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ABSTRACT ARTICLE HISTORY
Using body mass index (BMI) data from 2012 Behavioral Risk Factor Received 12 December 2014
Surveillance System, we test a spectrum of single parametric skewed Accepted 16 March 2016
distributions as well as Gaussian mixture densities to determine best KEYWORDS
distributional fit. We find that a k-component Gaussian mixture is Obesity; BMI; mixtures
the best model to describe the distribution of BMI data for the over-

all US population and for the population divided by gender, race, AMS SUBJECT

and region. A 4-component Gaussian mixture with the following sub- CLASSIFICATION
population means (standard deviations) fits best the US population: ~ 6204;6207; 62N02; 62P10;
2221(0 = 2.27),26.05(c = 2.19),29.83(c = 3.90),3547(c = 845)  62P%0

with corresponding weights: 23%, 25%, 37%, and 15%. Current obe-

sity standards are set based on a convention and they are fairly dated.

Overweight population has BMI (25.0,29.9). Obese population is sub-

divided into three grades based on BMI: grade 1 (30-35), grade 2

(35-40), grade 3 (40 and above). Our study shows that modeling BMI

using mixtures can be used to redefine current standards and sup-

port them with actual prevalence rather than a dated convention. By

redefining BMI standards and employing the mixture models by gen-

der and race, health and food policy makers will have opportunity to

diversify policies and treatments of obesity as premier public health

problem in the USA.

1. Introduction

Obesity has been one of the most important public health issues in the USA in recent
decades. A common measure of obesity is a body mass index (BMI) of 30 or greater. BMI
is calculated as weight in kilograms divided by height in meters squared. Based on rec-
ommendations of the panel of experts dated back to 1998 [11], which are still used as the
standard, overweight is defined as a BMI ranging from 25.0 to 29.9. The same standard
defines obesity as a BMI of at least 30.0 and subdivided into three grades: grade 1 with
30.0 < BMI < 35.0; grade 2 with 35 < BMI < 40.0, and grade 3 with BMI > 40.0.

Most studies [12-16,19,31], that address the prevalence of obesity in the USA with
its important public health and health policy implications use the BMI data from the
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National Health and Nutrition Examination Surveys (NHANES), or, alternatively, from
the Behavioral Risk Factor Surveillance System (BRFSS) [9,24, 25].

The first of NHANES nationally representative health examination surveys of civilian
non-institutionalized population using a complex, stratified, multi-stage probability cluster
sampling design was conducted in 1960. In 1999, NHANES became a continuous survey
with data released in 2-year cycles [15]. BRESS is a CDC-sponsored, state-based telephone
survey of health risk factors with the main purpose to provide state-specific estimates of
the prevalence of behaviors that are associated with the leading causes of death in the USA.
Each participating state independently selects for interview a probability sample from adult
residents who are at least 18 years old in households with telephones. All states, during
the same year, use an identical core questionnaire administered over the phone by trained
interviewers. Questions about height and weight, based on which BMI is calculated, are
asked, among others, by the interviewers. When the two data sets are compared, it has
been determined that the prevalence estimates of overweight and obesity generated by
the BRFSS under-estimate those from the NHANES [36]. While both data sets have been
widely used, they both have some limitations. For example, NHANES does not sample
an adequate number of persons who are members of racial/ethnic minority communi-
ties other than non-Hispanic blacks and Mexican-Americans to permit estimating obesity
prevalence in these communities (refer to [6]).

The National Health Interview Survey (NHIS), which is conducted by the National Cen-
ter for Health Statistics of the Centers for Disease Control and Prevention (CDC), has
been the main source of national health data on the US population since the 1950s [34].
The NHIS obtains information on a variety of health measures, including medical con-
ditions, access to health care, and health risk factors, and plays a pivotal role in tracking
national health objectives. Data are collected in a centralized manner by the US Bureau
of the Census via within-household, in person interviews. Information is obtained from
a nationally representative sample of adults and children, and both self-reports and proxy
data are included.

