

SENIOR DESIGN PROJECT FINAL REPORT:
ADAPTING A PARKER PROPORTIONAL VALVE
FOR USE WITH A FESTO HYDRAULIC TRAINER

SPONSORED BY:

EDISON STATE COMMUNITY COLLEGE

TEAM MEMBERS:
JAMES CLEMENTS

AUDREY FIELDS
LUKE HOUSE

DAVID POEPPELMAN

ENT 497/498
SENIOR DESIGN

PROFESSOR ROBERT SPECKERT
May 7, 2020

STATEMENT OF PURPOSE (EXECUTIVE SUMMARY)

The intent of this project is to create a lab for demonstrational purposes in Edison’s
Hydraulics & Pneumatics​ ​course. The lab will clearly demonstrate to students the function of a
proportional valve, and how a proportional valve can be used in conjunction with a PID
controller to maintain an RPM for a hydraulic motor under varying loads.

Goals:

❖ Control a proportional directional control valve, using a PID controller, to adjust
the valve’s position, resulting in the change of the hydraulic fluid flow rate to the
motor.
➢ The tachometer system will measure the RPM of the hydraulic motor and

feed this information back to the PID controller.
❖ Demonstrate compensation of the hydraulic system when a load is applied to the

hydraulic motor.
➢ A physical braking system will be implemented to apply a load to a disk

attached to the motor’s shaft.
❖ Record the data of system input and output responses to provide a method for the

class to analyze lab results.
❖ Provide diagram schematics for future users to easily be able to set up,

disassemble, or add to the system in the future.
❖ Produce a system that is safe to use with no exposed moving parts or ‘pinch

points’. The wiring will be properly insulated and directed, as to not interfere with
the function of the mechanical components.

❖ Build a project with the lowest cost possible.

In pursuit of this objective, we will also attempt to create a troubleshooting manual and
lesson plan centered around our system. The troubleshooting manual will allow our system to be
easily fixed, if necessary. The lesson plan will help with the integration of our system into the
classroom environment; and it will assist the Hydraulics & Pneumatics​ ​professor, Dave Barth, in
teaching with our system. This addition will also allow students participating in the lab to
broaden their knowledge and understanding of hydraulic components and controls used in
industry.

1

CONTENTS

STATEMENT OF PURPOSE (EXECUTIVE SUMMARY) 1

CONTENTS 2

TABLE OF FIGURES 4

SCOPE AND METHODOLOGY 5

RESEARCH 6
DECISION MATRICES 6
MICROPROCESSOR 7
LED AND PHOTODIODE RESEARCH 8
TACHOMETER 10
PID CONTROLS 11
BRAKE SYSTEM 13
PROPORTIONAL VALVE CONTROL 15
VALVE BLOCK / MOUNTING 19
ARDUINO PROGRAM 20
HMI / COMPUTER APPLICATION 22
SAFETY 24

EXPECTED FINDINGS 25
MICROCONTROLLER 25
TACHOMETER 25
PID CONTROLS / PROPORTIONAL VALVE CONTROLS 26
GUI PROGRAM 26
BRAKE SYSTEM 26
BILL OF MATERIALS/ COST ESTIMATES 28
HYDRAULIC VALVE BLOCK/ MOUNTING METHOD 29

COVID-19 COMPLICATIONS 30
ENCODER 31
VALVE CONTROL 31
ARDUINO 32
GUI 32
CUSTOMER CONSULTATION 33
TROUBLESHOOTING MANUAL/ LESSON PLANS 33

CONCLUSION 33

2

REFERENCES 35

APPENDICES 37
Appendix A: Gantt Chart and Group Schedule 37
Appendix B: Proportional Directional Valve Specifications 40
Appendix C: 3D View of Proportional Valve 46
Appendix D: Arduino Uno R3 Schematic 47
Appendix E: Encoder Data Sheets 48
Appendix F: Individual Group Member Decision Matrices 50
Appendix G: Additional Figures 54

3

TABLE OF FIGURES

Figure 1: Averaged Decision Matrix 6
Figure 2: Raspberry Pi 7
Figure 3: Arduino UNO 7
Figure 4: Control Boxes for Festo Hydraulic Trainer 8
Figure 5: LED Dimensions 9
Figure 6: 3D Printed Housings for Tachometer Components 9
Figure 7: 3D Printed Housings for Tachometer Components with Support Ribs 9
Figure 8: Tachometer Wiring Diagram 11
Figure 9: PID Controls 12
Figure 10: Caliper-Style Bicycle Brakes 14
Figure 11: Brake Mounting Plate 15
Figure 12: Valve Pin Layout 16
Figure 13: MOSFET Module Schematic 17
Figure 14: MOSFET Module 17
Figure 15: LM741 Electrical Schematic 18
Figure 16: L298 electrical schematic and picture of L298 module board 18
Figure 17: Electrical Schematic for the control box 19
Figure 18: Finished Valve Mounting Block 20
Figure 19: Servo Star UI 22
Figure 20: Initial Graphical User Interface Layout 23
Figure 21: Brake System Sketch 27
Figure 22: Festo Hydraulic Motor w/ Flywheel 27
Figure 23: Festo Hydraulic Trainer 27
Figure 24: Valve Mounting Block Blueprint 30
Figure 25: Proposed Control Boxe interface 32
Figure 26: Original System Build Sketch 54
Figure 27: Festo Hydraulic Trainer 54
Figure 28: Parker Proportional Valve 55
Figure 29: Mounting System for Festo Hydraulic Trainer 55

4

SCOPE AND METHODOLOGY

The purpose of this project is to adapt the Parker D1FPE50BA9NB00 Proportional Valve
(Appendix B) for use with the Festo Hydraulic Trainers at Edison State Community Colleges for
future use of students taking the Hydraulics & Pneumatics​ ​course (1). This project will consist of
a proportional valve controlled by a variable voltage source made from a constant 24V power
supply. The valve will control a hydraulic motor, which will use an encoder to monitor the motor
RPM. Our group will set up data acquisition to display a command signal and a system response
using an Arduino paired with a connected PC. The project will use a braking system to add load
to the motor to induce drag, which will be displayed on a screen connected to the sensors for the
project. We will add a closed loop control into the system by allowing the user to set PID
parameters. This will allow us, for example, to maintain RPM of the motor under load by
calculating and raising the voltage delivered to the valve to an appropriate amount.

