11/22/2017 The Code4lLib Journal - Between the Sheets: a Library-wide Inventory with Google

Between the Sheets: a Library-wide Inventory with Google

When it comes to taking an inventory of physical items, libraries often rely on their traditional integrated
library system’s (ILS) a la carte add ons; outside vendors; or other possibly outdated, complex, and often
expensive methods. For libraries with shrinking budgets and other limited resources, high costs can put
these methods out of reach.

At the University of Dayton Libraries, we set out to develop an inexpensive and reasonably easy-to-use
method for conducting a library-wide physical item inventory. In this article, we explain a custom built
Google Sheets-based library inventory system, along with some code for the implementation of a
RESTful API (written in PHP) that interacts with our ILS. We will also explain our use of Google Apps
scripts in our Google Sheet, which are crucial to our systems.

Although this method used a specific ILS (Innovative Interfaces’ Sierra product) and custom-built RESTful
APIs, it may be possible to use similar approaches with other ILS software. Additional notes include areas
for improvement and recommendations for interoperability with other ILS systems.

by Craig Boman and Ray Voelker

Conducting a Library-wide Inventory with Google Apps

In the summer of 2015, the University of Dayton Roesch Library needed to scan, reshelve, reorder, or
restore item statuses for all of the books in our circulating library collection. The previous library-wide
inventory was conducted the summer of 2008 or “that summer when the library air conditioning went out.” At
that time, our predecessors used a portable Percon barcode scanner and barcode data was imported
through the ILS inventory module (then IlII's Millennium, now Sierra). Even when the shelves were scanned
in the right order and the Percon battery did not die, finding a computer with a serial port to get the data off of
it was not easy. Although there are certainly better upgrades available to older Percon scanners, in 2015 the
library did not have the budget to buy lots of devices for an inventory. In our department (Information
Systems and Digital Access), we did, however, have spare USB barcode scanners, some spare laptops, and
a handful of student workers we could hire.

To be entirely honest, we started our 2015 inventory with the question, “What if we use Google Sheets for
our library inventory?” Discussions of why and how you should do a physical library inventory (Sung,
Whisler, & Sung, 2009) and how you should avoid doing a physical library inventory (Loesch, 2011) all
served as evidence which encouraged us to further explore alternatives (like Sheets) for our new inventory.

We made a decision to explore a Google Sheets-based inventory based on the flexibility it would provide to
create better inventory data than most vendor-supplied inventory products; products which we, and many
other libraries, cannot afford. This article will not be a ROI study but more of a case study of the tools and
methods we used to conduct our own physical book inventory. It also should be clear that we are not
advocating this as the best way to conduct a library inventory; this is simply a method that we chose to use
at the time, and one that worked reasonably well for our defined goals.

Identifying Project Needs and Requirements

When we began thinking about doing a library-wide inventory of the University of Dayton Libraries’ public
collections we naturally started examining the tools that were available to us in the Integrated Library System
(ILS) in use at our institution. At the time of writing this article, that system was Sierra ILS. Thanks to the
2008 inventory, we had some documentation from that process to work with. As we examined the
documentation, we were quickly able to identify several problem areas with the methods and tools used for

http://journal.code4lib.org/articles/12783 1/13

11/22/2017 The Code4lLib Journal - Between the Sheets: a Library-wide Inventory with Google

that process. While we were both with the library during the previous inventory, we were in different roles at
the time and therefore not involved with the inventory planning process, so we were excited to take an
ownership role in this 2015 inventory. We wanted to get started with the process of streamlining the inventory
to make it more efficient right away.

The first thing that we noted from our previous inventory was that the method was slow, laborious, and prone
to scanning errors and data loss. The Percon barcode scanners used had to be of a very specific type, and
were, for all intents and purposes, pretty dumb devices. First, they had no way of telling the user the last
series of barcodes scanned. If the person scanning got distracted and lost their place scanning, they had no
way of knowing where to pick back up with scanning on the shelf.

Another downside was the small amount of memory built in for storing the scanned barcodes. This meant
that the data had to be “off-loaded” from the device frequently, often while scanning the middle of a range or
some other inopportune time. The task of moving the inventory data from the device to the ILS system had
to be done by a staff member—one with full permissions to edit and update records—and had to be done at
a workstation that had the ILS system client installed. This meant that capable staff had to be available at the
time any scanning was taking place to perform these importing and updating functions. Student workers had
to sit idly by and wait for these tasks to be completed before they could get back to their inventory scanning
work.