The issue of comparability between these data sources is of more than academic interest
[2]. Telephone-administered surveys such as the BRFSS have substantial cost and time-
liness advantages over household-administered surveys such as the NHIS which have
the advantage of being able to collect more detailed information on a wider range of
topics [17,18]. As already mentioned, previous studies have shown that self-reports under-
estimate weight, McLachlan and Peel [23] and data from the NHANES, which obtains
measured height and weight from respondents, demonstrate that self-reports substantially
underestimate BMI [21]. Thus, both the NHIS and the BRESS are likely to substantially
underestimate the extent of overweight and obesity, with the underestimate for obesity
being larger in the BRFSS. However, BRESS data can be combined across states to provide
national estimates for certain measures and to produce estimates generally comparable
to those of the NHIS, although there may be differences for subgroups. The importance
of the differences in estimates between the two surveys will depend on the purposes and
situations for which these estimates are to be used. In addition, the BRFSS could provide
rapidly available data for helping guide national policy and program decisions in areas such
as tobacco control, insurance coverage, and obesity. For example, although BRFSS obesity
estimates are lower than those of the NHIS or NHANES, the BRESS has provided the most
timely state and national data demonstrating the worsening of US obesity trends over the
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past decade [26]. Finally, use of BRFSS data in computing national estimates for selected
measures has the added benefit of improving the comparability of state and national data,
in that the two types of estimates would be based on the same questions and mode of
interview [27].

Important previous studies on prevalence of obesity and trends in the USA that used
NHANES BMI data levels in the USA use logistic regression of the BMI data on one (or
more) explanatory variables with linear trend over time [12-16]. Likewise, many stud-
ies that used BRFSS BMI data to examine causes of obesity and its health, economic,
and policy implications, also used logistic regression, and logit or probit statistical mod-
els [4,10,24,25,32,35]. Most of these studies make the assumption that BMI is binary
(BMI > 30 = 1 is obese and BMI < 30 = 0 is not obese), and assume binomial probabil-
ity distribution, for given values of the explanatory variables. This is a greatly simplifying
assumption that hides the important information on the true distribution of the BMI.
Moreover, it is based on a convention. For instance, BMI of 25 kg/m? is used as the pro-
posed upper limit of normal, although others could be selected based on ethnicity, age,
or other considerations [5]. Hence it is clear that these defining limits are, albeit based on
scientific and policy experts’ convention, arbitrary. While it is clear that logistic regres-
sion provides a useful means for modeling dependence and determining correlations of a
binary response variable with one or more explanatory variables [3], it neither describes the
prevalence of obesity nor determines causality of it. Thus determining true probability dis-
tribution of BMI is important not only in order to accurately describe it in statistical terms
but also to be able to interpret as being derived from an underlying set of other random
variables.

The aim of this study is to investigate the true distribution of the BRESS BMI survey data
for (1) the overall American population (2) regional BMI distribution where the regions
are defined based on the CDC obesity prevalence rates; (3) subpopulation based on gender
and race. Within each population, mixture analysis is used to investigate whether a mixture
of two (or more) normal (or other) distributions explain the variance in BMI better than a
single distribution.

In probability and statistics, a mixture distribution is the probability distribution of a
random variable (BMI in this case) whose values can be interpreted as being derived in the
following way from an underlying set of other random variables: specifically, the realiza-
tion of the random variable with a mixture distribution is randomly selected from among
the realizations of the underlying random variables, with a certain probability of selection
being associated with each. Here the underlying random variables may be random vectors
(each having the same dimension) in which case the mixture distribution is a multivariate
distribution.

Mixture distributions arise in many contexts in the literature and arise naturally where a
statistical population contains two or more subpopulations, as is the case of BMI. They are
sometimes used as a means of representing non-normal distributions, which we will test if
that is the case too. The advantage of testing for and using mixture distributions is, primar-
ily, because parametric statistics that assume no error often fail on such mixture densities.
For example, statistics that assume normality often fail disastrously in the presence of even
a few outliers. The analysis should be conducted with robust statistics.

The organization of this paper is as follows. Section 2 defines the methodology used.
Section 3 describes the data and the analysis. Conclusion is provided in Section 4.
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2. Methodology

For many years, prior to year 2000, the distribution of BMI was assumed to follow a normal
distribution or approximately a bell shaped curve as this was similar case for measurements
of weight and height. Since this assumption has not been clearly proven or documented,
first we tested the normality of the BMI data using the Jarque-Bera normality test and
D’Agostino’s K-squared tests.

Recently, some claims were made that BMI is not normally distributed [29] indicating
that a Log-normal or some other positively skewed distribution may be a better fit. Hence,
the following single distributions, exhibiting a positive degree of skewing in the right tail
of the data, were fitted using the method of maximum likelihood:

Log-normal(, o) where mean is  and standard deviation is 0.
Gamma(#, o) where shape is fand scale is «.