Goals:

● The proportional valve will be mounted to the trainer via the slotted mounting
board.

● The proportional valve will utilize closed loop feedback.
● The valve will drive a hydraulic motor.
● The hydraulic motor will have friction-based caliper-style brakes for creating drag.

The brakes will be used on the flywheel, which will be attached to the end of the
motor shaft.

● A sensor will be used to determine the RPMs of the motor and will be utilized to
provide feedback. This will allow the voltage supplied to the valve to be shifted in
order to maintain RPMs under variable motor loads and vice-versa. The RPM
sensor will be Arduino-based and will be built and tested by the group.

● A custom housing for the RPM sensor will be designed and made by the group
members.

● An Arduino will be used to analyze sensor output and communicate with the GUI
program, located on a separate PC.

● A program will be created to display voltages applied to the valve, RPM of the
motor, the load applied to the motor, etc. This GUI program will be modeled after
the ServoStar program, as requested by Dave Barth.

● The program will use a PID controller to create a closed feedback loop. (Arduino,
Raspberry PI, etc.).

● The program will display gathered/calculated data in graph form within the GUI
program.

5

● A Diagram/Schematic/Troubleshooting Manual will be created for future users to
easily be able to set up and tear down the system.

● Safety will be paramount - no exposed moving parts or ‘pinch points’. Wiring will
be properly insulated and directed as to not interfere with the function of the
mechanical components.

To accomplish the goals listed above, a number of factors had to be considered to deliver

a quality result, while keeping costs at a minimum. In order to come up with a more accurate
project timeline, a variety of research had to be conducted.

6

RESEARCH

DECISION MATRICES

See “Appendix E” for individual group member Decision Matrices.

Figure 1: Averaged Decision Matrix

Our group began the semester unsure of which project to choose. We initially came up
with 7 project ideas, but couldn’t come to a conclusive answer about which project to choose. As
a group, we decided to complete individual decision matrices and met the following week with
our decision matrices completed (see Appendix E for individual Decision Matrices). We then
averaged our matrices together and concluded that the highest-scoring project would be the one
we chose, as shown in Figure 1. The Edison Proportional Valve Project came out on top with
124 points. We can attribute this to the overall low cost of the project, the complexity and wide
range of skills required to complete the project, and the scope that would leave all four of us with
plenty to work on during the entire course. We communicated our decision to Dave Barth at
Edison, our customer representing Edison State Community College for this project, and
expressed to him that we would like to take on his project for ENT497 and ENT498.

7

MICROPROCESSOR

Research began on the microprocessor for our project and was largely conducted using
sources from the internet, as well as several labs from ongoing alternate courses. Research
initially began based on the control system or controller that the group had designed to use for
this project. There were two target subjects: an Arduino Uno and a Raspberry Pi.

 ​ Figure 2: Raspberry Pi Figure 3: Arduino UNO

The team then spoke to the client to see if either of these devices were readily available.
The resulting information was that the client had one Arduino Uno and an older Raspberry PI of
an unspecified model. The Arduino Uno is a microcontroller board design, based on an
ATmega328 that has 14 digital input and output pins, with 6 pins being Pulse Width Modulation
(PWM) enabled. The Uno also contains 6 analog input pins and a USB B connection port for
both programming and power connection (9). There was a lack of information about the specific
model of Raspberry PI the client possessed; thus, the group was not confident that the necessary
functionalities would be available. Upon researching the Arduino Uno and considering the
familiarity of all members of the group with said microcontroller, we decided in favor of the
Arduino. Since the microcontroller should be protected against the oil present in and on most of
the Festo Didactic Hydraulic Trainers, a housing proved necessary for the safety of the system.
Fortunately, the client, Dave Barth, possessed a blank housing normally used for electronics (see
Figure 4). The box we received could be mounted in the same way as the boxes shown, keeping
the Arduino and any other necessary electronics well out of the danger zone.

8

Figure 4: Control Boxes for Festo Hydraulic Trainer

LED AND PHOTODIODE RESEARCH

One of the issues that cropped up during the tachometer research and design was the lack
of datasheets and dimensions provided with the components. Despite repeated attempts to
communicate with the retailer, no response was ever received. In order to prototype the
tachometer housing, dimensions and possible tolerances were needed. A quick search on Google
brought up hundreds of images of 5mm LEDs and their associated dimensions. Figure 5 below
contained the largest tolerances. Picking the design with the largest tolerances was deemed to be
the best option because the parts were low quality. The wavelength of light chosen was 940 nm
(in part because of the abundance and low cost of 940 nm wavelength parts). Human eyes alone
are not able to perceive whether the infrared LED is working. In order to test the operation of the
LED, a photoresistor that had the capability to react to infrared light was used in conjunction
with an Arduino Uno, confirming that the LEDs were working. For additional confirmation, a
smartphone front-facing camera was used that did not utilize an infrared filter. With confirmation
that the components themselves would work, the dimensions given were used to make the
prototype of a sensor housing shown in Figure 6. An updated version of the housing in Figure 7
was later modeled with ribs for strength, along with the sensor itself.

9

Figure 5: LED Dimensions

Figure 6: 3D Printed Housings for Tachometer Components

Figure 7: 3D Printed Housings for Tachometer Components with Support Ribs

10

TACHOMETER

The initial research for the tachometer included two types: contact tachometers and
optical tachometers. A third type of tachometer using proximity sensors was also available, but
was immediately decided against, due to concerns about collisions, especially in the context that
students without knowledge of proximity sensor function would be in contact with the system.
Physical tachometers are mechanically connected to a shaft or rotating object, while optical
tachometers use light in conjunction with various algorithms and calculations to measure
revolutions. The immediate research involving contact and optical tachometers was a simple
search on Amazon.com. After deciding that both options could be affordable as handheld
devices, research on the integration of handheld tachometers and an Arduino Uno was started.
No adequate results were found for handheld tachometer integration. A search on both Amazon
and McMaster Carr showed that standalone integratable tachometers are very expensive;
however, multiple tutorials and videos on how to create a tachometer using infrared LEDs and
phototransistors were available.

