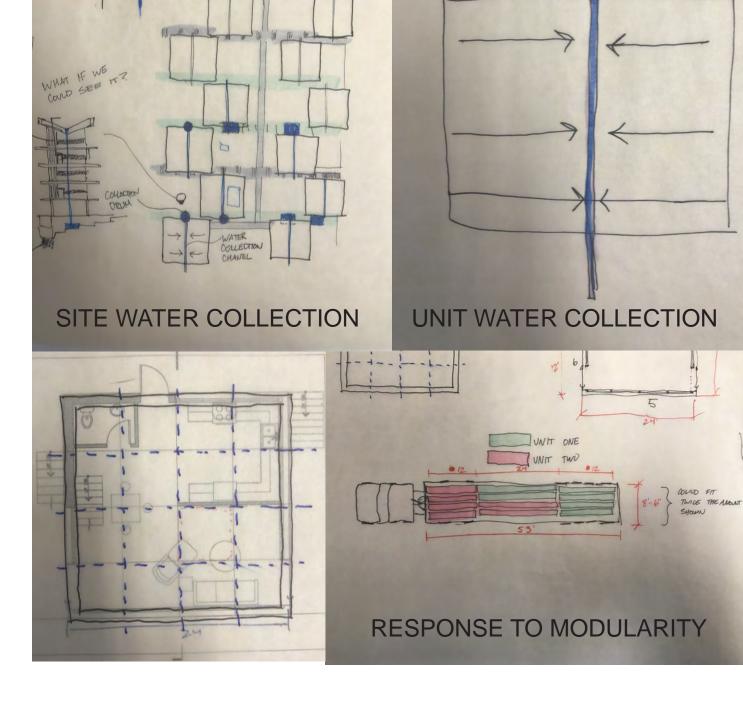

PRECEDENT

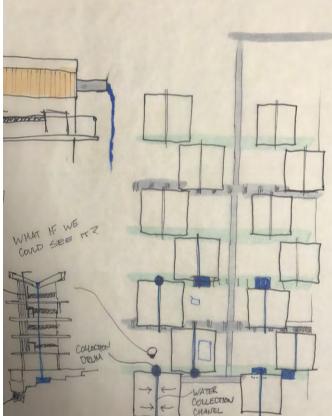


PROCESS




SITE SECTION






FALL SEMESTER MASSING MODEL

FALL FINAL REVIEW

SITE PARTI

CONNECTION

MATERIALITY

FLOATING PLANES

PANORAMA

MECHANICAL UNVEIL

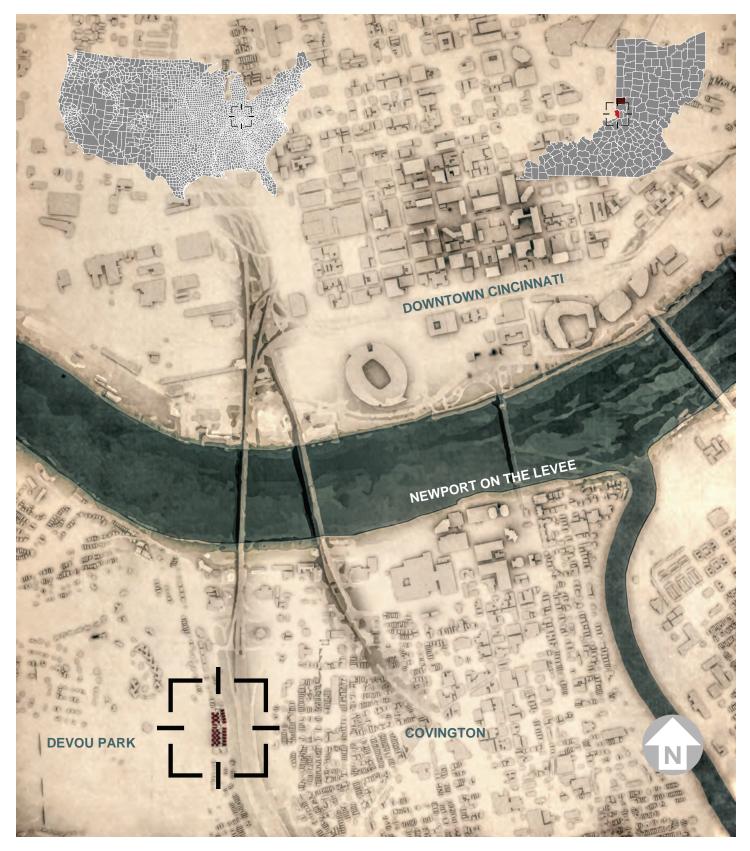
AMENITIES

BASE UNIT

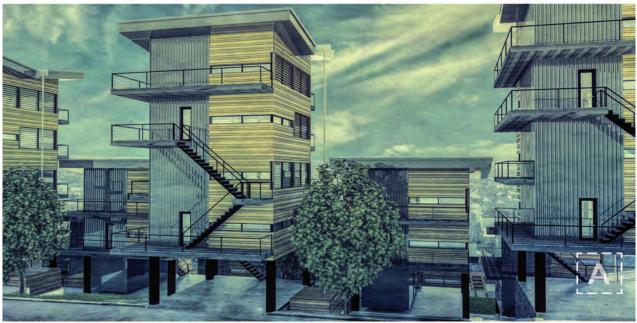
MECHANICAL COLORED GLASS

PROCESSION

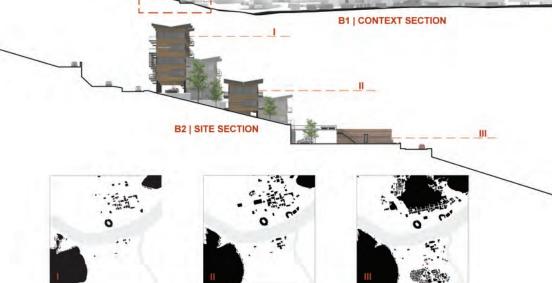
BASE SECTION

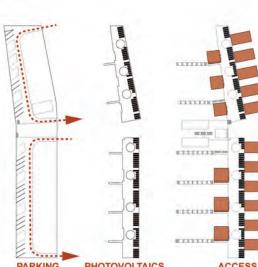

GARDEN

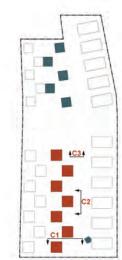
FINAL PRODUCTION

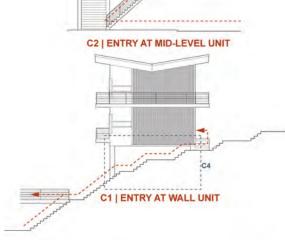

DEVOU HILLS | dallas michael puckett

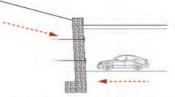
EMPOWERMENT FOR ARCHITECTURE LIES WITHIN SUSTAINABILITY. AND CONVERSELY, THE SUCCESS OF SUSTAINABILITY LIES WITHIN THE EMPOWERMENT OF THE ARCHITECT.