Logistic(u, s) where mean is 1 and scale is s.

Inverse Gaussian(u, 6) where mean is o and shape is 6.
Weibull(#, ) where shape is 6 and scale is .

Optimization of the non-differentiable likelihood functions, for single component
modes, was built on Nelder-Mead algorithm.

Finally, a univariate Gaussian mixture model was tested to allow for inclusion of dif-
ferent sub-populations while fitting the overall population of BMI data. Finite Gaussian
mixture modeling was founded on the EM algorithm, well known for its applications in
model-based clustering and classifications [23]. For the observations y1,y2,. .., ¥y, the
mixture density function is given by

K
f0il0) = mdkilr 00),

k=1

where the kth mixing proportion 7y represents the probability that observation y; belongs

to the kth subpopulation with corresponding kth normal component density ¢ (.) Here,

0= (uo%m), = (Ui, M2 ..., 1K), T = (T1,72,...,Tk—_1) with Zleﬂk =1, and

® (|, 0%) is the normal distribution with mean p and variance o2 evaluated at y.
Therefore,

n K
f010) =D il iar o).

i=1 k=1
Define latent indicators z1, 23, . . ., 2y, such that z; € (1,...,K) and p(z; = k|0) = 7y,
the augmented model for (y, z) is defined by the following joint density

K n
f0,210) = | T[] ol o) | [] pCzil6),
i=1

k=1i€l}

where I, = (i: z; = k).
The best model was selected based on Akaike information criterion (AIC) [1], Bayesian
information criterion (BIC) [30], and Kolmogorov-Smirnov (K-S) [22] test statistic
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results. For each component in the mixture the estimates of mixing proportions, mean,
and standard deviations were summarized. Statistical analysis was conducted using R ver-
sion 3.1.0 (The R Foundation of Statistical Computing [33]). The following libraries from
R were utilized: MASS, stats4, mclust, tseries, mixtools, splines, and statmod).

3. Application
3.1. Data

Data is obtained from the BRFSS. The BRFESS is conducted by the National Center for
Health Statistics of the CDC [7]. According to CDC,

BRESS is the nation’s premier system of health-related telephone surveys that collect state data
about US residents regarding their health-related risk behaviors, chronic health conditions,
and use of preventive services. BRESS [8] collects data in all 50 states as well as the District of
Columbia and three US territories. BRFSS completes more than 400,000 adult interviews each
year, making it the largest continuously conducted health survey system in the world. (CDC
[7], http://www.cdc.gov/brfss/)

The BMI information along with state, county, age, gender, and racial/ethnic-specific
category variables from the 2012 BFRSS survey are used in this analysis. Prior to con-
ducting the analysis, the presence of aggregate district, state and regional data, that is,
observations with county code 777, 888 and 999 are deleted to avoid bias in the distribu-
tions. In addition, observations with income source code 77 (do not know) and 99 (refused)
were deleted. Data for Alaska Native were not available. Finally, observations from the top
five race groups - White, Black or African American, Asian, Native Hawaiian or Other
Pacific Islander and American Indians are used in the analysis. This included interracial
observations within the top five race groups. Only adults age 18 and above were included.

The US county map of the average BMI by county is presented in Figure 1. This
map shows visually the spatial distribution of average BMI values. While it is a com-
mon practice by CDC to show a state map by region based on prevalence rate
(http://www.cdc.gov/obesity/data/adult.html), we believe that the state map does not cap-
ture serious gap across regions of the state and among racial/ethnic groups; therefore,
county map may be used as a better visual tool. In Figure 1, for some regions of the USA,
higher BMI is correlated with the population density, for example, coastal southern coun-
ties of Texas, Mississippi, and Louisiana. Louisiana is the top state based on the prevalence
rate (34.7%). As such, it is selected in Figure 2 and shows the spatial distribution of BMI
by county.