With a lack of viable methods to integrate handheld tachometers into the Arduino and the
unacceptable expense of standalone tachometers, the only options available were using an
encoder or an optical sensor to create a tachometer. It was decided that using an optical sensor to
detect time between pulses and calculate the number of revolutions was the best choice. Since
this sensor was to be used in an educational capacity and exposed to students, the sensor itself is
at high risk of breaking. With this in mind, the decision was made to create a sensor from scratch
using 5 millimeter infrared LEDs and phototransistors/photodiodes. Several of the team members
had a class that had used a phototransistor and an infrared LED to make an optical tachometer,
which made the decision lean toward using phototransistors. However, due to a mislabeling issue
on Amazon.com for the parts ordered, photodiodes were received and subsequently chosen for
the optical tachometer. A tutorial on how to create an optical tachometer using photodiodes
could be found on Instructables.com. While there were several ways to create the optical
tachometer with a photodiode, the circuit shown below allows the potentiometer to be adjusted to
account for lighting differences in the environment (11).

11

Figure 8: Tachometer Wiring Diagram

However, after verification and completion of a prototype using the circuit in Figure 8, it

was discovered that none of the eight remaining photodiodes were viable. With this in mind, the
initial reaction was to use an optical sensor that could be hooked directly to the Arduino to avoid
further unnecessary costs. The sensor chosen was the Taiss ​E3F-DS30C4​ diffuse photoelectric
optical sensor for 6-36 Volts DC, which also had the ability to run at the Arduino’s 5V capacity.
There were concerns about the sensitivity of the sensor, however, because during testing, the
sensor had a difficult time distinguishing reflective and non-reflective surfaces. After further
discussion, it was decided that an encoder was the best choice. This would eliminate the
uncertainty around lighting conditions and mounting. The wide availability of incremental rotary
encoders at varying pricing, made incremental rotary encoders the obvious choice. Due to the
cheap component failure while creating the previous iteration of sensor, using a very cheap
encoder did not seem like a good idea. With the client running engineering programs at Edison
State Community College and receiving donations of all sorts of salvaged electronic
components, we approached him about whether he had fitting components. Luckily, there was an
adequate encoder available from the selection presented. The encoder chosen was an RSE
Optical Incremental Shaft Position Encoder that had an output of 60 pulses per revolution (PPR).
While the encoder required more work with regards to mounting and implementation to sense
revolutions per minute, the lack of cost and ability to output signals 60 times per revolution with
minimal directional change issues was preferred.

PID CONTROLS

One of the specifications from the client was that the proportional valve should have PID
controls to compensate for when a load is applied in order to maintain RPMs of the flywheel.
PID controls work using loop feedback to calculate the difference between a measured value and
target value, then adjust the system to reduce the difference. There are three types of control that

12

can be used depending on the control response requirements, such as maximum allowable
overshoot, how quickly the system responds, stability, etc. The three types of control are
proportional, integral, and derivative (P,I, and D), which all have their own gain constants within
the system. Each type of control responds to a different type of error. Proportional control
responds to the amount of error at the current time. Integral control responds to the history of
error for error elimination, while derivative control responds to the rate of change of error for the
purpose of future error elimination. The general equation for PID control is shown at the top of
Figure 9. In this equation P(t) is the output of the controller at a certain time for some error
condition. Kp, Ki, and Kd are respectively proportional, integral, and derivative gain constants,
which are typically adjusted for system stability and optimal control characteristics. Ep is the
change in error that comes from the current system state and the desired system state. P(0) or
KpEo is the steady state output of the controller before a change. The PID control block diagram
shown in the bottom of Figure 9 demonstrates how each separate control type is summed to
equal the adjusted signal to send to the system (12).

Figure 9: PID Controls

In this particular case, some amalgamation of proportional, integral, and derivative
controls will be used to adjust the amount of voltage to a proportional valve based on a RPM
measured from a tachometer. This voltage change will cause the valve to open or close,
increasing or decreasing the speed of the motor being observed by the tachometer. With the
controller in this situation being an Arduino Uno, a library for PID controls was found in the
Arduino Playground community that we thought would adequately serve for our purposes, after
making a few adjustments. As the Arduino IDE has been updated several times since the library
was created in 2017, the library was deemed non-viable. Security was also a concern when
deciding whether to use this library, both for the client and the team members, as the original

13

source is unverified (13). The unverified source may cause some issues with getting the library
loaded to a computer at Edison State, and the likelihood of a system administrator approving an
unverified library is near zero.

BRAKE SYSTEM

When determining how to apply load to the hydraulic motor, a variety of methods were
considered. One of the methods considered was implementing a regenerative braking system to
apply a load to the hydraulic motor shaft and convert mechanical energy into electrical energy.
This was also considered to be an energy efficient way to apply a variable load electronically and
recycle some of the energy back into the system. Before finding the cheapest price to implement
a regenerative brake, research was conducted to better understand how they work and what
components would be needed. This also helped determine whether it would be cost beneficial to
design and build a regenerative brake system or purchase a regenerative brake system. After
comparing costs online from regenerative braking suppliers, it was determined that building a
system from individually purchased components would be cheaper. A list of components were
acquired for a cost estimate, and presented to Edison for approval. Through communication with
the customer, it was further understood that the cheapest way to apply load to the motor was
most desired. Regenerative braking was not the cheapest method we could implement, so more
research was conducted on alternative breaking methods to reduce costs. After researching prices
for brake systems, a friction-based caliper-style V-brake was found to be the most cost effective
method while still being safe to use during labs (4).

Upon further research, we concluded that V-style bicycle brakes would prove an effective
means of applying load to our system. Bike brakes were preferred as they came built with the
torque load specifications we would need to create significant braking power on the motor, while
providing a pre-assembled complete package to easily and securely mount in place to the
hydraulic trainer slotted board (4).