On top of these severe limitations, the scanners were unreliable; on several occasions—either through some
user error or malfunction of the scanner itself—entire scanning sessions had to be repeated, wasting time
and effort. We wanted something better, and we were determined to develop the tools and methods to make
it so.

After examining the previous methods used for conducting an inventory, we concluded that our needs could
be broken down into the following three categories :

1. Accuracy/Reliability: If what is on the shelf at the time of scanning is not accurately and consistently
captured and recorded, then what was the point of even doing an inventory? We also wanted to
minimize any chances of data loss and corruption. Additionally, we wanted to be able to quickly identify
any problems with the scanning process—in real time—if at all possible.

2. Speed: Time is a precious commodity, and we wanted to perform this inventory as quickly as we
possibly could. Since this was an academic institution, carrying out our work over the course of a
summer and finishing up before the start of the fall term was ideal.

3. Ease of use: We wanted to un-complicate the process as much as we possibly could for everyone
involved. For the individuals doing the scanning, it should be easy to do the scanning, see what was
scanned, and know what still needs to be scanned. Also, the individuals doing the scanning should be
able to do so with almost zero training. From the perspective of the library employees managing the
inventory, it should be easy to assign work, examine the accuracy of that work, and then finally act upon
that inventory data.

In order to successfully capture, examine, and act upon the inventory data, we felt that we needed to answer
two very important questions: first, how could we connect to the Sierra ILS to get synchronous data out
during our scanning process, and secondly, what was to be captured from the ILS for each scanned
barcode?

The How

http://journal.code4lib.org/articles/12783 2/13

11/22/2017 The Code4lLib Journal - Between the Sheets: a Library-wide Inventory with Google

In answering the first question, how, we knew that the Sierra ILS conveniently provides a method of
connecting to the back-end database by way of a feature called, “Sierra Direct SQL Access”. This feature
provides read-only access to the database tables by way of database table “views”, which expose the live
catalog data running on Sierra’s PostgreSQL database. While this data is read-only, it still provides us with a
great way to extract what we need from bibliographic and item record data associated with a barcode in real-
time. The real-time aspect is important if we are to consider the inventory process to be a “snapshot” of the
state of the shelf at the moment in time that we examined or inventoried it.

Since the database server runs the popular PostgreSQL object-relational database management system,
many different software libraries for connecting to this type of database exist for different programming
languages. This gave us a great deal of flexibility in selecting a programming language to script and process
the queries we needed to perform on the database. We picked the PHP language as we had a great deal of
background with the language, having done other development projects it.

The second step after getting the data out of the database, is getting the data into the spreadsheet. As
mentioned previously, Google Sheets can be augmented with Google Apps Scripts. This makes it possible to
create “triggered” events that can call additional custom functions to make external API calls; our custom
PHP RESTful API is one such API that, when called, queries the database and returns formatted results that
can be processed by Google Apps Scripts. We will discuss more specifics on these two scripts and how they
work together a little bit further into the article.

The What

As for the second question, what, we determined that the following data about the item would be essential
and should be recorded when each item was scanned:

= |ltem Barcode

Normalized Call Number

Item Location Code

Iltem Status Code

Check Out Status (date due)
With that data, we are able to identify and address several problems rather quickly.

First, by checking Item Location Code we were able to identify books that did not belong in the section, or
did belong but had incorrect information in the catalog. Some of the item record data was fixed as a result of
this discovery. With the Status Code we were able to flag items that have any status code other than “-”,
which in Sierra indicates that there is some other status other than Available. Items on the shelf should all

have an available status.

After a short period of testing, we later determined that some of the books on the shelves were still checked
out; checking the Check out status proved to be essential as part of this process as well. With Normalized
Call Number, we are able to sort the sheet either ascending or descending to determine the correct shelf
order of the items scanned and to pull items that did not belong in the range.

It is worth mentioning that using unformatted (or non-normalized) Library of Congress (LC) Call numbers in a
spreadsheet is problematic because they do not follow normal lexicographical sorting methods used in
spreadsheet applications like Google Sheets. In order to make LC call numbers alphabetically sortable, the

http://journal.codedlib.org/articles/12783 3/13

11/22/2017 The Code4lLib Journal - Between the Sheets: a Library-wide Inventory with Google

call numbers must be normalized. Normally, Sierra performs such a normalization—storing the value in the
database for easy retrieval—but there are certain circumstances where this may not be the case—when
retrieving call numbers directly from MARC fields for example. A possible solution to this problem is to
incorporate a function that filters the call number data, normalizes it, and then returns the normalized form to
our application. Our normalization function is available for those in need of such a feature.