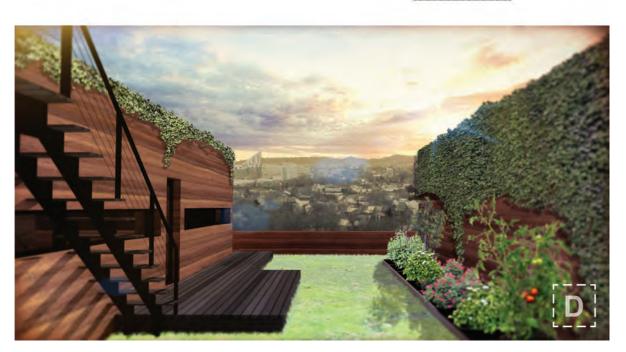


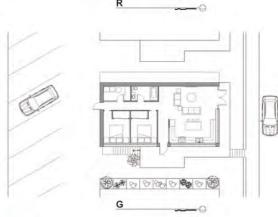


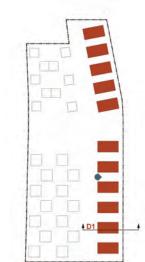


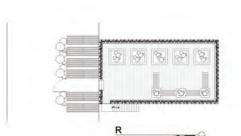


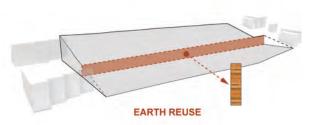


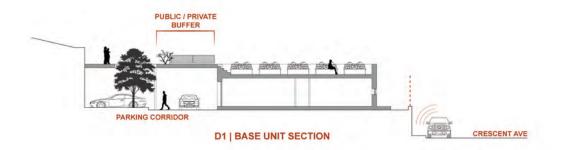


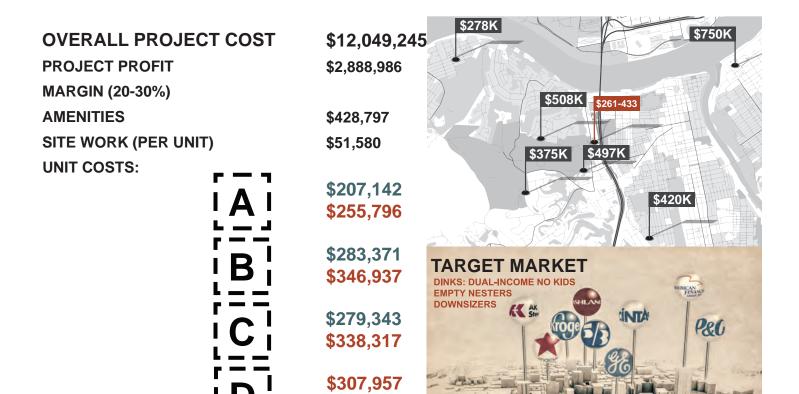

C3 | GABION RETAINING WALL

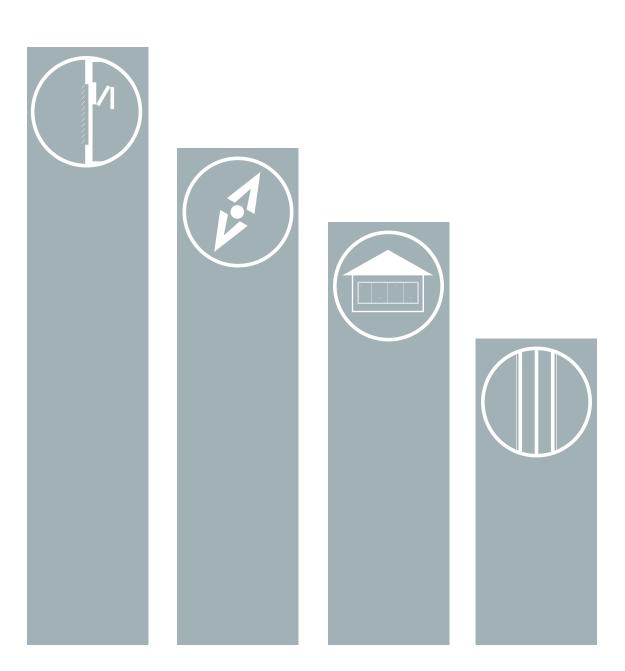

C4 | PIER FOUNDATION











APPENDIX PRO-FORMA AND ENERGY ANALYSIS

Note: Price per SF includes one full bath, one half bath, one kitchen, asphault shingles on roof, forced hot air heat/air conditioning, gypsum wallboard interior finishes, and materials & workmanship above average.

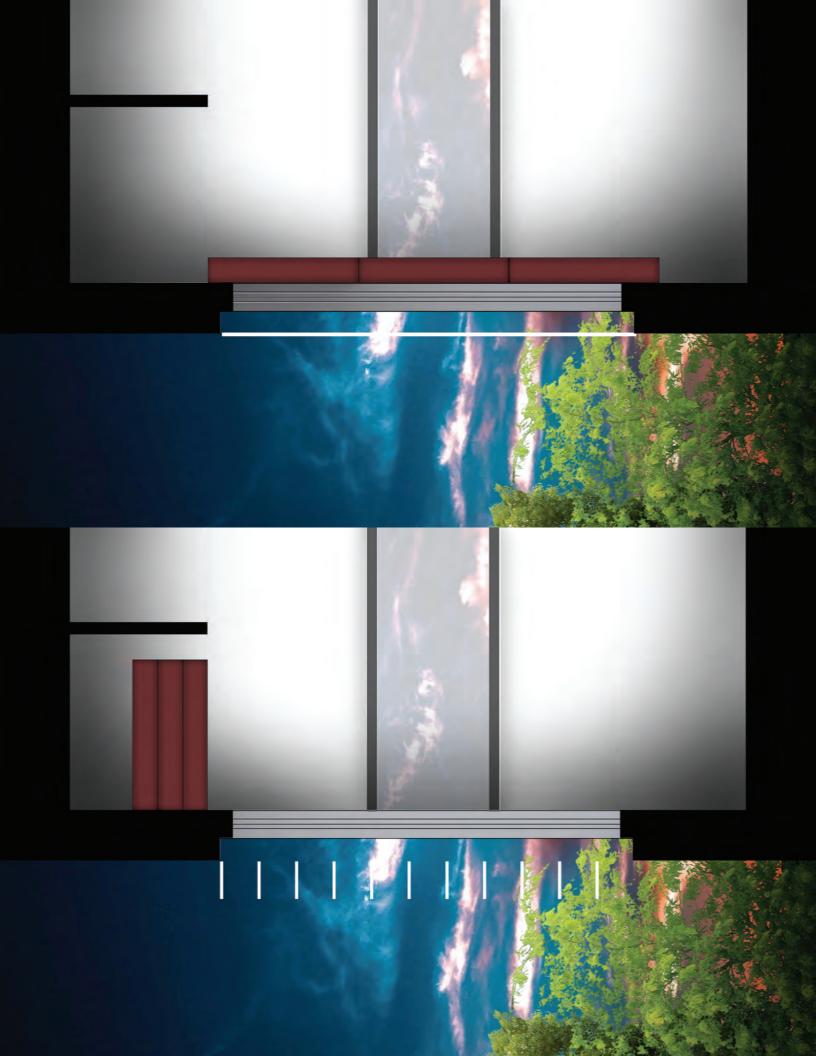
Unit	Living Area SF C	ost per SF p	er SF Cost	Modifications	Mod. Cost Applicance	Appliance Cost T	otal Unit Cost	# of Structures # o	f Units Unit Type Cost Sell Price	\$/SF (Cost)
24' 2 Story with Carport	1152	170.35	196,243.2(Kitchen Cabinets (2) Additional Entry/Exit Heat Pump (10) Fixed Picture Windows (5'x6') Deck Carport Pier Foundation Reinforcement Concrete Driveway, 10' Wide Erosion Control Storm Sewer Underground Detention Allowance Construction Staking Landscaping & Irrigation Offsite Water 10% Unit Site Work Contingency Entire Site Cost (per Unit) Gabion Retaining Wall, 3' Wide Amenities Package	1736.00 Range 3352.00 Range Hood 1843.20 Microwave 13500.00 Washing Machine 17160.00 Dryer 5800.32 Water Heater 13824.00 Refrigerator 1980.00 602.88 1307.31 5769.00 976.00 9579.58 2073.48 51580.97 840.00 10209.46 144634.20 Line Total	1415 666 526 770 790 1238 655	346,937.40 ell Price (25%)	3 \$433,671.75	3 \$1,040,812.20 \$1,301,015.2	5 \$301.16
24' 2 Story	1152	170.35	196 243 20) Kitchen Cabinets	1736.00 Range	1415	338,317.08	7	7 \$2,368,219.55 \$2,841,863.4	6 \$293.68
				(2) Additional Entry/Exit Heat Pump (10) Fixed Picture Windows (5'x6') Deck Pier Foundation Reinforcement Erosion Control Storm Sewer Underground Detention Allowance Construction Staking Landscaping & Irrigation Offsite Water 10% Unit Site Work Contingency Entire Site Cost (per Unit) Amenities Package	3352.00 Range Hood 1843.20 Microwave 13500.00 Washing Machine 17160.00 Dryer 13824.00 Water Heater 602.88 Refrigerator 1307.31 5769.00 976.00 2500.00 9579.58 2073.48 51580.97 10209.46	666 526 770 790 1238 655				
				Line Total	136013.88 Line Total	6060 S	ell Price (20%)	\$405,980.49		
24' 4 Story with Carport	2304	135	311,040.00	Kitchen Cabinets (3) Additional Entry/Exit Heat Pump (20) Fixed Picture Windows (5'x6') Deck Carport Pier Foundation Reinforcement Concrete Driveway, 10' Wide Erosion Control Storm Sewer Underground Detention Allowance Construction Staking Landscaping & Irrigation Offsite Water 10% Unit Site Work Contingency Entire Site Cost (per Unit) Gabion Retaining Wall, 3' Wide Amenities Package	(2 Each) 1736.00 Range 5028.00 Range Hood 3686.40 Microwave 27000.00 Washing Machine 36450.00 Dryer 5800.32 Water Heater 21888.00 Refrigerator 495.00 602.88 1307.31 5769.00 976.00 2500.00 9579.58 2073.48 51580.97 2520.00 10209.46 189202.40 Line Total		511,592.40 a. Unit Cost ell Price (30%)	4 \$255,796.20	8 \$2,046,369.60 \$2,660,280.4	7 \$222.05
				Line Total	189202.40 Line Total	11550 3	ell Price (50%)	\$332,535.06		
Base, Single Floor	1080	185.95	200,826.00	 Kitchen Cabinets (2) Additional Entry/Exit Heat Pump Fixed Picture Windows (5'x6') Porch Storm Sewer Underground Detention Allowance Construction Staking Landscaping & Irrigation Offsite Water 10% Unit Site Work Contingency Entire Site Cost (per Unit) Amenities Package 	1736.00 Range 3352.00 Range Hood 1728.00 Microwave 1350.00 Washing Machine 8970.00 Dryer 1307.31 Water Heater 5769.00 Refrigerator 976.00 2500.00 9579.58 2013.19 51580.97 10209.46	1415 666 526 770 790 1238 655	307,957.51	11	11 \$3,387,532.62 \$4,065,039.1	5 \$285.15
				Line Total	101071.51 Line Total	6060 S	ell Price (20%)	\$369,549.01		
20' 4 Story with Carport	1600	158	252,800.00	D Kitchen Cabinets (3) Additional Entry/Exit Heat Pump (18) Fixed Picture Windows (5'x6') Deck Carport Pier Foundation Reinforcement Concrete Driveway, 10' Wide Erosion Control Storm Sewer Underground Detention Allowance Construction Staking Landscaping & Irrigation Offsite Water 10% Unit Site Work Contingency Entire Site Cost (per Unit) Gabion Retaining Wall, 3' Wide	(2 Each) 1736.00 Range 5028.00 Range Hood 3686.40 Microwave 24300.00 Washing Machine 24480.00 Dryer 4028.00 Water Heater 17920.00 Refrigerator 495.00 602.88 1307.31 5769.00 976.00 976.00 9579.58 2073.48 34744.43 700.00	2830 1332 1052 770 1580 2476 1310	414,285.54	3	6 \$1,242,856.62 \$1,615,713.6	0 \$258.93