14

Figure 10: Caliper-Style Bicycle Brakes

The brakes are mounted with screws and a locknut via the bottom hole in each brake. The
top brake noodle retainer was removed, and, in its place, two eye bolts were threaded through the
lock screw holes to serve as 90° adapters to each V-brake arm. A longer 110mm bolt was
threaded through the loop of each eye bolt and is used to tension the V-brakes and apply load by
tightening a nut at the end of the bolt.

 The V-brakes are mounted to the Festo Trainer board by using a cut stainless steel plate.
The plate, donated by Sidney Manufacturing Company, was made using 7ga. stainless steel cut
with a plasma machine (See Figure 10). The mounting bracket uses a hole to mount each of the
bike brakes with the aforementioned lock nut and bolt, and slots are used to secure the plate to
the trainer board with t-screws in the correct position. This design allows for remarkable
adjustability and accurate alignment of the brakes with the flywheel.

15

Figure 11: Brake Mounting Plate

Upon testing our braking assembly we were able to apply appropriate load to the
flywheel by tensioning the 110mm bolt’s nut, and were able to completely stop the flywheel with
the braking force from the V-brakes.

PROPORTIONAL VALVE CONTROL

Upon researching several methods of controlling the proportional valve, we decided to
utilize a PWM module. This module is optimal because it can be easily controlled through an
input voltage sourced from the Arduino, and can direct larger voltages and currents from our
main 24VDC power to control the valve’s spool position. The command signal will be sent to
pins E and D on the proportional valve’s Amphenol plug (See Figure 12) (2)(7)(8).

16

Figure 12: Valve Pin Layout

We first considered using a logic-level MOSFET on recommendation from various
Arduino forum users looking to control their own proportional valves. We liked this option, but
decided to put in more research in order to open our options and find the most effective solution
for the cost.

We then considered using a buck converter to step down our voltage from 24VDC to
variable 0-10VDC for control. This was another appealing option, but we had difficulty finding a
suitable buck converter that had all the features we needed (both manual and electronic voltage
control). We wanted to avoid wasting money on unneeded features, such as an LCD screen to
display voltage values, as we would be displaying voltage in our PC program regardless.
Available buck converters were also significantly higher priced than comparable MOSFETS that
performed the same job. In addition, buck converters would have performed slower in a system
where time was key, so we decided to use a MOSFET module in our project (5)(6).

We eventually settled on using a IRF520 MOSFET driver module. We liked the utility
and ease of use of a MOSFET for PWM control, and the cost was significantly lower for 6
modules than for the cost of one buck converter module. Using PWM control is also one of the

17

quickest ways to regulate larger voltages by use of an Arduino, so it seemed most fitting for our
project as a whole (5)(6).

Figure 13: MOSFET Module Schematic Figure 14: MOSFET Module

Before testing began, we found that the original valve socket plug was proprietary, and
the mating connector needed was found to be too expensive. To save costs on an electrical
connector, the valve plug was disassembled from the valve and a new plug was soldered to
replace the original plug. After the soldering and wiring of the new plug was installed, testing
began.

After testing the valve with the IRF520 MOSFET driver module, it was found that the
control circuit for the valve needed a 0V to +10V signal and a 0 to -10V signal. With the current
IRF520 MOSFET driver module only 0V to +10V could be achieved so other control circuits
had to be considered.

The first control circuit that was tested and evaluated integrated a LM741 operational
amplifier. This operational amplifier was chosen because it was readily available and would not
cost anything.

18

Figure 15: LM741 Electrical Schematic

After measuring the output of this chip, it was found that a -10V to +10V could not be achieved
because the buck converter being used did not supply a negative voltage for the V- input. To
reduce the complexity of the control circuit and to save time testing, soldering, and wiring the
chip, a new electronic module was purchased, which was an H-bridge module.

Figure 16: L298 electrical schematic and picture of L298 module board

19

The final module that was purchased was a module that had a L298 dual full-bridge driver
integrated into a printed circuit board. Theoretically, this would have been able to supply both a
0V to +10V and a 0V to -10V signal to the control circuit of the valve. This module was never
tested and confirmed to control the valve correctly due to the COVID-19 epidemic and its impact
on our team's accessibility to the valve.

Figure 17: Electrical Schematic for the control box

VALVE BLOCK / MOUNTING

Another obstacle we faced as a group was how to adapt the proportional valve for use
with our training unit. Upon investigation, we were relieved to find that the proportional valve
would allow for more than enough fluid flow to properly power the hydraulic motor. We were
also relieved to find that the proportional valve could be controlled with an adapted variable
control voltage sampled from our main 24VDC bus line, and that it would be functional in our
system with a bit of adaptive work. We then faced the problem of how to secure the proportional
valve to the Hydraulic Trainer as it was running.

20

We knew from the start of the project that we would need to design a custom valve block
to direct hydraulic fluid to hose nipples for use with the Quick-Connect hoses the hydraulic
trainer uses. We considered purchasing a separate valve block from Festo that matches the ISO
4401 specifications needed for this valve, but upon inquiring about the price of this block, we
realized that machining our own block with an Edison-provided piece of scrap aluminum would
be vastly more time and cost effective (2). After several discussions about mounting the valve to
the trainer board, we realized that we could use excess space on the valve block for mounting
holes. We could drill holes through the block on either side of the valve to use with t-screws and
wingnuts to secure the valve to the trainer board. This would save on manufacturing costs for
making separate block and mounting systems, and would provide an ergonomic and intuitive
mounting solution for the valve. As such the below valve block was designed.

Figure 18: Finished Valve Mounting Block

ARDUINO PROGRAM

In order to measure RPMs and apply PID controls, the Arduino first needed to obtain the
primary and secondary desired RPM values, the time to oscillate between the RPM values,
proportional gain constant Kp, integral gain constant Ki, and the derivative gain constant Kd.
This information is sent to the Arduino when the program on the computer is started. The
Arduino program, however, must be uploaded and started to run the setup section of the
programming. After the Arduino program is uploaded or started, the serial monitor is initialized
using a baud rate of 500,000, which sets the maximum transferable bits per second to 500,000.