The following additional data about items were also identified as being helpful to the inventory process:

Volume Number

Item Record Number

Title

Shelf Position

Date Scanned

Sheet Name (or Range Number)

Volume, Item Record Number, and Title come from the database. Shelf Position, Date Scanned,

and Sheet Name are produced by the spreadsheet itself. The entire query we developed to return all this
data can be found

here: https://github.com/rayvoelker/2015RoeschLibrarylnventory/blob/master/sgl/inventory_barcode_query.sql

Implementation and Scripts

Server Considerations

We decided to write the script to fetch the data from the database using PHP and that the script should act
as a RESTful API endpoint. This decision made it much easier to write the Google Apps Script as it has
simple functions built-in for interacting with RESTful APl endpoints. And since this APl is RESTful, that
meant that we needed a web server to host and execute the PHP. For that purpose, we chose Linux (Ubuntu
Server), the Apache HTTP server, and of course PHP, installed as an Apache Server Module. (if you have a
domain certificate in place, ports 80, or 443 will need to be open to the Internet so that Google services can
interact with the endpoint. Google has more information on this requirement.)

RESTful API Endpoint

We picked a RESTful architecture for our method of developing the script for a number of reasons. First, the
architecture makes it easy to test and use the script. Secondly, this is ultimately a web application, and as
such, certain components of the application (Google Apps Scripts for example), are designed to easily
interact with RESTful endpoints. As a quick example to demonstrate how this RESTful API functions, and
especially for those not familiar with the method: if we were to scan the barcode of an item on the shelf, we
would send the following HTTP GET request to the API. Since the request is a standard GET request with
no authentication, it is easy to test this in a web browser.

http://127.0.0.1:8080/?barcode=35054031024744

Figure 1. An example of a RESTful API HTTP GET request

The output of this GET request is in the JSON format, and would look similar to Figure 2.

http://journal.code4lib.org/articles/12783 4/13

https://github.com/rayvoelker/js-loc-callnumbers
https://github.com/rayvoelker/2015RoeschLibraryInventory/blob/master/sql/inventory_barcode_query.sql
https://cloud.google.com/appengine/kb/#static-ip

11/22/2017 The Code4lLib Journal - Between the Sheets: a Library-wide Inventory with Google

1

2 "barcode":'"35054031024744",

3 "item_record_num":"i9233953a",

4 "item_record_id": 450976172208,

5 "call_number_norm": "PZ 7 G127
6 "call_number_050": "PZ 7 G1273 GFk
7 "volume": null,

8

9

"location_code": "mdju",
"item_status_code": "-",
10 "best_title": "The graveyard book
11 "due_gmt": null,
12 "inventory_gmt": null
13 }

»

Figure 2. An example of the JSON response produced from the PHP-based RESTful API HTTP GET
request

A few things to note that are important about that script before we move on: first, we want to “sanitize” the
barcode input to be searched based on the type of barcode that is used at the institution. This is as simple
as limiting the length of input as well as the type of characters accepted as the “barcode” argument in the
HTTP GET request. If implementing this for another institution, we advise modifying the code to accept
barcodes that fit the description of those in use. The practice of input sanitization is much more important
when making updates—making modifications to a database or inserting new items for example—but is still a
good habit to maintain. Additionally, you may want to change the query for the non-normalized call number
(call_number_050 in the SQL query, and JSON results) to reflect local cataloging practices or to get the non-
indexed call number. Some Sierra ILS sites have reported that the call number may not appear in the
“call_number_norm” field; a support call to the ILS vendor may be required to remedy that.

Google Apps

The majority of the inventory was centered around Google Sheets and conveniently, our institution had
recently transitioned to using G Suite for Education (formerly called Google Apps for Education), which
included this easy-to-use spreadsheet tool. Using Google Sheets offered several benefits, including access
for every student, faculty and staff member from their University account and easy sharing options. This
made assigning spreadsheets to student workers a quick and easy task for the inventory coordinator. Lastly
—and perhaps most importantly—Google Apps Scripts effectively allowed us to construct our inventory
application almost entirely from within the Google Sheets tool—pretty powerful stuff!