				Amenities Package	10209.46	Ea. Unit Cost	\$207,142.77		
				Line Total	150135.54 Line Total	11350 Sell Price (30%)	\$269,285.60		
20' 2 Story with Carport	800	204.3	163,440.0	0 Kitchen Cabinets (2) Additional Entry/Exit Heat Pump (9) Fixed Picture Windows (5'x6') Deck Carport Pier Foundation Reinforcement Concrete Driveway, 10' Wide Erosion Control Storm Sewer Underground Detention Allowance Construction Staking Landscaping & Irrigation Offsite Water 10% Unit Site Work Contingency Entire Site Cost (per Unit) Gabion Retaining Wall, 3' Wide Amenties Package	1736.00 Range 3352.00 Range Hood 1843.20 Microwave 12150.00 Washing Machine 8580.00 Dryer 4028.00 Water Heater 11600.00 Refrigerator 1980.00 602.88 1307.31 5769.00 976.00 2500.00 9579.58 2073.48 34744.43 840.00 10209.46	1415 283,371.34 666 526 770 1238 655	2	2 \$566,742.68 \$708,428.35	\$354.21
				Line Total	113871.34 Line Total	6060 Sell Price (25%)	\$354,214.17		
20' 2 Story	800	204.3	163,440.0	0 Kitchen Cabinets (2) Additional Entry/Exit Heat Pump (9) Fixed Picture Windows (5'x6') Deck Pier Foundation Reinforcement Concrete Driveway, 10' Wide Erosion Control Storm Sewer Underground Detention Allowance Construction Staking Landscaping & Irrigation Offsite Water 10% Unit Site Work Contingency Entire Site Cost (per Unit) Gabion Retaining Wall, 3' Wide Amenities Package	1736.00 Range 3352.00 Range Hood 1843.20 Microwave 12150.00 Washing Machine 8580.00 Dryer 11600.00 Water Heater 1980.00 Refrigerator 602.88 1307.31 5769.00 976.00 2500.00 9579.58 2073.48 34744.43 840.00 10209.46	1415 279,343.34 666 526 770 790 1238 655	5	5 \$1,396,716.69 \$1,745,895.87	\$349.18
				Line Total	109843.34 Line Total	6060 Sell Price (25%)	\$349,179.17		
Amenities	2909	119.6	347,916.4	0 Pool (2) Additional Entry/Exit Heat Pump Pier Foundation Reinforcement Fixed Picture Windows (5'x6') Erosion Control Storm Sever Underground Detention Allowance Construction Staking Landscaping & Irrigation Offsite Water 10% Amenities Site Work Contingen	20000.00 3352.00 4654.40 24726.50 5400.00 602.88 1307.31 5769.00 976.00 2500.00 9579.58 2013.19	428,797.26			\$147.40
				Line Total	80880.86				
						Preliminary Grand Total Preliminary Profit Margin Architect's Profit Margin AVG. \$/SF	35	42 \$12,049,249.95 \$14,938,236.14 \$2,888,986.19 \$602,462.50	\$276.47

				Total Cost	
Assembly Number	Description	Qty.	Unit	Unit	Total
Site Work	Clear and grub medium brush		Acre	760	9196
	Medium Trees, to 10" Dia., cut & chip		Acre	1075	13007.5
	Land Excavation Labor	19547		1073	332299
	Land Excavation Equipment Allowance		Job		162.15
	Land Excavation Debris Disposal		Cu. Yard	32.14	
	Concrete Sidewalk System, 3' Wide Walk	1059	L.F.	10.34	
	Dumpster		Tot	750	
	Supervison	42	Tot	10200	428400
	Final Clean Up		Tot	350	14700
	Gabion Retaining Wall, 3' Wide	1017	Cu. Yard	35	35595
	Parking Canopy with Green Roof	15609	SF	30	468270
	1.5kW Solar System	2490	EA.	42	104580
	Land Acquisition				70000
				Net Total	1969455.35
				10% Cont.	\$196,945.54
				Site Cost	\$2,166,400.89
				Per Unit	\$51,580.97
	l				