21

Next, the program waits on the required data to be sent from the computer application by
utilizing the Serial.available() method inside an empty while loop. The result is the program
stopping when no incoming data is detected in the serial monitor. Once data is detected, a string
variable reads the data in the serial monitor until the newline character ‘\n’ is read. Since the
string read from the computer application uses commas as delimiters to separate the data, the
index of each comma is found. These indexes are used to separate the six required values
mentioned above, and assign them to their respective variables, which marks the end of the setup
portion of the Arduino program.

The main portion of the program, which loops continuously, measures RPMs, applies that
RPM to a rolling average, then adjusts the signal sent to the proportional valve based on the
rolling average result. The first step of the main portion is to assign the value returned by calling
the pulsein() function to a variable. This returned value is the time in microseconds between
pulses from the encoder. With this value being read only once per iteration of the main portion of
the program, an array with an index rotating each iteration is assigned the RPM calculated using
the formula . This formula converts the microsecond/(pulsein() returned value / 1000000)1
return of the pulsein() function to seconds, and gets the number of revolutions per second. Then,
the revolutions per second are multiplied by 60 seconds per minute, and divided by the 60 pulses
per revolution the encoder transmits. As these two steps cancel each other out, they are not
apparent in the formula. After adding the RPM value to the array for calculating the rolling
average, the rolling average is calculated by summing all values in the array and dividing by the
number of elements in the array. The arbitrary number of values chosen was 10, which
significantly reduces the effect of false signals.

Once a rolling average is calculated, the proportional, integral, and derivative error are
calculated. Proportional error is found by taking the setpoint of the system minus the rolling
value, and dividing the result by the setpoint of the system. Integral error is found by adding the
error multiplied by the time (in seconds) used to calculate the RPM value to all the previous
values found the same way, representing the accumulation of error. Derivative error is calculated
by subtracting the previous error from the current error, and dividing by the time (in seconds)
used to calculate the RPM value. This shows the rate of change, or derivative, of the error. With
each aspect of the PID control calculated (proportional, integral, and derivative), each of the
errors are multiplied by their respective gain value and divided by 1000. 1000 was an arbitrary
number chosen to keep the gain constants manageable and to allow for more leeway in tuning the
system. Then, each of the errors with applied gain is added to the initial output of the controller,
which is the setpoint divided by the maximum estimated RPMs of the motor. The maximum
estimated RPMs were previously calculated using characteristics pulled from the datasheets of
the pump and motor that are included with the hydraulic trainer. To find the maximum RPMs,
the equation N = (1000*Qt) / Vm was utilized, where N is the RPM value, Qt is the pump

22

delivery rate, and Vm is motor displacement. Qt for the motor is 2.3 l/min, while the motor
displacement is 8.3 cubic centimeters per revolution. This leads to the maximum RPM value
being 2300 / 8.3, or just over 277 RPMs.

The result of all the previous calculations will be the output percentage that the controller
should give, or the duty cycle of the pulse width modulation. Arduino pulse width modulation
has a maximum value of 255. With this in mind, the output percentage as a decimal multiplied
by 255 gives the value to be output. Once the output value is found, the analogWrite() function is
called, using the output value as the argument. This function sends the desired signal to the
proportional valve to adjust the valve position. Finally, the rolling RPM value and time are
delimited by commas within a string and output through the Arduino serial monitor to the HMI,
and the Arduino program begins the loop again.

HMI / COMPUTER APPLICATION

At the start of this project, the design and coding of the PC application had not yet started
(as it was largely depending upon real-world data gathered from the completed working project),
but we still wanted to consult with Dave Barth on suggestions for HMI design, along with what
he would like this program to look and perform like. Dave Barth recommended modeling our
program after the ServoStar program used at Edison for servo motor control in the Robotics
class.

Figure 19: Servo Star UI

The ServoStar program was recommended because it uses PID controls in controlling

smaller servo drives. Dave is also very comfortable with the program, and expressed that he
would appreciate a program modeled after the ones he already uses for similar applications. The
program also performs similar functions to what we intend our program to accomplish - both

23

ServoStar and our program will use closed-loop feedback and PID controls to control the
position of a moving part. We decided to create a program that navigated and functioned
similarly to ServoStar, but adapted to our application with an updated modern interface. We also
decided to improve upon several of the functions that the ServoStar program offers, such as
providing real-time data and graphical representation of motor RPMs and valve supply voltage
over time.

The HMI was created using the Visual Basic.NET language within Microsoft Visual
Studios. While Visual Studio Enterprise is available for free for engineering students, Visual
Studio Community was chosen as the preferred development environment. Along with the
Arduino IDE, Visual Studio Community is open source, meaning both applications can freely be
updated at no cost to the client. In addition, the client can make adjustments to either program at
will.

The first step in creating the HMI was to create a form that fit the design requirements of
the client by requesting two RPM setpoints, time to oscillate between setpoints, along with Kp,
Ki, and Kd. Additionally, the serial port the Arduino is utilizing needs to be selected in order to
have proper communication. The GUI of the HMI accomplishes the port selection with a drop
down box (combo box) of available ports; and the rest of the inputs are via editable text boxes.
The graph to show the motor RPMs and supply voltages over time was put on the form, as
shown in the image below.

Figure 20: Initial Graphical User Interface Layout

Upon starting the HMI application, the program cycles through each serial port available

on the computer. If the combo box listing the serial ports does not already contain the port, the
port name is added to the combo box for selection, which was necessary to prevent duplicate port
names. The first available port found is selected by default and assigned to the port name
variable. When each editable text box has the text changed, the respective variable for that box

24

(Kp, Ki, etc.) is assigned the text. Once all required data is entered, the client can click the start
button. When this button is clicked, a custom function to set up the serial port for communication
is called, using a concatenated string of all data with comma delimiters. This function sets the
parameters of the serial port such as the port to use and baud rate, which must be identical to
what the Arduino utilizes. Then, inside of a try statement that will show an error should any
issues arise when trying to contact the serial port, the port is opened, the initialization string is
sent, the port is closed, and a clock is started. If there is an error, the error message will be
displayed and the clock is stopped.

The purpose of the clock is to signify when the HMI should read serial data from the
Arduino, and 10 millisecond intervals were chosen arbitrarily. Inside a try statement checking for
port timeout, the serial port is opened. If the serial port contains data, check using the
BytesToRead function of the serial port, assigning the data string to a variable. The data string is
then split using the comma delimiter into the RPM value, valve control voltage value, and time.
The current RPM value is then assigned to a label showing the current RPMs and all values are
graphed.