As an added bonus, Google Sheets works well in “offline” mode. This is important, since taking a laptop and
USB scanner into the stacks and then losing wifi access still means that you will be able to complete the task
of scanning barcodes into the Google Sheet. Data placed into the spreadsheet are automatically synced to
the cloud when network access is restored. Unfortunately, this requires an additional manual step of having
to run a command from the Google Sheet that fetches the additional information from the ILS after re-
establishing a network connection. Luckily, that task is a relatively simple one, especially when compared to
the re-scanning that the previous inventory method often required. The “cloud-based” nature of Google
Sheets is also a positive as it helps to reduce the possibility of data loss as well as data corruption.

Google Apps Script

Google Apps Script, with its various custom functions, is the method that “triggers” the import of bibliographic
and item data on each barcode scanned into Google Sheets. Below we have crafted a simplified example of
the “onEdit()” trigger method that is assigned to a Google Sheet to demonstrate how we handle importing
data.

http://journal.code4lib.org/articles/12783 5/13

11/22/2017 The Code4lLib Journal - Between the Sheets: a Library-wide Inventory with Google

1 function onEdit(e) {

2 try {

3 var value = e.range.getValue();

4 var url = 'http://domain.edu/inve
5 + value;

6 // populate column B with the API
7 e.range.offset(0,1).setvValue('=\"
8

9 // make the API call, and then ps
10 var result = UrlFetchApp.fetch(ur
11 var json_data = JSON.parse(result
12

13 // populate column C with the tit
14 e.range.offset(0,2).setvValue('=\"
15 json_data.best_title.replace(/"
16 } // end try

17

18 catch(e) {

19 // TODO:

20 // something more to catch errors
21 } // end catch

22 3

>

Figure 3. Google Apps Script for the Google Sheets onEdit trigger

In this simplified example, the Google Apps script reads the value from the cell when data is placed there,
forms the URL string (appending that cell value as the argument), then passes it to the built-in Apps Script
service UrlFetchApp. This service then interfaces with our PHP RESTful API operating on our web server
which produces the JSON response. The data is then parsed into the “json_data” variable where part of it
(“json_data.best _title”) is then finally output back to the spreadsheet.

When scanning a single barcode (R008818288 in the example) into the sheet (with the above trigger
enabled for the sheet), we would see the two cells (under column B and column C) populated with data as
demonstrated in Figure 4.

A B &
1 RO0OB518288 http:/fdomain. edu/inventory_apifvl.O/barcode. php?barcode=R00581582858 Report of the New ’

Figure 4. An example of data output to a row in Google Sheets
Figure 5. Example of scanning process 2015 Roesch Library Inventory : Scanning

In addition to the OnEdit method discussed above, we also used the Google Apps script to perform a handful
of other important inventory functions as well. These functions included a method of “fixing” missing column
data (for when the application was operating in “offline mode” and not collecting additional bibliographic and
item data from the external API). This method was often used by the staff member after the student
submitted the finished sheet of scanned barcodes, by selecting this function from a special inventory menu
from within the sheet itself, as illustrated in Figure 6.

http://journal.code4lib.org/articles/12783 6/13

https://archive.org/details/scanning_201708
http://domain.edu/inventory_api/v1.0/barcode.php?barcode=

11/22/2017 The Code4lLib Journal - Between the Sheets: a Library-wide Inventory with Google

d-ons Help Inventory | Last edit was 4 minutes ago

m
4

= | Froduce Reshelve Sheet

Check Sort Order

L=
T

Resize Inventory Sheet Columns
Fix Missing Column Data

version 1.6

Figure 6. An example of the menu produced by the custom Google Apps Script

A second custom function, called “Produce Reshelve Sheet” (seen as a menu option in Figure 6) would
produce an additional sheet in this spreadsheet based on two sets of data contained in separate sheets: the
inventory “snapshot” and the inventory “shelflist”. The “snapshot” consists of our scanned item information,
and the “shelflist” consists of a list of items we expect to be on the shelf. That is to say, given the Item
Location Code and the start and end Normalized Call Numbers we produce an SQL query
(https://github.com/rayvoelker/2015RoeschLibrarylnventory/blob/master/sql/create_shelflist.sql), importing
the results into the spreadsheet.