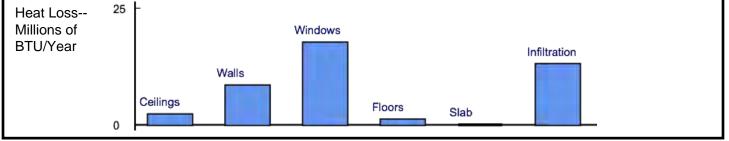
Incentive Provider Description Tennessee Valley Authority Pays \$1000 per solar collector system for upfront costs, as well as \$0.02 plus retail of all excess energy produced per kWh. Tennessee Valley Authority Pays \$1000 per solar collector system for upfront costs, as well as \$0.02 plus retail of all excess energy produced per kWh. State of KY Solar easement preventing anything bein built that would minimize effectiveness o solar collectors. Duke Energy Solar easement preventing anything bein built that would minimize effectiveness o solar collectors. Duke Energy \$350 per geothermal heat pump Kentucky Office of Energy Policy 100% sales and use tax rebate on all effor construct solar colelction (materials, machinery, labor, etc.) Department of Energy Energy Investment Tax Credit (ITC) provice and use tar so on bus solar cole con bus solar con bus son bus solar con bus son bus solar con bus solar c		Payoff
olicy		
sy Office of Energy Policy at of Energy	rate	Best month: (42) 1.5kW systems x 175 kWh = 7350 x \$.11 = \$808.50 50% annual sale = \$4,851
	eventing anything being inimize effectiveness of	N/A
	mal heat pump	\$14,700
	100% sales and use tax rebate on all efforts to N/A construct solar colelction (materials, machinery, labor, etc.)	/A
	Energy Investment Tax Credit (ITC) provides a N 30% Federal Tax credit for 8 years on business	N/A
Internal Revenue Service (IRS) "MACRS - Modified <i>I</i> System. The IRS allow green building invest through depreciation favorite tool of many buyers because it ac return on solar energing the following chart, shows the benefits o investments, compan may have a deprecia years."	"MACRS - Modified Accelerated Cost Recovery System. The IRS allows businesses to recover green building investments in certain property through depreciation deductions. MACRS is a favorite tool of many solar photovoltaic array buyers because it accelerates the rate of return on solar energy investments. The following chart, from The Butler Firm, shows the benefits of MACRS for solar investments, compared to other assets which may have a depreciation period of over 20 years."	100% 100% 100% 100% 100% 100% 100% 100%

SSOJ TAJH



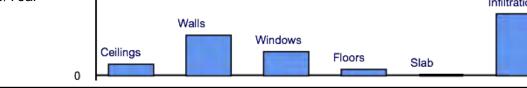
GMUG TA3H

ELANDLE


all	Туре	Location				
#1	Roof	all of the roof				
		R-value @ Sec	tionA,B,C			
	Construction Material	Α	В	С	Reference	
1	Outside air	0.17	0.17			
2	Asphalt shingles (1/4")	0.44	0.44			
3	Vapor barrier	0	0			
4	Plywood sheathing (5/8")	0.78	0.78			
5	Batt Insulation (4")	13.8	13.8			
6	rigid Insulation (1 1/4")	8.13	8.13			
7	2"x4" wood rafters	0	4.38			
3	Batt Insulation (3.5")	12.08	0			
Э	5/8" gyp Board	0.56	0.56			
0	Inside air- ceiling	0.61	0.61			
1						
2						
	R-total for each wall condition	36.4	28.7	0		
	% of wall	90.63%	9.38%			
	R-average for wall			35.678125		
	U-average for wall = 1/R			0.028028379		

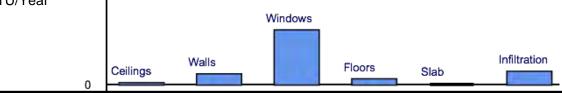
/all	Туре	Location			
#2	Corrugated Metal Wall	North and Wes			
		R-value @ Sec	tionA,B,C		
	Construction Material	Α	В	С	Reference
1	Outside air	0.17	0.17		
2	Corrugated Metal	0.1	0.1		
3	Wood Sheathing	0.63	0.63		
4	Batt Insulation	20			
5	2x6 Stud Framing		6.88		
6	5/8" gyp Board	0.56	0.56		
7	······				
8					
9					
0					
1					
2			·		
	R-total for each wall condition	21.46	8.34	0	
	% of wall	90.63%	0.34 9.38%	0	
		30.0370	9.0070		
	R-average for wall			20.23	
	U-average for wall = 1/R			0.049431537	

/all	Туре	Location				
#3	Wood Siding Wall	North, South, E	ast West Wal	ls		
		R-value @ Sec	tionA,B,C			
	Construction Material	Α	В	С	Reference	
1	Outside air	0.17	0.17			
2	Wood Sidings	0.8	0.8			
3	Wood Sheathing	0.63	0.63			
4	Batt Insulation	20				
5	2x6 Stud Framing		6.88			
6	5/8" gyp Board	0.56	0.56			
7						
8						
9						
0						
1						
2						
	R-total for each wall condition	22.16	9.04	0		
	% of wall	90.63%	9.38%			
	R-average for wall			20.93		
	-			0.047778309		

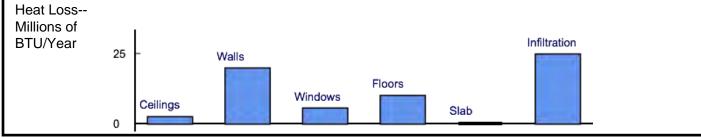

Windows with 4"				
operable insulation	All Windows			
	R-value @ Sec	tionA,B,C		
Construction Material	<u> </u>	В	C	Reference
Outside air	0.17	0.17		
Triple Pane Glazing	1.8	1.8		
air space (5/8")	2.15	2.15		
Rigid Insulation	20	20		Polystyrene
Inside air	0.68	0.68		
R-total for each wall condition	24.8	24.8	0	
% of wall	90.63%	9.38%		
R-average for wall			24.8	
U-average for wall = 1/R			0.040322581	

DESIGN TEMPE											
Unit Type and Co	ondition Tw	o-Stor	ry, 24', Wi	ndows In	sulation	up during	the da	ау			
Design outdoor Temperature	0°	F (C	oldest terr	nperature	expected	d in a norr	mal ye	ar)			
Heating Degree D	Days 55	00									
Furnace Type		ound S at Purr		\$ 0.12 pe	0.12 per KWH 300			Furnace Efficiency (%)			
AREA AND R-V	ALUE INP	UTS									
Building Surface	Area (sqft)		Rvalue		UA (BTU/hr-	F)	Desig (BTU)	yn Loss /hr)		arly Heat Loss illion BTU/yr)	
Roof	576		35		16.5		1152		2.2	2	
Wall 1	212		20		10.6		742		1.4	ŀ	
Wall 2	438		20		21.9		1533		2.9)	
Wall 3	226		20		11.3		791		1.5	6	
Wall 4	402		20		20.1		1407		2.7	7	
Windows 1	244		4.1		59.5		4166		7.9)	
Windows 2	18	8		4.1			307		0.6	6	
Windows 3	230		4.1		56.1		3927	,	7.4	L .	
Windows 4	54		4.1		13.2		922		1.7	,	
Floor 1	288		35		8.2		576		1.1		
Infiltration	1.0 leak	y tight new, y typic	<u>careful</u> cons al existing co	truction				_			
	House Vol (cubic ft)	ume	Air Changes p hour		per UA (BTU/hr-F)		Design Loss (BTU/hr)		Yearly Heat Los (million BTU/yr)		
Whole House	10944		0.5		98		6895	5	13		
SUMMARY OU	трите										
Item	UA (BTU/hr-F)		sign Loss TU/hr)			Fuel Cos (US dolla		Ten Year C 10% infla \$"		Greenhouse Gas (lb CO2)	
Ceiling Loss	16	11	52	2.2		25		406		318	
Wall Loss	64	44	173	8.4		99		1575		1234	
Window Loss	133	93	322	17.6		206		3283		2572	
Floor Loss	8	57	'6	1.1		13		203		159	
Slab Loss	0	0		0		0		0		0	
Infiltration	98	68	395	13		152		2428		1903	
Totals	320	00	418	42.3		496		2428 7895		6186	

http://www.builditsolar.com/References/Calculators/HeatLoss/HeatLoss.htm


DESIGN TEM										
Unit Type and (o-Story	/, 24 [/] , Wir	idows in	sulation	down at n	light			
Design outdoor Temperature	0°F	= (Co	oldest tem	perature	expected	d in a nori	mal ye	ar)		
Heating Degree	Days 55	00								
Furnace Type		Ground Source S Heat Pump		6 0.12 pe	r KWH	300		Furnace Eff	iciency (%)	
AREA AND R	-VALUE INP	UTS								
Building Surfac	e Area (sqft)	F	Rvalue		UA (BTU/hr-	F)	Desig (BTU)	g n Loss /hr)	Yearly Heat Los (million BTU/yr)	
Roof	576	;	35		16.5		1152		2.2	
Wall 1	212	:	20		10.6		742		1.4	
Wall 2	438		20		21.9		1533		2.9	
Wall 3	226	:	20		11.3		791		1.5	
Wall 4	402	:	20		20.1		1407		2.7	
Windows 1	vs 1 244		24		10.2		712		1.3	
Windows 2	18	:	24		0.8		53		0.1	
Windows 3	230	:	24		9.6		671		1.3	
Windows 4	54		24		16.8		1173		2.2	
Floor 1	288		35		8.2		576		1.1	
Infiltration	1.0 leaky	/ tight new, <u>c</u> / typica	<u>areful</u> const I existing co	ruction nstruction						
	House Volu (cubic ft)	e Volume 🛛 Air C		ges per	es per UA (BTU/hr-F)		Desi (BTL	gn Loss I/hr)	Yearly Heat Los (million BTU/yr)	
Whole House	10944		0.5		98		6895		13	
SUMMARY O	UA (BTU/hr-F)	(BT	ign Loss U/hr)	`		Fuel Cos (US dolla		10% infla \$'		
Ceiling Loss	16	1152	2	2.2		25		406	318	
Wall Loss	64	447		8.4		99		1575	1234	
Window Loss	37	260		4.9		58		918	720	
Floor Loss	8	576		1.1		13		203	159	
Slab Loss	0	0		0		0		0	0	
	98	689	5	13		152		2428	1903	
Infiltration Totals	224	1570		29.6		347		5530	4333	