SAFETY

Safety has been a top priority for our group and has been discussed throughout the
project. The biggest concerns of our project, with regards to safety, have been the hydraulic
motor and spinning flywheel. After much discussion, it was clear to our group that we needed to
develop some sort of guarding to protect users while the flywheel is spinning.

At first, we wanted to use something robust such as perforated steel or aluminum;
however, in the end, it seemed too costly and too heavy to be mounted easily. Speaking with the
customer, Dave Barth, a sheet of plexi was offered to the group. The plexi sheet can be formed
when heat is applied so it seemed like a perfect solution without having to find a machine shop
with a water jet and brake press. The group also liked the fact that it was transparent and the
students can observe their labs more easily when working.

25

EXPECTED FINDINGS

MICROCONTROLLER

There were two primary options that were considered for the controller in the system: the
Raspberry PI and the Arduino Uno. The team was familiar with the Arduino. Only one member
had used the Raspberry PI before. The Arduino IDE allows for programming in C (10), while the
language for the Raspberry PI is dependent on several variables, such as the operating system
and physical components present. As such, the Arduino was chosen as the controller for our
project. In terms of performance, the Arduino had plenty of processing power to control this
system, with adequate response times and stability for an educational setting. The Arduino IDE
allows for integration with a PC, which allows for some communication and storing of data (9).
The Arduino proved to be an adequate controller up to the ending point of our project.

TACHOMETER

 Several options for sensing the revolutions made by the motor were explored. There
were three main ideas presented for the creation of an RPM sensor at the start. These three ideas
were contact, optical, and proximity tachometers. Initially considering the three, proximity
switches seemed dangerous since they created both a pinch point and a crash hazard. The contact
sensors would likely be vulnerable to wear and hard to replace. The optical tachometer had
weaknesses as well, such as being vulnerable to the environment. The initial choice was the
optical tachometer. Further research led to the initial decision to create a tachometer from scratch
using infrared LEDs and photodiodes. After component failures and a brief testing of pre-built
optical sensors, the tachometer was ultimately chosen to be built using an encoder. The previous
concern of wear vulnerability was not applicable to the encoder, as the bearings of the encoder
allow for rotation at very low forces. However, the encoder would still be difficult to replace.
The encoder works up to about 6000 RPMs, which is well within the maximum RPM rating of
the motor in use. There were several points of concern with the encoder. The first was the
possibility of false data points, leading to improper RPM calculation and subsequent PID
adjustments. The coupling was also a point of concern, since most of the cheaper forms of
coupling are rigid and require precise alignment of shafts. As previously expressed, both of these
concerns are heightened due to the system being utilized by students.

While there is a chance for some false data points, the calculation of the RPMs from the
encoder pulses and timings uses a rolling average that minimizes the impact of data outliers.
While the mounting for the encoder is rigid, bolts with springs were used to make fine alignment
adjustment simple, and to absorb force should the coupling not be properly aligned. While the
coupling is currently well-aligned, it is highly likely that students will run the system without

26

proper alignment. If the coupling is no longer viable, or the client does not want to adjust the
alignment, the coupling can be replaced by a section of quarter inch tubing. Edison State already
owns large amounts of this tubing, and the tubing will not be subject to enough torque to damage
the tubing, while providing flexible coupling of the encoder and motor.

PID CONTROLS / PROPORTIONAL VALVE CONTROLS

There are typically three or four separate variations on PID control that are considered for
a system. However, the client specifically requested that PID controls be used to control the
proportional valve, so there was no decision to be made. Though convincing the client would
probably have been possible, PID controls offered the highest accuracy and stability when
compared to other PID variants. The expectations the team had of the PID controls is simple. The
PID controls should take the feedback from the RPM sensor reading, and compare the received
value to the target value. When the sensed value deviates, the PID controls are utilized by the
Arduino to adjust the values closer to target by application of the general equation for PID
controls (12).

GUI PROGRAM

When the GUI program was finished, it was expected to be a simple program that would
have the capability to show the users how changing the three PID parameters (Kp, Ki, Kd) and
target RPMs would affect the valve. The graphs that would be displayed would be a RPM versus
time and voltage versus time graph. In the background, the program would be communicating
with the Arduino board by sending the user inputs (target RPM,Kp, Ki, Kd) which would then
tell the Arduino it was ready to receive data. The data that it would receive would be the
command voltage to the valve and the RPM value of the flywheel. Once that data was received,
the data would be displayed in the GUI window in real time. The program would also give the
user the capability to choose what data to display in the graph and also the option to adjust the X
and Y intervals for data viewing purposes.

BRAKE SYSTEM

The braking system sketch (Figure 21) and concept of the brake system design is made
with the intent to have the ability to adapt and adjust the brake, as needed. This maneuverability
is necessary given that we will not know how much clearance will be available between the
motor (Figure 22), flywheel disk (Figure 22), and trainer’s mounting board (Figure 23) each time
the system is set up, as it will vary depending on the time, place, and individual assembling of
the system. Our bracket mount is adjustable to accommodate for clearance, but is also adaptable

27

so that the brake pads will contact the flywheel’s flat surface for equal friction distribution. The
braking system works as intended, and is able to apply varying levels of friction to the flywheel.

Figure 21: Brake System Sketch

 Figure 22: Festo Hydraulic Motor w/ Flywheel Figure 23: Festo Hydraulic Trainer

28

BILL OF MATERIALS/ COST ESTIMATES

In order to build this project with the lowest cost possible, a Bill of Materials (BOM) was
created to be shared with Edison Community College for funding. Edison supplied us with
‘unlimited funds within reason’ to build our project, and we were directed to keep costs as low as
possible. Our initial BOM was made with the intent to document every component we would
need for our project, including components we already possessed, minus integral components
such as the existing Festo Hydraulic Trainers and proportional valve. This included materials for
3D printing, wire and routing for electrical components, electronics for valve control, etc.