Once that data is imported into the sheet and scanning on the main inventory sheet is completed, running
the “Produce Reshelve Sheet” function would take these two sets of data and perform something similar to
an SQL join, matching the items from “shelflist” (left) with the items from the “snapshot” (right). This will tell
us what items we found in our shelflist or items we expect to be on the shelf, as well as which items we did
not find on our scanned shelf. Figure 7 should help to further illustrate the concept. The overlap in orange in
the second image represents the items appearing in both lists and therefore “found”.

Sierra Data Inventory Items
(start and end (scanned items
call numbers) on the shelf)

Sierra Data Inventory ltems
(start and end (scanned items
call numbers) on the shelf)

http://journal.codedlib.org/articles/12783 7/13

https://github.com/rayvoelker/2015RoeschLibraryInventory/blob/master/sql/create_shelflist.sql

11/22/2017 The Code4lLib Journal - Between the Sheets: a Library-wide Inventory with Google

Figure 7. An example of the left join performed by the script to help users determine what items should and
should not be on the shelf

Figure 8. Creating and sorting the reshelf sheet

Lastly, there is an additional custom function that can be run from Google Sheets called “Check Sort Order”.
The intended use of this function is to create visual indications on the “reshelve” sheet when items are on the
shelf in incorrect shelf order based upon the item’s assigned call number (a demonstration of this can be
found in the same video in Figure 8, starting at the 30 second mark.

The full Google App Script that we used in this project is included at the end of this article. For more
information on using Google Apps Script and setting up triggers please see the Google Apps Script
documentation.

Extending Google Sheets and Getting Started

With the web server set up, the types of data to pull identified, and the Google Apps script ready, we were on
our way to getting this inventory started. Soon there would be large amounts of inventory data (this is sort of
the point though, is it not?). Again, Google Sheets shines in its ability to organize; we were able to maximize
features available to us through Google Sheets to help us extend the use of the application to organize all of
our scanned inventory data.

Google Sheets has seemingly endless methods of transporting inventory spreadsheet data between different
sheets. Every Google Sheet has a sheet ID in the URL string, evident in Figure 9 between the final set of
forward slashes:

https://docs.google.com/spreadsheets/d/1nJdQ06ZFV0jaz5bjwyLZumRRA44W4I1dnqP60RLPLMS /

Figure 9. An example of the Google Sheet ID, and the method of linking to it

Using this sheet ID, we built a Google spreadsheet-based inventory data dashboard which aggregates
metadata from all of the Google Sheet ranges currently being scanned into one spreadsheet, creating a
simple user interface in the process. In our Inventory Dashboard, we were able to assign ranges to students
in one column, and note when the range scanning started and ended in another column. Additionally, using
sheet IDs, we could view the total number of books we anticipated in a range (based on books between the
start and end call number range pulled from our ILS), and compare that against the actual number of
scanned books on the range. While the ranges were scanned, we also counted item statuses that were
anything other than available (“-” in our case). The moment the range had been completely scanned, we had
a count or report of exactly how many books needed attention, and the specific types of statuses
encountered in that range.

Early versions of our Inventory Dashboard were simple. Through various iterations, our dashboard
developed into what it is today: a comprehensive and practical at-a-glance workflow, management, and
reporting tool (Figure 10).

http://journal.codedlib.org/articles/12783 8/13

https://archive.org/details/reshelve_sheet_and_order
https://archive.org/details/reshelve_sheet_and_order
https://developers.google.com/apps-script/

11/22/2017

=iferror (IMPORTRANGE

A

pulled
pulled
pulled
pulled
pulled
pulled
pulled
pulled
pulled
pulled
pulled
pulled
pulled
pulled
pulled
pulled
pulled
pulled
pulled

Range
rc6-01
re6-02
re6-03
rc6-04
rc6-05
1c6-06
rc6-07
rcb-08
rc6-09
0

i
b

Ic

o
—
=

co-

(s3]
=
%]

rco-

ﬂ
]

l.:-_)
—
¥~}

ﬂ
=]

l.:-_)
—
.