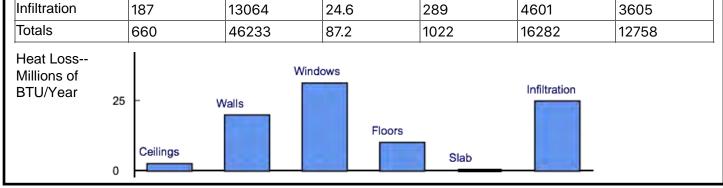
http://www.builditsolar.com/References/Calculators/HeatLoss/HeatLoss.htm


DESIGN TEMPE	ERATURE	AND	FUEL TY	PE INP	UTS						
Unit Type and Co						ring the d	lay, Sir	ngle Glazed	Wir	ndows	
Design outdoor Temperature	0°F		oldest tem								
Heating Degree D	Days 550	00									
Furnace Type		ound S at Pum		\$ 0.12 pe	r KWH	300		Furnace Eff	ficie	ncy (%)	
AREA AND R-V		UTS									
Building Surface	1		Rvalue		UA (BTU/hr-	F)	Desig (BTU/	jn Loss /hr)		arly Heat Loss illion BTU/yr)	
Roof	576		35		16.5		1152		2.2	2	
Wall 1	524		20		26.2		1834		3.5	5	
Wall 2	912		20		45.6		3192		6		
Wall 3	590		20		29.5		2065		3.9	9	
Wall 4	948		20		47.4		3318		6.3	3	
Windows 1	460		1.2		383.3		2683	3	50	0.6	
Windows 2	72	72			60		4200		7.9)	
Windows 3	394	394			328.3		2298	3	43	5.3	
Windows 4	36		1.2		30		2100		4		
Floor 1	576		35		16.5		1152		2.2	2	
Infiltration	Typical Air (0.33 very 0.5 tight - 1.0 leaky	v tight new,	jes Per Hou <u>careful</u> const cal existing co	truction							
	House Volu (cubic ft)		1		1					Yearly Heat Loss (million BTU/yr)	
Whole House	20736		0.5		187		13064	4	24		
SUMMARY OU	TPUTS										
ltem	UA (BTU/hr-F)		sign Loss TU/hr)			Fuel Cos (US dolla		Ten Year C 10% infla \$		Greenhouse Gas (lb CO2)	
Ceiling Loss	16	115	52	2.2		25		406		318	
Wall Loss	149	104	409	19.6		230		3666		2872	
Window Loss	802	56	117	105.8		1241		19762		15485	
Floor Loss	74	518	34	9.8		115		1826		1430	
Slab Loss	0	0		0		0		0		0	
Infiltration	187	130	064	24.6		289		4601		3605	
Totals	1228	85	925	162		1900		30260		23710	

Millions of BTU/Year

http://www.builditsolar.com/References/Calculators/HeatLoss/HeatLoss.htm

DESIGN TEMP	ERATU	RE AND	FUEL	ТҮР	E INP	UTS						
Unit Type and Co	ondition	Four-Sto	ory, Wine	dow	Insulat	ion Down	at Night,	, Single	e Glazed Wi	ndov	vs	
Design outdoor Temperature		0°F (0	Coldest t	emp	erature	expected	d in a nor	mal ye	ar)			
Heating Degree I	Days	5500										
Furnace Type		Ground Source \$ C Heat Pump			0.12 pe	0.12 per KWH 300			Furnace Ef	ficier	псу (%)	
AREA AND R-	ALUE	NPUTS										
Building Surface			Rvalue)		UA (BTU/hr-	F)	Desig (BTU)	jn Loss /hr)		arly Heat Loss illion BTU/yr)	
Roof	576		35			16.5		1152		2.2	2	
Wall 1	524		20			26.2		1834		3.5	5	
Wall 2	912		20			45.6		3192		6		
Wall 3	3 590					29.5		2065		3.9)	
Wall 4	948		20			47.4		3318		6.3	3	
Windows 1	460		24			19.2		1342		2.5	5	
Windows 2	72			24		3		210		0.4	1	
Windows 3	394		24			16.4		1149		2.2	2	
Windows 4	36		24			1.5		105		0.2	2	
Floor 1	576		35			16.5		1152		2.2	2	
Infiltration	0.33	Air Chang - very tight tight new leaky typi	, <u>careful</u> c	onstru	uction							
		Volume Air Char		ang	nges per UA				esign Loss		Yearly Heat Loss	
Whole House	(cubic f	<i>t)</i>	hour			(BTU/hr	-F)	(BTU/hr)		(million BTU/yr)		
	20736		0.5			187		1306	4	24	.0	
	TOUTO											
SUMMARY OU	UA	De	esign Lo	SS	Year I	_OSS	Fuel Cos	st	Ten Year C	ost	Greenhouse	
ltem	(BTU/hr-		TU/hr)			n BTU/yr)			10% infla \$		Gas (lb CO2)	
Ceiling Loss	16	11	52		2.2		25		406		318	
Wall Loss	149	10	0409		19.6		230		3666		2872	
Window Loss	40	28	806		5.3		62		988		774	
Floor Loss	74	5	184		9.8		115		1826		1430	
Slab Loss	0	0			0		0		0		0	
Infiltration	187	13	3064		24.6		289		4601		3605	
Totolo	L				1.							



61.5

http://www.builditsolar.com/References/Calculators/HeatLoss/HeatLoss.htm

Totals

DESIGN TEMPI	ERATU	RE AND) FUEL [·]	TYPE INP	UTS			
Unit Type and Co	ondition	Four-St	ory, Winc	low Insulat	ion up du	ring the day,	Triple Glazed	d Windows
Design outdoor Temperature		0°F (Coldest te	emperature	expected	in a normal	year)	
Heating Degree	Days	5500						
Furnace Type		Ground Heat Pu		\$ 0.12 pe	er KWH	300	Furnace E	fficiency (%)
AREA AND R-V	ALUE	INPUTS	5					
Building Surface	Area (sqft)		Rvalue)	UA (BTU/hr-	F) (B7	s ign Loss ⁻U/hr)	Yearly Heat Loss (million BTU/yr)
Roof	576		35		16.5	115	52	2.2
Wall 1	524		20		26.2	18:	34	3.5
Wall 2	912		20		45.6	319	92	6
Wall 3	590		20		29.5	20	65	3.9
Wall 4	948		20		47.4	33	18	6.3
Windows 1	460		4.1		112.2	78	54	14.8
Windows 2	72		4.1		17.6	122	29	2.3
Windows 3	394		4.1		96.1	67	27	12.7
Windows 4	36		4.1		8.8	61	5	1.2
Floor 1	576		35		16.5	115	52	2.2
Infiltration	0.33 -	- very tight tight nev	w, <u>careful</u> co					
	House (cubic f	Volume	Air Ch hour	anges per	UA (BTU/hr		sign Loss TU/hr)	Yearly Heat Loss (million BTU/yr)
Whole House	20736		0.5		187	130)64	24.6
SUMMARY OU	TPIITS							
Item	UA (BTU/hr-		esign Lo BTU/hr)	ss Year I (Millio		Fuel Cost (US dollars)	Ten Year 10% infla	CostGreenhouse\$"sGas (lb CO2)