ITEM DESCRIPTION COST
Arduino $20.00

Motor Drag System $150.00

Wiring $30.00

3D Printer Filament: 3kg $70.25

IR Emitter and Receiver Diodes $15.00

Breadboards $15.00

Soldering Wire $28.00

JST Connectors $40.00

Acrylic (For Guards) $70.00

Aluminum Stock $30.00

Braided Cable Sleeving $20.00

Pressure Transducer $20.00

Amphenol Plug and Cable $100.00

Sheet Metal $30.00

Assorted Assemblers $60.00

Hose Fittings $50.00

Buck Converter(s) $40.00

N Channel Logic Level Mosfet $20.00

USB Data Sync Cable $10.00

Misc. Electronics $100.00

Misc. Labor $100.00

PRELIMINARY TOTAL $1,018.25

Extra Allowance (Pre. Total + 40%) $407.30

TOTAL $1,425.55

29

Upon completion of the initial BOM we reviewed the components as a team and decided
what our first purchases would be. We knew that several of these components would be
dependent upon the dimensions and performance of the others, and as such we anticipate
ordering more components in the future. As it stands now, our costs up to this point are as
follows:

We did proceed to purchase more items for the project personally, but after COVID-19
halted our progress we proceeded to return unnecessary/unused components, and donated the rest
of the components that were stuck on campus with the trainer. We estimate that our costs totaled
around $200, but we do not know for certain at this point as we cannot physically tally all of the
components used on the trainer.

HYDRAULIC VALVE BLOCK/ MOUNTING METHOD

Upon deciding to combine the valve mounting solution and valve block, we created a
hybrid mounting block. The four center holes in the main view of Figure 24 below will route
hydraulic fluid to pipe nipples screwed into the sides of the block. The four small holes clustered
around the routing channels will be tapped so that the ISO 4401 - specified screws that secure the

30

valve to the block can be used to mount the two. The outermost holes will be dedicated to
allowing t-screws to be fed through, which will secure in the slots of the hydraulic trainer and
attach the block to the Festo Hydraulic Trainer board by tightening the t-screws in the trainer
slots with wingnuts used on the face of the block.

Figure 24: Valve Mounting Block Blueprint

31

COVID-19 COMPLICATIONS

Unfortunately, due to complications with COVID-19, our group was unable to complete
our final project. When Governor DeWine announced the Stay-At-Home Order, the Festo
Trainer along with the proportional valve and hydraulic motor were all locked on campus.
Neither us nor professors/Dave were able to be on campus, and thus our progress was brought to
a halt. (14) Not having access to the trainer meant that we could not measure and gather the data
we needed to both physically and electronically complete the project. We also could not progress
any further in our coding portions. The following is a summary of what we still had to complete
for our project, had COVID-19 not interrupted our project.

ENCODER

We had left our project with an encoder mount already built. This mount was relatively
well aligned, but would cause the mounting screws to snap when buttressed to the flywheel on
the hydraulic motor. The alignment can be attributed to tensioning springs along the mounting
bolt lengths, which allow for fine adjustment and limited movement for absorption of radial load
produced at high rotation speed. While the coupling is currently well-aligned, it is highly likely
that students will run the system without proper alignment. If the coupling is no longer viable, or
the client does not want to adjust the alignment, the coupling can be replaced by a section of
quarter inch tubing. Edison State already owns large amounts of this tubing. The tubing will not
be subject to enough torque to damage the tubing and will provide flexible coupling of the
encoder and motor. Though there is a chance for some false data points, the calculation of the
RPMs from the encoder pulses and timings use a rolling average that minimizes the impact of
data outliers.

While the mounting solution was finalized and somewhat tested before the pandemic
shutdown, there was no chance to test the system as a whole. RPMs could be accurately
calculated when the encoder was coupled with the motor. However, there was no chance to test
the PID program. Ideally, the PID program could have been tested and fine-tuned to provide both
the client and the team with valuable data. Running the system in real-time would have allowed
for testing of gain values for the PID program, as well as, discovering limitations to the system.
Without being able to test PID controls, the HMI was not able to be fully tested.

VALVE CONTROL

The valve control electronics were very close to being completed. We had been able to
get the valve functioning and flipping between ‘forward’ and ‘reverse’ mode, but it had some
inconsistencies. The week we were forced to leave our project, we were planning on replacing

32

the operational amplifier with a full H-bridge to see if that would fix our inconsistencies in
controlling the valve.

Upon finalizing the valve control voltage electronics and Arduino code, we were going to
run the valve and gather real-world data about what valve control voltage corresponded to a
certain RPM on the motor flywheel. By using this data, we would have been able to adjust the
system to use the PID controls to self-correct and maintain a specified RPM. A rough draft of the
control box was sketched using AutoCAD (See Figure 25), but was incomplete because the final
valve control circuit, using the H-bridge module, was not tested and confirmed.

Figure 25: Proposed Control Boxe interface

ARDUINO

At the point we left our project, our Arduino was mostly complete, but still needed some
fine-tuning to get it up and functioning. We needed to use data gathered from the trainer to
fine-tune the PID controls and enable our code to export relevant data (e.g. the RPMs, PID
feedback, etc.) to the GUI program. While the code is written, lack of testing results in
uncertainty of the operational integrity.

33

GUI

The GUI program had progressed relatively far into development when the project was
stopped, but is still largely unpolished. While a basic UI was available, complete with input and
real-time graphing of the feedback of the system, much of the coding was still rough around the
edges and untested. For example, inputs were coded and available for user interaction, but the
program did not check that input was positive, numerical, and trimmed of unnecessary zeroes.
However, most of the features that the client had requested are present in a pre-finished state.

CUSTOMER CONSULTATION

After completing our project, we had intended to consult with Dave again to get his final
opinions on what we had done. We would have used this feedback to refine our final product,
especially with concern to the overall GUI design and any other portion of the project with
significant interactivity (e.g the braking system, PID parameters, etc.). We would have worked
with Dave over the final weeks to produce a product that he would enjoy using in his lessons.
We also would have worked closely with Dave to produce a useful troubleshooting manual and
lesson plans for use at Edison.