ﬂ
(]

l.:-_)
s
[

ﬂ
(]

'.ITJ
e
(=3}

ﬁ
[&

'.ITJ
k.
=i

ﬁ
(=l

'.ITJ
=y
=]

ﬁ
(=l

'.ITU
=
(=}

Assignment
Ty
Ramanuja
Santhoshini
Ramanuja
Santhoshini
Sree

Sree

Sree
Santhoshini
Ramanuja
Santhoshini
Ramanuja
Santhoshini
Ramanuja
Santhoshini
Ramanuja
Ramanuja
Ramanuja
Ramanuja

, "inventory!h

The Code4lLib Journal - Between the Sheets: a Library-wide Inventory with Google

"y my
N1"3,8)

D E

Started

71372015 TM5/2015 A

7152015 71572015 B

7152015 7152015 B

71572015 7T16/2015 B

715/2015 TM5/2015 BD
T715/2015 7/15/2015 BF
715/2015 7/16/2015 BF
716/2015 7/16/2015 BF
T15/2015 7115/2015 BO
71572015 716/2015 BL
7162015 716/2015 BP
7162015 7TN6/2015 BR
THT2015 772015 BS
1172015 TN72015 BS
TM7/2015 7/21/2015 BS
TM7/2015 7/21/2015 BT
T121/2015 7121/2015 BT
112112015 71222015 BV
112212015 7122/2015 BX

Finished Ran

ge Start Range
131 M67 15%1 B 355
395 G15 B 945
945 =523 p4 B 3312
3312 ES BD 632
632 B3b 2010 BF 176
17& H36 2001 BF 575
575 A3 54313 BF 698
698.8 M5 M2 BJ 1401
1401 K73 2007 BL 626
626.5 B37 2007 BP 605
605 088 B73 199BR 162
162 R6 1857 BS 410
410 V452 v 47 BS 1199
1199 B3 555 2002 BS 2575
2575.3 M4 1966 BT 121
121.2 B77 BT 810
810.2 H58B BV 4011
4011.5 B3B8 1990 BX 850
850 Me7 BX 1535

(]

Gl44
523 L7 1962
AZ 15887
A413

H35 1950

A3 837 1973

.8 M5 L3

K44 2002

.4 Ced 2013

H48 Z85 1530
R6 1857
V452 v 46

B3 K57

.3 LB9%13 1989
.2 B57 2000
.2 H46 1989
.4 He4 2005

M5 1911
BS

In Range

Figure 10. Google Sheets-based dashboard for location “rc6”

3887
3734
3645
1599
1850
1841
4018
4236
4866
4379
3917
3179
3485
4276
4387
4596
4588
3509

Scanned

3571 | 3436.|

3741
3649
3563
1536
1594
1744
3881
4135
4740
4213
3714
3216
3402
4145
4166
4424
4394
3307

In Figure 10, you can see one of the formulas which is using the sheet ID stored in cell T2 to count the total

rows of data in column N from the sheet named “inventory”. At a glance, we can see that the total number of
scanned books in range rc6-01 has 3436 books, but we were expecting 3571 books. In some cases you may
end up with more books in the range than you expected, for various reasons.

Continuing into the spreadsheet (Figure 11), we can see more specific information about the range rc6-01

starting in column J:

http://journal.code4lib.org/articles/12783

9/13

11/22/2017 The Code4lLib Journal - Between the Sheets: a Library-wide Inventory with Google

=countif(IMPORTRANGE(T2, "inventory!E:E"), "m")
A : E J 3 L M M o P a 2
Pulled from Checked- outside of
Range Assignment eachrange outitems mmissing s onsearch @ off campu r repair % billed z claims retu range
pulled |rc6-01 Ty 21 Bl I3.| 1] 1 8 1
pulled [rcB-02 Ramanuja 14 2 2 4] 8 8 8
pulled rc6-03 Santhoshini b | | 4] |]]
pulled rc6-04 Ramanuja 5 8 1 1] 8 8 8
pulled rcB-05 Santhoshini 7] 2]]]]]
pulled |rcb-06 Sree 10] 2 3]]]]
pulled |rc6-07 Sree 18 1 2 3 1 1]]
pulled |rc6-08 Sree 18 1] 1 1 3]]
pulled rc6-09 Santhoshini 21 8 8 3] a 1 2
pulled rc6-10 Ramanuja 21 8 8 5] a 8 2
pulled rcB-11 Santhoshini 16 4 2 2] 8 8 8
pulled rc6-12 Ramanuja 34 1 6 4] 2 8 8
pulled rcB-13 Santhoshini 18 8 2 5] 8 8 8
pulled rcB-14 Ramanuja 29 8 B]] 2 8 1
pulled rcB-15 Santhoshini 15 8 1 3 a 1 8 8
pulled rc6-16 Ramanuja 25 3 2 4] 1 1 8
pulled rc6-17 Ramanuja 45 9 3]] 2 8 8
pulled rc6-18 Ramanuja 34 2 7 g] 3 8 1