3.2. Analysis

US sample size of 352,640 was used in the analysis with full records available for state,
county, age, gender, and racial/ethnic-specific code. Distribution by sex was 42.48% male
and 57.52% female. Adult population includes ages 18 and above. Five major racial/ethnic
groups were analyzed: white (87.59%), black (9.36%), Asian (1.32%), Native Hawaiian
or other Pacific Islanders (0.08%), and American Indian (1.64%). Alaska Native was not
included in the sample due to missing data. Three main US regions were analyzed based
on prevalence rates 20-25%, 25-30%, and 30-35% as reported by BRFSS (2012) appearing
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BMI (Mean) 21.553-27.118 27.120-27.697 B 27.698 - 28.182
I 28.182-28.670 MMM 28.671-29.384  mmm 29.386-42.910

Figure 1. (Colour online) The US county map of average BMI values for the US adults.

at http://www.cdc.gov/obesity/data/adult.html. These regions are defined by state as
follows:

e Prevalence rates 20-25%: CO, DC, MA, HIL, NY, VT, MT, UT, NJ, and WY.

e Prevalence rates 25-30%: AZ, CA, CT, DE, FL, GA, ID, IL, KS, ME, MD, MN, MO, NE,
NV, NH, NM, NC, ND, OR, PA, RI, SD, TX, VA, WA, and WL

e Prevalence rates 30-35%: AL, AR, IN, IA, KY, LA, MI, MS, OH, OK, SC, TN, AND WV.

Due to a large sample size (> 2000), Jarque-Bera test, based on sample skewness and
sample kurtoses, was used to test the normality assumption for BMI. The results of this test
for the US BMI data has x? = 309,433 (df = 2, p=0.00) rejecting the null hypothesis that
the sample came from a normal distribution with expected skewness and kurtosis equal to
zero. The conclusion is the same when running the Jarque-Bera test on the BMI data by
prevalence region, gender, and race, indicating that the normality assumption is rejected.
Another normality test, D’Agostino’s K-squared test was run that measure departure from
normality and it is based on transformation of the sample kurtosis and skewness. The result
of this test for the US BMI has K? = 92,947 (df =2, p=0.00) leading to a conclusion
that the distribution of BMI data is skewed. The conclusion is the same when running
the D’Agostino’s K-squared test on the BMI data by prevalence region, gender, and race.

Among all single parametric distributions tested in Table 1 and Figure 3, on the nation-
wide data, the log-normal has the highest log-likelihood, smallest AIC, BIC, and K-S
values. This indicates Log-normal distribution is the best fit among all single compo-
nent skewed models. However, it should be noted that Log-normal distribution is just
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BMI (Mean) 26.110 - 28.335 28.361 -28.662  m 28.708 - 28.962
N 29.040-29.641 W 20.829-30.363 MMM 30.457 - 34.456

Figure 2. (Colour online) The Louisiana county map of average BMI values for the US adults.

marginally better than Inverse Gaussian (known as Wald). Thus, Inverse Gaussian distribu-
tion is also good fit for the BMI data. Parameters of the selected Log-normal distributions
have mean of 3.31 and standard deviation of 0.20. However, the Log-normal model is
inferior if compared to a 4-component Gaussian mixture model. The 4-component mix-
ture shows higher log-likelihood and lower AIC, BIC, and K-S values compared to the
log-normal model; therefore, represents the best fit overall.

Figure 4 compares the densities of the Log-normal and the 4-component mixture over
the histogram of the data. It is obvious that by using the 4-component mixture, the fit
is significantly improved in the peak and the right tail of the distribution compared to
the Log-normal model, as shown in Figure 4. The centers of Gaussian subcomponents are
(1 = 2221 (07 = 2.27), itz = 26.05 (03 = 2.19), i3 = 29.83 (03 = 3.90), and pg = 35.47
(04 = 8.45). The mixing proportions by component are 0.23, 0.25, 0.37, and 0.15 reflecting
the distribution of people within each subpopulation. About 29% of people in the USA
have BMI above 30. The standard deviation increases for the third and fourth component
to reflect better fit in the tail of the distribution. In addition to fitting the best model, these
results illustrate that the finite mixture model can be used to determine an optimal number
of subpopulations and their distributional properties within the overall population of BML
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Table 1. Summary of distributions through 2012 BMI data for the US adults.