2.2

19.6

9.8

http://www.builditsolar.com/References/Calculators/HeatLoss/HeatLoss.htm

Ceiling Loss

Window Loss

Wall Loss

Floor Loss

Slab Loss

DESIGN TEMPE										
Unit Type and Co		1				at Night	Triple	Glazed Win	dow	18
Design outdoor									uow	15
Temperature		0°F (C	oldest te	emperature	expected	d in a norr	nal ye	ar)		
Heating Degree D	Days	5500								
Furnace Type		Ground S Heat Pun		\$ 0.12 pe	er KWH	300		Furnace Eff	icier	псу (%)
AREA AND R-V	/ALUE I	NPUTS								
Building Surface			Rvalue		UA (BTU/hr-	F)	Desig (BTU)	gn Loss /hr)		arly Heat Loss illion BTU/yr)
Roof	576		35		16.5	- /	1152	,	2.2	
Wall 1	524		20		26.2		1834		3.5	
Wall 2	912		20		45.6		3192		6	
Wall 3	590		20		29.5		2065)	3.9)
Wall 4	948		20		47.4		3318		6.3	}
Windows 1	460		25.5		18		1263		2.4	1
Windows 2	72		25.5		2.8		198		0.4	1
Windows 3	394		25.5		15.5		1082		2	
Windows 4	36		25.5		1.4		99		0.2	2
Floor 1	576		35		16.5		1152		2.2	2
Infiltration	0.33 0.5 t	Air Chang - very tight tight new, leaky typic	<u>careful</u> cor		<u> </u>				<u> </u>	
		Volume	-	anges per	1	-F)	Desi (BTL	gn Loss I/hr)		arly Heat Loss hillion BTU/yr)
Whole House	20736		0.5		187		1306	4	24	.6
SUMMARY OU										
Item	UA (BTU/hr-l		sign Los TU/hr)			Fuel Cos (US dolla		Ten Year C 10% infla \$"		Greenhouse Gas (lb CO2)
Ceiling Loss	16	11!	52	2.2		25		406		318
Wall Loss	149	10	409	19.6		230		3666		2872
Window Loss	38	26	641	5		58		930		729
Floor Loss	74	51	84	9.8		115		1826		1430
Slab Loss	0	0		0		0		0		0
Infiltration	187	13	064	24.6		289		4601		3605
Totals	464	32	2449	61.2		717		11427		8954
Heat Loss										

Floors

Slab

Windows

Infiltration

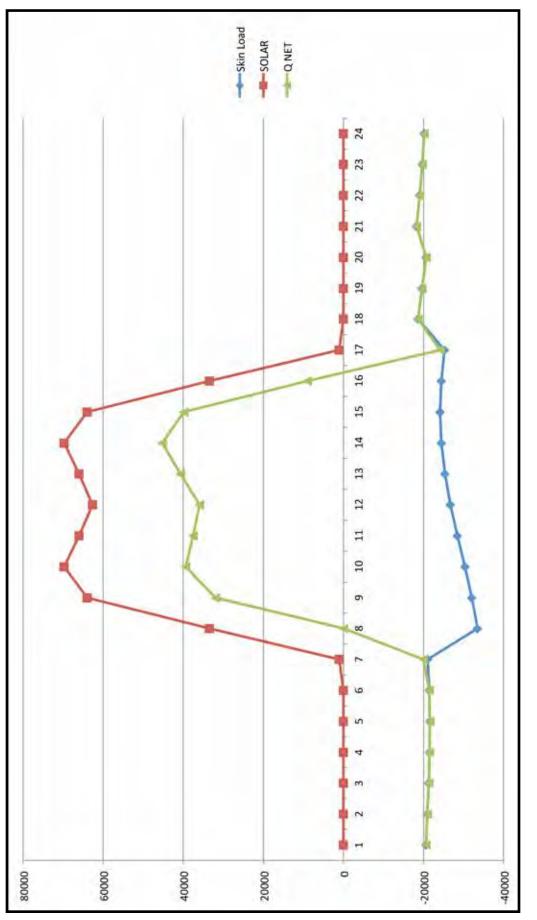
BTU/Year 25

http://www.builditsolar.com/References/Calculators/HeatLoss/HeatLoss.htm

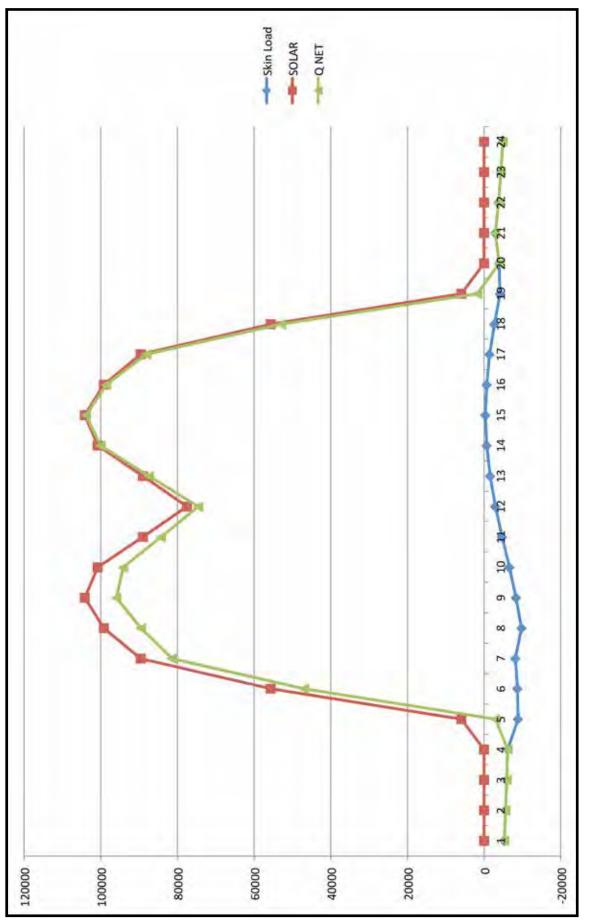
Ceilings

0

Walls


DESIGN TEMPE	ERATU	RE AND	FUEL ⁻		PUTS					
Unit Type and Co	ondition	Base Uni	t, No Wi	ndow Insu	lation					
Design outdoor Temperature		0°F (C	oldest te	emperature	e expected	l in a norr	mal ye	ar)		
Heating Degree D	Days	5500								
Furnace Type		Ground S Heat Pun		\$ 0.12 pe	er KWH	300		Furnace E	fficie	ncy (%)
AREA AND R-V Building Surface	Area	NPUTS	Rvalue		UA (DTL//	–)		yn Loss		early Heat Loss
Roof	<i>(sqft)</i> 1080		35		(<i>BTU/hr-</i> 30.9	F)	<i>(BTU)</i> 2160	,	(<i>m</i> 4.	nillion BTU/yr)
	540		50		10.8		756		1.4	
Wall 1	463		50		9.3		648		1.2	
Wall 2							048 281		_	
Wall 3	201		50		4				0.	
Wall 4	288		50		5.8		403		0.8	
Windows 1	77		4.1		18.8		1315		2.	
Windows 2	87		4.1		21.2		1485		2.	8
Windows 3	0		0		0		0		0	
Windows 4	0		0		0		0		0	
Floor 1	1080		25		43.2		3024		5.	7
Infiltration	0.33 0.5 t 1.0 l		<u>careful</u> co al existing	onstruction constructior						
	House (Volume	Air Ch hour	anges per	∙ UA (BTU/hr	-F)	Desi (BTL	gn Loss I/hr)		early Heat Loss nillion BTU/yr)
Whole House	10800		0.33		97		6804		12	.8
SUMMARY OU	UA		sign Lo			Fuel Cos				Greenhouse
	(BTU/hr-	· .	TU/hr)	•	on BTU/yr)	•	irs)	10% infla \$	55	Gas (lb CO2)
	31		60	4.1		2		26		163
Wall Loss	30		89	3.9		2		25		158
Window Loss	40		300	5.3		2		34		211
Floor Loss	43)24	5.7		2		36		228
Slab Loss	69		330	9.1		4		58		364
Infiltration	97		304	12.8		5		82		513
Totals	310	21	707	40.9		16		261		1637
Heat Loss Millions of BTU/Year 25				Windows	Floors	Slab		Infiltration		
0	Ceilings	Walls	1						_	