TROUBLESHOOTING MANUAL/ LESSON PLANS

The last portion of our project would have been to create a complete and thorough
troubleshooting manual, along with lesson plans to accompany the trainer. The troubleshooting
manual would have contained detailed descriptions of each component of the trainer,
accompanied by diagrams, the function of each component, and how to set up and tear down the
entire project. It would have also contained suggestions for solutions to common problems with
the system and other suggestions for general troubleshooting.

The lesson plans would have been co-written with Dave, and would have been formed
around his input. They would have contained a complete proportional valve lesson, in-class
worksheets, and homework to accompany proportional valve calculations.

34

CONCLUSION

We conclude that our project contains very strong elements that make it an excellent
senior design project. While there were several significant issues that merited redesign, and even
revision of prototypes, there were no significant cost changes, which was a major concern of the
project. The project was in a good place for completion pre-COVID complications. We look
forward to handing this project back to Dave Barth, who will determine how he will assign or
finish the remaining portions.

This course has proven significant to our liberal educations and has emphasized the
importance of lifelong continued education to all our group members. We have come to learn
that our education is something we will take with us and use throughout our lives, especially in
this career field. In researching and applying both past and learned skills for the project, we have
come to appreciate the skills, knowledge, and documentation provided by others in the field.
They have helped us research, learn, and complete a system design for a complicated project. We
hold a respect for their past experience and knowledge and understand that differing perspectives
can be brought together to create a more robust and complete, finished product. We are excited
to take the knowledge we gained, as well as, a love for learning with us in the future.

Further testing is highly recommended for all systems involved and should be conducted
after the system as a whole is completed. Our project requires significant, real-world data in
order to fine-tune the PID controls and PC program, which definitely need to be gathered as
work on the project is continued. In addition, we also advise placing a specific focus on system
safety by properly inspecting our project and making safe design choices that we had not been
able to make. Notable examples of this would be shielding the moving portions of the motor and
braking system, properly insulating and routing wiring, and securely placing key electrical
components in the appropriate location in the electrical control box, isolated from all dangerous
mechanical and liquid components of our system. We look forward to the progress and
completion of our project after the point where we were forced to leave it off.

35

REFERENCES

1. Festo. ​Equipment set TP 501 – Basic level: Basic training in hydraulics​. 2019.
https://www.festo-didactic.com/us-en/learning-systems/equipment-sets/hydraulics/trainin
g-packages/equipment-set-tp-501-basic-level-basic-training-in-hydraulics.htm?fbid=dX
MuZW4uNTc5LjE3LjE4LjU1Ni43NTk2. 21 September 2019.

2. Proportional Directional Control Valves Series D1FP​. ​Proportional Directional Control
Valves Series D1FP​, Parker Hannifin Corporation, 2019.
https://www.parker.com/Literature/Hydraulic%20Valve%20Division/hydraulicvalve/Cat
alog%20sections%20for%20websphere/Proportional%20Directional%20Control/Catalog
%20-%20Static%20Files/D1FP.pdf

3. Parker. "Parker Engineering Your Success Motion Control." 2019. ​Parker Hannifin
Corp.
https://www.parker.com/Literature/Hydraulic%20Controls%20Europe/Manuals%20UK/
D_FP_20%205715-658%20UK.pdf. 27 September 2019.

4. Bracey, James. ​Disc brakes: everything you need to know - Cycling Weekly​. n.d.
https://www.cyclingweekly.com/news/product-news/everything-you-need-to-know-about
-disc-brakes-202130. 10 October 2019.

5. Unibrow. ​Controlling a 5V proportional Valve with PWM​. n.d.
https://forum.arduino.cc/index.php?topic=489936.0. 10 October 2019.

6. Varunvp. ​Help required for controlling proportional solenoid valve!​ n.d.
https://forum.arduino.cc/index.php?topic=467353.0. 10 October 2019.

36

7. Kollmorgen. "Motion Control Solutions | Kollmorgen | Industrial Servomotors Servo
Drives AC DC Motors." n.d.
https://www.kollmorgen.com/sites/default/files/public_downloads/S400%20Servo%20Dr
ive%20Quick%20Start%20Guide%20EN.pdf. 17 October 2019.

8. Amphenol. "Farnell | Electronic Component Distribution." n.d. ​C 16-1_C 16-3
englisch.pdf - 9569.​ http://www.farnell.com/datasheets/9569.pdf. 14 October 2019.

9. Arduino Uno Rev3​, https://store.arduino.cc/usa/arduino-uno-rev3

10. “Language Reference.” ​Arduino Reference​, 2019, https://www.arduino.cc/reference/en/.

11. Instructables, Tanay. “Measure RPM - Optical Tachometer.” ​Instructables​, Instructables,
13 Oct. 2017,
https://www.instructables.com/id/Measure-RPM-DIY-Portable-Digital-Tachometer.

12. Roger, Siefried. “PID Control.” ENT 418 Electromechanical Control Systems. 5 Nov.
2019, Middletown, Ohio.

13. Beauregard, Brett. “Arduino PID Library.” ​Arduino Playground - PIDLibrary​, Arduino,
2017, playground.arduino.cc/Code/PIDLibrary.

14. Acton, Amy. “Amended Director’s Stay At Home Order.” ​Ohio Government, 2020,
https://coronavirus.ohio.gov/static/publicorders/Directors-Stay-At-Home-Order-Amende
d-04-02-20.pd

37

APPENDICES

Appendix A: Gantt Chart and Group Schedule

Gantt Chart: September - November

38

Gantt Chart: December - February

39

Gantt Chart: March - April

40

Gantt Chart: Excel Version

Appendix B: Proportional Directional Valve Specifications

41

42

43

44

45

46

Appendix C: 3D View of Proportional Valve

47

Appendix D: Arduino Uno R3 Schematic

48

Appendix E: Encoder Data Sheets

49

50

Appendix F: Individual Group Member Decision Matrices

Audrey Fields

51

David Poeppelman

52

James Clements

53

Luke House

54

Appendix G: Additional Figures

Figure 26: Original System Build Sketch

Figure 27: Festo Hydraulic Trainer

55

Figure 28: Parker Proportional Valve

Figure 29: Mounting System for Festo Hydraulic Trainer

56

57