Distribution Parameters LogLik AlC BIC K-S
Weibull 6 =3034,t =4.29 —1,164,926 2,329,856 2,329,878 0.108
Logistic n=2732,s =323 —1,121,339 2,242,682 2,242,704 0.049
Gamma 6 = 23450 = 0.84 —1,112,656 2,225,316 2,225,337 0.060
Inverse Gaussian n=27.89,0 = 656.27 —1,105,752 2,211,508 2,211,479 0.048
Log-normal level n=23310 =020 —1,105,470 2,210,944 2,210,965 0.046
4-component 7 = (0.23,0.25,0.37,0.15)
Gaussian mixture = (22.21,26.05,29.83,35.47) —1,100,256 2,200,534 2,200,653 0.014
o = (2.27,2.19,3.90, 8.45)
Weibull Logistic
0.08 0.08
2 2
i) i)
g 0.04 /\ S 0.04
[a} [a}
0.00 I T T T 1 0.00 I T T T 1
20 40 60 80 100 20 40 60 80 100
BMI BMI
Gamma Inverse Gaussian
0.08 0.08
2 2
E= 2
$ 0.04 $ 0.04
[a} [a}
0.00 I T T T 1 0.00 I T T T 1
20 40 60 80 100 20 40 60 80 100
BMI BMI
Log-normal Mixture
0.08 0.08
2 2
(%] w0
g 0.04 5 0.04
[a} [a}
0.00 I T T T 1 0.00 I T T T 1
20 40 60 80 100 20 40 60 80 100

BMI

BMI

Figure 3. Different distributional fits through 2012 BMI data for the US adults.

The long thin tail of the distribution captures the observations with BMI > 60 (1.1% of the

data).

About 37% of the people form the subpopulation with the BMI mean value of 29.83
and standard deviation of 3.90. This largest subpopulation among the four subpopula-
tions based on this model seems to be having different underlying causes of its obe-
sity/overweight condition than the subpopulation whose mean BMI is 35.47 (15% of the
total population) which is clearly reflecting the segment of obese people of all three grades:
1, 2 and 3. These two subpopulations should best be analyzed separately in multivariate
regression framework to be able to more accurately identify the factors that underlie and
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Table 2. Summary of distributions through 2012 BMI data by region based on prevalence rate.

Distribution Parameters LogLik AIC BIC K-S
Region with prevalence rate 20-25%
Weibull 0 =29.50,7 =4.42 —238,803 477,610 477,729 0.112
Logistic u = 26.65,s = 3.02 —229,164 458,332 458,350 0.051
Gamma 6 =25.28,0 = 0.93 —227,514 455,032 455,049 0.064
Inverse Gaussian n=27.18,0 = 691.57 —226,008 452,020 452,038 0.050
Log-normal level n =3280 =020 —224,756 449,536 449,636 0.018
4-component m = (0.24,0.25,0.37,0.14)
Gaussian mixture = (21.94,25.50,29.09, 34.36) —224,756 449,536 449,636 0.018
o = (2.16,2.08,3.74,8.12)
Region with prevalence rate 25-30%
Weibull 6 =30.25t =433 —624,929 1,249,862 1,249,881 0.108
Logistic n=2729,s=3.18 —601,109 1,202,222 1,202,242 0.049
Gamma 6 = 2401, = 0.86 —596,601 1,193,206 1,193,227 0.059
Inverse Gaussian n = 27.83,0 = 670.59 —592,996 1,185,996 1,185,968 0.047
Log-normal level uw=3.30,0 =0.20 —592,841 1,185,686 1,185,706 0.046
4-component w = (0.24,0.25,0.37,0.14)
Gaussian mixture n = (22.21,26.07,29.76,35.27) —590,204 1,180,430 1,180,543 0.015
o = (2.26,2.17,3.92,8.39)
Region with prevalence rate 30-35%
Weibull 0 =31.17,7r =4.18 —299,559 599,122 599,244 0.103
Logistic n=2797,s =344 —289,488 578,980 578,999 0.048
Gamma 60 = 21.66,0 = 0.78 —287,585 575174 574,139 0.055
Inverse Gaussian n = 2858,0 =619.25 —285,328 570,660 570,530 0.042
Log-normal level i =333,0 =021 —285,266 570,536 570,555 0.041
4-component w = (0.24,0.24,0.35,0.17)
Gaussian mixture n = (22.51,26.52,30.49,36.33) —284,119 568,260 568,364 0.013

o = (2.43,2.25,3.91,8.66)

correlate with corresponding BMIs. This is important in a sense that different causes call
for different actions in terms of prevention, health care and policy. If one is to use BMI
benchmark of 30, this large subpopulation is likely to be arbitrarily divided on those with
BMI below or above 30 without accounting for true underlying causes for their condition.
Than individuals with BMI of 27 and 33, for example, are likely to have more similarities
in terms of causes of their condition then individuals with BMIs of 33 and 39, or 27 and
21 respectively. However, based on current classification of individuals on obese versus not
obese which is based on the BMI benchmark of 30, this conclusion would not be possible.