http://www.builditsolar.com/References/Calculators/HeatLoss/HeatLoss.htm


Unit	Window	Day Heat Loss	Night Heat Loss Daily	Heat Loss Intern	al Gains (Q-Net) Total	Day Heat Loss Night Heat Loss Daily Heat Loss Internal Gains (Q-Net) Total Heat Loss Measure Solar Colle	Solar Collector Needed	Sources
24' 4 story	Triple-Glazed low-E	46233	32449	39341	21126	18214.9(BTU/HR) 1.07 DC kW 5.3(kW) 128.1(kWh)	~	http://www.builditsolar.com/References/Calculators/HeatLoss/HeatLoss.htm http://www.rapidtables.com/convert/power/BTU_to_KW.htm http://www.rapidtables.com/calc/electric/KW_to_KWh_Calculator/htm http://www.rapidtable-solar.com/solar-took/residential=solar-calculator/
24' 4 story	Single-Glazed Clear	85925	32615	59270	37281	21989.2 (BTU/HR) 1.29 DC kW 6.4 (kW) 154.7 (kWh)	N	
24' 2 story	Triple-Glazed low-E	22418	14595	18507	9679	8827.6 (BTU/HR) 0.52 DCkW 2.6 (KW) 62.1 (KWh)	~	
Base Single Floo	Base Single Floor Triple-Glazed low-E	21707	21707	21707	10289	11417.9 (BTU/HR) 0.67 DC kw 3.3 (kw) 80.3 (kWh)	N	(Note: No operable glazing due to minimal openings and R-50 walls)

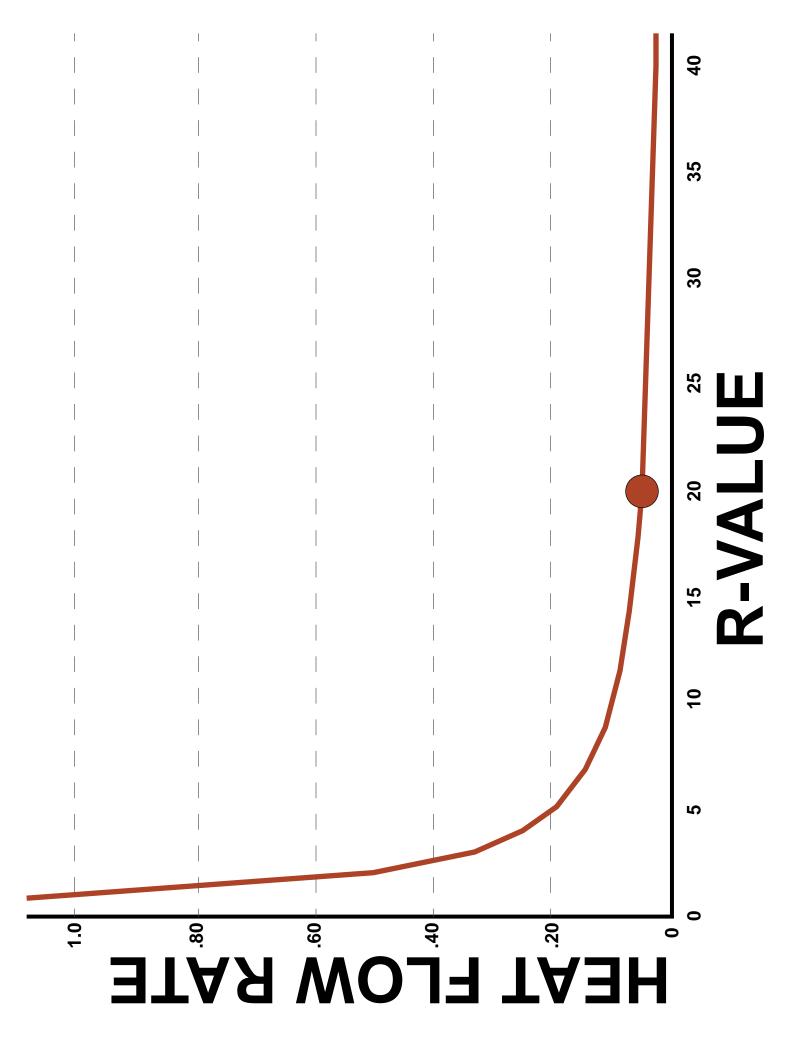
		3130	4132.5	5625	6625	7075	6975	5875	3352.5	2705 BTU/SF/Month		6450	8575	11475	13650	14175	14300	12200	7025	FEAD BTIL/SE/Month
South Windows Average		7300	8400	9300	7800	6000	10000	11000	7500	6500		15000	18000	19000	16000	12000	21000	24000	16000	14000
North Windows South		620	930	1600	2500	3500	2300	1500	710	520		1200	1700	2900	4600	6700	4200	2800	1300	OED
West Windows North		2300	3600	5800	8100	9400	7800	5500	2600	1900		4800	7300	12000	17000	19000	16000	11000	5400	3000
East Windows West		2300	3600	5800	8100	9400	7800	5500	2600	1900		4800	7300	12000	17000	19000	16000	11000	5400	3900
Month Ea	Triple-Glazed Low-E	January	February	March	April	May	September	October	November	December	Single-Glazed Clear	January	February	March	April	May	September	October	November	December

Month	East Windows	West Windows		North Windows South Windows Average	rage
Triple-Glazed Low-E					
January	2300	2300		7300	3130
February	360(,	026 030		4132.5
March	580(9300	5625
April	8100		0 2500		6625
May	940(6000	7075
September	780(10000	6975
October	5500				5875
November	2600	2600	0 710	7500	3352.5
December	1900	1900	0 520	6500	2705 BTU/SF/MG
Single-Glazed Clear					
January	480(15000	6450
February	7300		0 1700	18000	8575
March	1200(11475
April	17000				13650
Мау	19000	19000			14175
September	16000				14300
October	11000		0 2800		12200
November	5400	5400	0 1300		7025
December	3900	3900	096 0	14000	5690 BTU/SF/Mc