Figure 11. Google Sheets-based Inventory Dashboard for location “rc6”; additional columns shown

In Figure 11, we can see from column L and the formula displayed at the top of the image we are again
using our sheet IDs stored in column T in the dashboard to count the total number of books with a status of
missing or “m” in column E of the sheet called “inventory”. Similarly, all columns on this dashboard between
J-Q are using some combination of a spreadsheet function, countif(importrange()), to create reports about
our inventory data while we are scanning, without delay or manual intervention. We can then use these data
to justify to our stakeholders the value of our inventory by showing that we pulled a specific number of books
from each range for various reasons including: items had bad status codes, were not in correct locations,
etc.

Google Sheets Limitations

Using our Inventory Dashboard to manage inventory workflows and create post-inventory reports is not
without some limitations. To allow one Google spreadsheet to import data, or in any way access data from
another Google spreadsheet, Google requires spreadsheet users to grant permission to access data stored
in another Google spreadsheet. There may be a way to script this permission-granting using Google app
scripting, but at the time of our inventory we were manually interacting with a row which contains an
importrange() formula to permit it to access another spreadsheet’s data. For other cynical thoughts about
Google’s use of this permission feature, see also: any Google spreadsheet support forum.

Additionally, when we conducted our inventory, we manually created every Google spreadsheet for the
project. We had 150 ranges (3000-5000 books each) for which we needed to create a spreadsheet for each
range, and put that sheet ID into our dashboard to pull in data from those inventory spreadsheets. In our
case, with a brief bit of instruction, our fantastic student employees were quickly trained to make a copy of a
previous range’s spreadsheet they had just finished and use it to continue scanning the next range. A
solution to consider for next time would be to create a Google Apps script that would create a new
spreadsheet and set it up automatically.

http://journal.code4lib.org/articles/12783

10/13

https://support.google.com/docs/answer/3093340?hl=en

11/22/2017 The Code4lLib Journal - Between the Sheets: a Library-wide Inventory with Google
Getting Student Workers Involved

In the course of a library inventory, it may be important to augment the actions of library staff with help from
library student employees. When training library students it is important to anticipate the minimum level of
knowledge necessary to successfully scan and reshelve books. Below are some recommendations for
training students, in case it is helpful:

= Basic call number training—without this training, books may be pulled and reshelved again in similarly
incorrect locations, making a follow-up inventory necessary. In our case, we had the advantage of being
able to use circulation students already familiar with re-shelving

= Shelf orientation introduction— even after training students, within the first hour we observed a student
scanning books in the wrong shelf-order into the spreadsheet. Quickly, we were able to take corrective
action, which potentially saved us large amounts of additional work.

Inventory Progress

Running a library wide inventory is a major project. At our peak, we managed four student employees over
three months working thirty-five hours each on average, or 140 total hours per week. Coordinators of
inventories should not underestimate the amount of work that will go into an inventory or the variability of
student worker progress speeds. The transparency of Google Sheets may help mitigate this variability by
encouraging slower students to emulate the pace of their peers as spreadsheets are populated.

Post-Inventory

Resolving Bad Statuses

Just because your library is done scanning books in a range, does not mean you are done with your library
inventory. After a range of books has been scanned, some information in our ILS had to be updated starting
with the incorrect item record statuses.

Any item found to have a bad status—one without a status of “-"—was routed to the correct staff in the
library who was best suited to resolve the issue. In some cases, no record was found in our ILS because we
had deleted the bibliographic or item record many years prior, requiring additional cataloging. Other status
issues included incorrectly shelved consortium books and books requiring reshelving in the correct order.

Getting Data Back into the Sierra ILS

Another large part of our post-inventory processes included importing the scanned barcodes into our ILS and
applying an inventory note. This inventory note—applied as a global update—included where the item was
scanned last (which was also the range’s Google spreadsheet title). We also globally updated the inventory
date on our item records, so we know when the book was last inventoried. An added benefit of the inventory
note field is that if, for whatever reason, the book was not pulled from the shelf during our inventory, all
library staff had an idea of where the book was last inventoried and could reference the Google Sheet to find
the location in the range where the book was scanned.

As an Innovative Sierra library, getting our inventory data into Sierra was as simple as importing a list of item
record numbers as a Review File. We created a PHP-based web tool to convert our list of scanned
barcodes, range by range, into item record numbers. This web application can be found in our git repository.