Regional BMI data are analyzed based on the prevalence rate definition set by CDC.
Summary of the results is displayed in Table 2. In case of all three regions based on preva-
lence rates 20-25%, 25-30%, and 30-35%, 4-component Gaussian mixtures is the best
fitted model. The parameter estimates are fairly similar for the three groups and there is a
visible increase in skewness as the prevalence rate increases. Mean and standard deviations
of each component slightly increases across three groups. The highest means and standard
deviations can be observed in the region with prevalence rate 30-35%.

Table 3 summarizes results for several models used to fit 2012 BMI data by gender.
Gaussian mixture model represents the best fit. Female BMI can be described using a
4-component mixture with the following parameter estimates: 1; = 21.54 (01 = 2.06),
o = 25.35 (0p = 2.26),u3 = 29.62 (03 = 4.07), g = 35.85 (04 = 8.62). These results
indicate that the first subpopulation of about 24% of the total population is in normal range
with no reasons to worry about potential overweight and obesity. However, studying this
group can provide insight on behavioral, genetic, socio-economic or other relevant factors
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Table 3. Summary of distributions through 2012 BMI data by gender.

Distribution Parameters LogLik AlC BIC K-S
Females
Weibull 0 = 30.26,7 = 4.01 —682,355 1,364,714 1,364,845 0.113
Logistic n=26.99,s =350 —661,061 1,322,126 1,322,147 0.062
Gamma 6 = 20.01,0 = 0.72 —653,624 1,307,252 1,307,272 0.071
Inverse Gaussian n = 27.67,0 = 556.59 —648,856 1,297,716 1,297,578 0.057
Log-normal level n=3290 =022 —648,782 1,297,568 1,297,588 0.055
4-component 7 = (0.24,0.24,0.36,0.16)
Gaussian mixture = (21.54,25.35,29.62, 35.85) —644,447 1,288,916 1,289,029 0.020
o = (2.06,2.26,4.07,8.62)
Males
Weibull 6 =30.39,t =4.79 —479,192 958,388 958,479 0.117
Logistic uw=2772,5s = 2.80 —456,467 912,938 912,957 0.043
Gamma 6 =30.76,a = 1.09 —454,771 909,546 909,566 0.054
Inverse Gaussian n=28.18,0 = 871.12 —452,359 904,722 904,623 0.042
Log-normal level n=2332,0 =018 —452,181 904,366 904,386 0.041
3-component m = (0.39,0.49,0.12)
Gaussian mixture = (25.25,28.86,34.59) —449,423 898,862 898,942 0.024
o = (2.72,4.19,8.11)
us
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Figure 4. Log-normal vs

BMI

. optimal Gaussian mixture model of the BMI of the US adults.

underlying their BMI status. Likewise, second group or subpopulation is of the same size,

but individuals in this group are on the ‘verge” of overweight. Hence, studying underly-

ing factors of this group’s BMI should be helpful in designing more effective preventative

behavioral and health policy measures that would preclude its members from potentially
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moving into the obese category. The third group, which is the largest of all female subpopu-
lations containing 36% of the total females, is comprised of individuals who belong to either
overweight or obese category. Studying underlying factors of BMI for this subpopulation
should be helpful in developing medical treatments and creating policies that could remedy
their current condition, and reverse or at least halt at its current level their BMI. These are
likely to be different from the treatments and policies that would adequately address needs
of the fourth subpopulation (16% of the total female population) that could be classified
as severely obese, and some morbidly obese individuals since underlying causes for their
BMI condition are likely differ.

Male BMI population can be best defined using 3-component Gaussian mixture with
the following parameters:;; = 25.25 (o7 = 2.72), o = 28.86 (02 = 4.19), us = 34.58
(03 = 8.11). What is immediately obvious based on these results is that virtually all of male
population is in danger of being overweight or obese. Alternatively, this result points to
potentially serious deficiency of current classification of males on normal, overweight and
obese based on BMI values being less than 25, between 25 and 30, and above 30, respec-
tively. While influential previous literature points that prevalence of obesity, and especially
extreme obesity, in females exceeds the prevalence of obesity in males [28], they fail to rec-
ognize that overall male population is more impacted by overweight and obesity (based
on current definitions and classifications for both) unless there is recognition that current
standards, and definitions for overweight and obesity based on them, are not applicable
and are changed. For instance, it has been long recognized that men have more skeletal
muscle mass than women and that these gender differences are greater in the upper body
[20]. This greater skeletal muscle mass in men may lead to higher values of BMI for males
of the same height as females. However, these higher BMI values are not necessarily an
indication of overweight or obesity as current BMI based-standards would suggest.

The results of an analysis of distributions of BMI by racial/ethnic group were pre-
sented in Table 4. Since the assumption of normality is violated for all Jarque-Bera tests by
race, normal distribution was eliminated for further considerations. For all racial/ethnic
groups mixture model is selected as the best fit. Among single components, Log-normal
and Inverse Gaussian are the best fits. The BMI for White population can be described
by 4-component mixture with the following parameter estimates by component: p; =
22.14 (07 = 2.24), 1, = 25.93 (05 = 2.15), u3 = 29.58 (03 = 3.84),and 4 = 35.07 (04 =
8.28). These results are very similar to the nation-wide results as the white population
dominates the BMI data. About 28% of white people have BMI above 30.

The BMI for Blacks or African Americans show more shifts forward the right tail
resulting in additional clustering and fitting a 5-component mixture model as the best
model. The parameter estimates for this model are u; = 22.93 (07 = 2.47), pur = 26.07
(02 = 1.80), i3 = 29.49 (03 = 2.32), ju4 = 33.18 (04 = 4.53), 115 = 38.25 (05 = 9.59).
About 44% of the data are located in the 4th and 5th component of this mixture indicating
that Blacks or African Americans are on average heavier than White people. The mean of
single component models of Blacks or African Americans is shifted to the right compared
to all other racial/ethnic groups indicating that average person in this group is heavier than
those in all other groups. At least 43% of Blacks or African Americans have BMI above 30.

The BMI data for Asians is described best with a 2-component mixture with the esti-
mated parameters: i1 = 23.53 (07 = 3.01),u2 = 28.78 (0 = 5.56). The mean of BMI for
a single component model for Asians is significantly lower compared to other racial/ethnic
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Table 4. Summary of distributions through 2012 BMI data by race.

Distribution Parameters LogLik AIC BIC K-S
White
Weibull 6 =30.07,7 =436 —1,013,321 2,026,646 2,026,782 0.108
Logistic n=27.14,s =314 —974,504 1,949,012 1,949,034 0.048
Gamma 6 =2432,a = 0.88 —967,275 1,934,554 1,934,575 0.059
Inverse Gaussian n=27.68,0 = 675.01 —961,411 1,922,826 1,922,682 0.047
Log-normal level n=330,0 =020 —961,163 1,922,330 1,922,352 0.046
4-component w = (0.24,0.25,0.37,0.14)
Gaussian mixture = (22.14,25.93,29.58,35.07) —956,703 1,913,428 1,913,546 0.015
o = (2.24,2.15,3.84,8.28)
Blacks or African Americans
Weibull 0 =32.82,t =4.07 —113,158 226,320 226,461 0.100
Logistic n=29.38,s =3.77 —109,822 219,648 219,666 0.049
Gamma 6 = 20.08, ¢ = 0.67 —108,811 217,626 217,642 0.054
Inverse Gaussian = 30.03,6 = 600.59 —108,197 216,398 216,248 0.040
Log-normal level n=338,0 =022 —108,177 216,358 216,374 0.039
5-component 7 = (0.21,0.15,0.19,0.28,0.17)
Gaussian mixture = (22.93,26.07,29.49,33.18,38.25) —107,834 215,696 215,814 0.013
o = (2.47,1.80,2.32,4.53,9.59)
Asians

Weibull 0 =26.72,T =522 —13,904 27,812 27,824 0.109
Logistic i =2448,s =238 —13,302 26,608 26,622 0.042
Gamma 0 =33.81,a =136 —13,238 26,480 26,492 0.057
Inverse Gaussian n = 24.84,0 = 841.79 —13,175 26,354 26,333 0.047
Log-normal level n=23190 =017 —13,172 26,348 26,361 0.046
2-component m = (0.75,0.25)
Gaussian mixture n = (23.53,28.78) —13,129 26,268 26,301 0.019

o = (3.01,5.56)

Native Hawaiian or other Pacific Islander

Weibull 6 =3033,7 =4.63 —957 1918 1943 0.102
Logistic n=2739;s=322 —932 1868 1875 0.066
Gamma 0 = 2445 «a = 0.88 —922 1848 1855 0.072
Log-normal n=23310=020 —918 1840 1846 0.059
Inverse Gaussian n=27.92,0 =681.18 —917 1838 1823 0.060
2-component 7w = (0.54,0.46)
Gaussian mixture = (24.85,31.46) —916 1842 1861 0.034

o = (3.09,6.29)

American Indians

Weibull 0 =31.83,t =425 —19,483 38,970 39,035 0.095
Logistic n=2871,5s =349 —18,852 37,708 37,720 0.043
Gamma 6 =22.09,a = 0.76 —18,717 37,438 37,451 0.050
Inverse Gaussian i =29.24,0 = 640.01 —18,634 37,268 37,199 0.036
Log-normal level n=3350 =021 —18,629 37,262 37,276 0.035
3-component 7w = (0.37,0.49,0.14)
Gaussian mixture = (25.26,30.06,37.06) —18,598 37,212 37,265 0.021

o = (3.43,4.91,8.98)

groups. The second component in this mixture includes 25% of the population with mean
BMI of 28.78 indicating that less than 25% of Asians have BMI 30 and above. In fact, about
11% of the Asians have BMI above 30.

The best 3-component mixture for American Indians BMI has the following esti-
mated parameters: p©; = 25.26 (07 = 3.43), uy = 30.06 (0, = 4.91), and p3 = 37.06
(03 = 8.98). Results for this group could best indicate the advantage of using the best
(true) underlying distribution, that is, the Gaussian mixture, rather than the best single
component distribution model. Mean of the best single component parametric model for
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American Indians is slightly lower than the mean for Blacks or African American indicat-
ing that on average about 38% of people in this group has BMI above 30. What these results
are not telling us and what the results from the Gaussian mixture are telling us is that virtu-
ally all of American Indian population is affected by overweight and obesity, while there is
still a sizeable subpopulation of the Black or African Americans who are in normal range,
based on current definitions. While extreme obesity is more represented among the Black
or African Americans, the overweight and obesity public health problem among American
Indians is actually most acute.

Native Hawaiian and Other Pacific Islanders are the smallest ethnic/racial group. Due to
the sample size, only 2-component mixture is selected as the best model with p; = 24.85
(01 = 3.09), 2 = 31.46 (02 = 6.29). For this group, a single component Inverse Gaussian
model is slightly better than the Log-normal model. About 30% of Native Hawaiians have
BMI above 30.

4, Conclusion

True distribution of BMI, as an accepted or standard measure of obesity, is needed not
only to describe the variable and phenomenon properly, but to help analyze its underlying
causes in more complex, multivariate framework. Based on BRESS survey data, the BMI
of US adult population is best described by a 4-component Gaussian mixture model. This
model has the highest value of the log-likelihood function among all right skewed models
analyzed. A 4-component mixture model with different parameters also applies to popula-
tion of white people, females, and all regions based on the prevalence rate division. These
four components or subpopulations reflect heterogeneous characteristics of the popula-
tion. A 5-component mixture is the best model for fitting BMI data for Black or African
American population. The BMI for males and American Indians can be described using
3-component mixture. Finally, 2-component mixture fits BMI data for Asians and Native
Hawaiians. As the general population of BMI tends to shift over time in the upper tail, the
optimal number of components as well as the parameters of each component should be
tested with availability of new BMI data.

Describing prevalence of obesity based on true probability distribution of the BMI
enables us to analyze and determine underlying causes of BMI status for each subpopula-
tion, and in turn design more suitable and effective medical treatments or food and health
policy measures. The immediate convenience of ‘one size fits all’ medical treatments and
food and health policies is obvious for the health, nutrition or fitness practitioners and
policy makers alike. Yet the long-term inefficiency of measures that do not account for
diversity of underlying causes of overweight and obesity for different subpopulations is
likely to far exceed these short-term convenience-based advantages. Hence, it may be time
to reconsider the guidelines for how to classify population on obese, overweight, or nor-
mal based on BMI since the current standards are fairly dated and do not account for the
diverse underlying factors among different subpopulations that lead towards overweight
and obesity. Proposed method may add some complexity to the process, but it increases
probability of more accurate representation of prevalence of overweight and obesity, and
potentially enables us to identify more accurately the underlying reasons for it for vari-
ous subpopulations. This approach would inevitably lead to more diverse, and, hopefully,
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more successful treatment of this premier public health problem by both medical prac-
titioners and health and food policy makers. Finally, findings of the study are limited to
BREFSS survey data. In order to make this claim more general, it would be useful to pur-
sue future research and simulate data from different distributions base on different surveys
(NHANES, NHIS, BRFSS) or compare analyses from these three data bases.
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