MAY

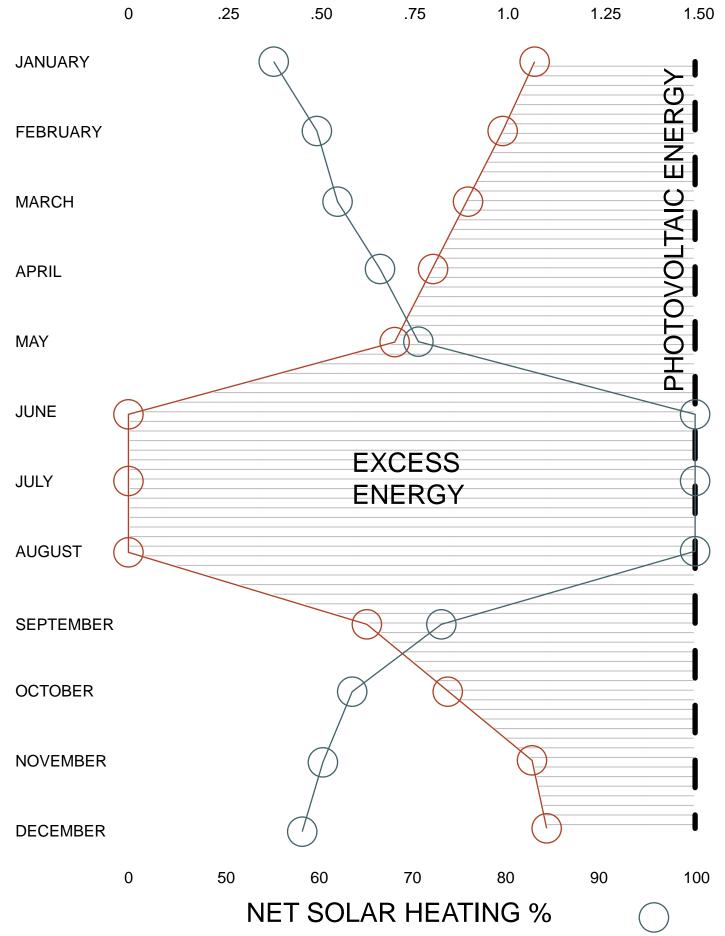
Skin Load m N --20000 -40000

NOVEMBER


	Y or N 23616 cu ft	660 Btu/hr/°F 464 Btu/hr/°F	ACH/Hr UA Required	464 464	464 464	464	464 464	660	660 <u>1.5</u>	660 2.0 660 2.0		660 2.5		660 0.6	660	404 464	464	464	464	404 464	95.1%	plus extra 10% stored 45.0% in walls, floors, ceiling
	tion ?	day = night =	UA (d/n)	u u		u u	ц с	q	q.	q q	q	יק	q a	q	d .	u u	n	n	u	а а	ting =	iting =
NCE	Ventilation ? Volume =	UA UA	T out	23.7 22.9	22.2	21.5	21.8	24.2	26.4	31.9	34.6	36.6	38.5 38.5	38.0	36.8 24.0	32.7 32.7	30.5	28.6	26.9 25 6	24.6	% SOLAR heating	% SOLAR heating
BALA	50	<i>5</i> 0 9	Tin	88	88	89	88	75	75	c 22	75	75	c 22	75	75	c 22	75	68	89	80	% SOL	10S %
RGY	t setting	at settin peratur range	T (h/l)	- 1				, h	ч.	ц ,ц	Ч	4 7	а д	h	ų -	а д	h	1				Net
LY ENE	thermosta	thermosta ly o/s tem mperature	Q vent	00	0	0	00	0 0	31928	37564	35949	40706	42225 39894	9053	00	0	0	0	0	0	Q vent	279795
T HOUR	high (day) thermostat setting	low (mght) thermostat setting average daily o/s temperature daily o/s temperature range	Q NET	-20551 -20945	-21260	-21576	-21418 -19939	-35	31928	37564	35949	40706	42225 39894	9053	-24127	-19618	-20643	-18263	-19052	-19085 -20156	Q net	-27561
DAY HEAT HOU 4 story Unit, January		⁶⁸ 30 17	SOLAR	00		0	0 1085	33480	63984	06/60 66030	62620	66030	02/20 63984	33480	1085	00	0	0	0 0	00	Solar	531278
CLEAR DAY HEAT HOURLY ENERGY BALANCE Project : 4 story Unit, January Date :	TEMP high (h)=	$ \begin{array}{c} \text{low (I)} = \\ \text{out} = \\ \text{range} = \\ \end{array} $	Skin Load	-20551 -20945	-21260	-21576	-21418 -21024	-33515	-32056	-30373 -28466	-26671	-25324	-24427 -24090	-24427	-25212	-19618	-20643	-18263	-19052	-19085 -20156	Heat loss	-558839
			HR	<i>c</i> .	- 4	، ۲	9	8	ç	10	12	7	14	16	10	10	20		22	24		TOT
				1a 2a		5a	6a 7a	8a	9a	10a 11a	12p	1p	30 7D	4p	5p	do 1p	8p	$^{9\mathrm{p}}$	10p	11p 12a		

	TEMP						Ventiletion ?	tion ?	>	V or N
	$high (h) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$	72	high (day) thermostat setting	hermostat thermostat	setting setting	٣	Volume =	e =	23616	cu ft
	out = range =		average daily o/s temperature daily o/s temperature range	ly o/s temp nperature	berature range	20 A2	UA UA	day = night =	660 464	Btu/hr/°F Btu/hr/°F
Ē					T	.! F	Ē	UA AU	* 1 1	ACH/Hr
нк	SKIN LOAD	DULAK	A NET	ר vent	(I/I)	II II	1 ont	(u/n)	N O	Required
2	-5239 -5633	00	-5239 -5633	00		88 89	56.7 55.9	u u	464 464	
I	-5948	0	-5948	0	1	68	55.2	u	464	
4	-6185	0	-6185	0	1	68	54.7	u	464	
	-8910	5952	-2958	0	1	68	54.5	q	660	
9	-8686	55645	46959	46959	1	68	54.8	q	660	8.4
	-8125	89590	81465	81465	1	68	55.7	q	660	15.6
8	-9755	99200	89445	89445	h	72	57.2	q	660	14.2
	-8296	104160	95864	95864	ų	72	59.4	q	660	17.9
10	-6613	100750	94137	94137	ų,	72	62.0	q	660	22.1
	-4706	88970	84264	84264	q	72	64.9	q	660	27.8
12	-2911	77500	74589	74589	h	72	67.6	q	660	39.8
	-1564	88970	87406	87406	h	72	69.6	q	660	86.8
14	-667	100750	100083	100083	h	72	71.0	q	660	233.1
	-330	104160	103830	103830	ų,	72	71.5	q	660	488.5
16	-667	99200	98533	98533	д,	72	71.0	י ק	(<u>)</u>	229.5
	-1452	06668	88138	88138	ч,	77	69.8 	י ק	000	94.2
18	-2080	0100 0101	66676	66676	ц,	77	67.9	י ק	000	30.6
Ċ	-4145	2666	1807	180/	ц,	77	00.7	σ	000	0.7
70	-3939	0	-3939	0	ч,	71	C.CO	u	404	
	-2951	0	-2951	0	_	68	61.6	u	464	
22	-3740	0	-3740	0	1	68	59.9	u	464	
	-4371	0	-4371	0	-	68	58.6	u	464	
24	-4844	C	-4844	C	_	68	576	Ļ	464	

CLEAR DAY HEAT HOURLY ENERGY BALANCE


C	TEMD						Vantilation 9	tion ?	>	N to V	
2.3.5	high (h)=	72	high (day) thermostat setting low (night) thermostat setting	hermostat	setting setting	50 b	Volume =		1 23616	$\int \frac{1}{cu} \frac{0.1N}{ft}$	
	out =		average daily o/s temperature range	ly o/s temp nperature 1	beratur range	စ်စ	UA UA	day = night =	660 464	Btu/hr/°F Btu/hr/°F	
					T			Ν		ACH/Hr	
	Skin Load	SOLAR	Q NET	Q vent	(l/l)	Tin	T out	(d / n)	UA	Required	
	-12663		-12663	0	1	68	40.7	u	464		
	-13057		-13057	0	-	68	39.9	u	464		
	-13372		-13372	00		89	39.2	u	464		
	-13609		-13609	0	_	68	38.7	u	404		
	-13688		-13688	00		89	38.5	u	464		
	12126	0 2755	0000			00	0.00 20.7	= :	404		
	00101- 20215	6	10675	010675	2	00	1.40 C 11	= ٦	404 660	ע -	
	-18856		48290	48290	ц ц	12	43.4	ק נ	000	4.0	
	-17173		54747	54747	h	72	46.0	q	660	4.9	
	-15266		52004	52004	h	72	48.9	q	660	5.3	
	-13471		50079	50079	h	72	51.6	q	660	5.8	
	-12124		55146	55146	h	72	53.6	q	660	7.1	
	-11227		60693	60693	h	72	55.0	q	660	8.4	
	-10890	67146	56256	56256	ų	72	55.5	q	660	8.0	
	-11227	(L)	28763	28763	h	72	55.0	q	660	4.0	
	-12012	325	-8757	0	ų	72	53.8	q	660		
	-9312		-9312	0	Ч	72	51.9	u	464		
	-10338		-10338	0	ų	72	49.7	u	464		
	-11363		-11363	0	q	72	47.5	u	464		
	-10375	0	-10375	0	1	68	45.6	u	464		
	-11164	0	-11164	0	-	68	43.9	u	464		
	-11795	0	-11795	0	1	68	42.6	u	464		
	-12268	0	-12268	0	1	68	41.6	u	464		
	Heat loss	Solar	Q net	Q vent		% SOL	% SOLAR heating	ting =	180.2%		
	-312231	567717	750401	105/5/1)			

CLEAR DAY HEAT HOURLY ENERGY BALANCE

KW NEEDED FOR HEATING