The web tool queries Sierra ILS and returns the list of item record numbers. In future iterations, we will pull in
item record numbers and corresponding bibliographic record numbers for each book scanned in a

http://journal.code4lib.org/articles/12783 11/13

https://github.com/rayvoelker/DIY_API/tree/master/code_examples/translate_barcodes

11/22/2017 The Code4lLib Journal - Between the Sheets: a Library-wide Inventory with Google

spreadsheet. There has been some discussion of Sierra allowing for the importing of barcodes directly as a
review file in future release updates, but this is not possible in Sierra v3.1, which is the latest version of the
software at the time this article was published.

Communication Concerns

Similar to the conclusions reached by Kohl, Bénaud, and Bordeianu (2017), communication will always be
an issue in library inventory projects. In our case, we did notice that although we were communicating well
with staff in other areas, the impact of the inventory was not always communicated well to student
employees who were responsible for shelving books. More information could have been communicated by
the inventory coordinator to student employees directly, informing them that their reshelving work would
increase dramatically during the inventory.

Additionally, a primary goal of our inventory was to communicate our progress and our findings to
stakeholders before, during, and after the inventory. Even though this should be obvious, we needed to
collaborate closely with our library technical services and access services (circulation) to process changes to
our books. Overall, communicating our progress to our library community helped the overall project go more
smoothly, and avoided stepping on any metaphorical toes.

Conclusions

Although our method worked reasonably well for our staff and the needs of the University of Dayton libraries,
the needs of other libraries may be different. Having said that, we have presented a method which should be
easily transported between libraries. We hope to encourage other libraries, regardless of ILS vendor, to
consider the benefits described when using Google Sheets for a library inventory. As libraries continue to
share methods like these, we can all benefit from local solutions moving into collaborative, open source
projects. If you would like to collaborate on improving our processes, please reach out to us.

As promised, the scripts used in this project, as well as a short presentation that was prepared for OH-IUG in
2015 can be found in the following GitHub repository.

Videos demonstrating this process can also be found in the Internet Archive.

Thanks and Acknowledgements

We would like to thank the University of Dayton Roesch Library and our supervisor at the time of this
inventory, Fran Rice, for allowing us the opportunity to develop this method, and carry it out. Ray Voelker
would like to thank everyone at Roesch Library who had to put up with him during the development of this
project. Also we would like to thank all of the student workers whose patience with us helped make this
project possible; they did all the heavy lifting too.

About the Authors

Craig Boman (bomanca@miamioh.edu) is an Assistant Librarian and Discovery Services Librarian at Miami
University libraries. Previously he was at the University of Dayton Libraries for 7 years, most recently as the
Application Support Specialist. Additionally he is a Ph.D student in higher education leadership at the
University of Dayton. Read more at his website: https://craigbhoman.github.io/

Ray Voelker (ray.voelker@gmail.com) is currently the ILS Developer and System Administrator for the Public
Library of Cincinnati and Hamilton County. He was previously with the University of Dayton Roesch Library

http://journal.code4lib.org/articles/12783 12/13

https://github.com/rayvoelker/2015RoeschLibraryInventory/
https://archive.org/details/code4lib_google_sheets_inventory
mailto:bomanca@miamioh.edu
https://craigboman.github.io/
mailto:ray.voelker@gmail.com

11/22/2017 The Code4lLib Journal - Between the Sheets: a Library-wide Inventory with Google

for nearly 17 years, where he more recently served a role as Application
Developer. https://github.com/rayvoelker

References

Kohl, L., Bénaud, C., & Bordeianu, S. (2017). Finding Shelf Space in an Academic Library: A Multifaceted
Approach. Technical Services Quarterly, 34(3), 268-282. doi:10.1080/07317131.2017.1321378

Loesch, M. F. (2011). Inventory Redux: A Twenty-First Century Adaptation. Technical Services Quarterly,
28(3), 301-311. doi:10.1080/07317131.2011.571636

Sung, J. S., Whisler, J. A., & Sung, N. (2009). A Cost-Benefit Analysis of a Collections Inventory Project: A
Statistical Analysis of Inventory Data from a Medium-sized Academic Library. The Journal of Academic
Librarianship, 35(4), 314-323. https://doi.org/10.1016/].acalib.2009.04.002

http://journal.code4lib.org/articles/12783 13/13

https://github.com/rayvoelker
https://doi.org/10.1016/j.acalib.2009.04.002

