

King of Kings TechBed

Senior Design

Miami University 2020-2021

ENT 497 - 498

Academic Advisor: Reza AbrishamBaf, PhD

Team Members: Jacob Klopfenstein, Chris Waidelich

May 10, 2021

ENT 497 Senior Design 2

Executive Summary:

The purpose of this project is to create a new king size bed that will stand apart from everything

else on the market by incorporating a sound system, minifridge, and other Raspberry Pi driven

technology into a bedframe that has a natural wood appearance, functional design, and built-in

drawers beneath the mattress for efficient floor space usage. The idea was chosen because it

included aspects in both fields that Electro-Mechanical Engineering Technologies covers:

mechanical engineering for the design of the bed structure and electrical engineering for the

design and integration of technology and Raspberry Pi circuitry. Designing and building this bed

will gave both valuable experience and knowledge to the members of this team and made them

more competent in their relative fields of study.

ENT 497 Senior Design 3

Table of Contents

Executive Summary: ... 2

Table of Figures .. 4

Design Research.. 6

Step by Step Plan: ... 11

Developing the Design .. 11

Construction Logistics Plan ... 13

Construction of Bedframe ... 13

Installation of Electrical Components ... 16

Final Testing and Staging .. 18

Project Timeline: ... 18

Cost Projection: ... 20

Building of Project .. 23

Construction of Bed Frame ... 24

Programming .. 32

Results ... 49

Finished Bed Photos .. 49

... 49

... 50

... 51

... 51

... 51

Graphical User Interface ... 52

Results Summary... 57

Conclusion and Recommendation for Further Study: .. 58

References ... 60

Appendix A: Electrical Design ... 62

Appendix B: Mechanical Design .. 64

Appendix C: Gantt Chart .. 67

Appendix D: Main Python Program ... 70

Appendix E: Main Kivy Program ... 100

Appendix F: Arduino Program ... 152

ENT 497 Senior Design 4

Appendix G: Weekly Reports ... 156

Appendix H: Midterm Presentation .. 184

Appendix I: Senior Design 2 Minute Presentation Script ... 191

Appendix J: Final Presentation ... 192

Appendix K: Final Project Poster ... 200

Table of Figures

Figure 1: The Somnus-Neu Bedframe [2] .. 6

Figure 2: Highfine 120mm CPU Fan [9] .. 7

Figure 3: Final Model of Bed.. 8

Figure 4: Design for Air Deflector.. 9

Figure 5: Design for Touch Screen Mount ... 9

Figure 6: Design of Headboard ... 9

Figure 7: Final Model of Bed Side View .. 10

Figure 8: Foam Strip ... 24

Figure 9: Speaker Box .. 24

Figure 10: Footboard Framing and T & G .. 24

Figure 11: Biscuit Connections ... 25

Figure 12: Headboard Box .. 25

Figure 13: Drilling Holes for Fans .. 25

Figure 14: Mounting Side Frames .. 26

Figure 15: Mounting Brackets .. 26

Figure 16: Mounting Minifridge Box ... 27

Figure 17: Drawer Space Framing .. 27

Figure 18: Fixed Face Frame After Crack .. 28

Figure 19: Wood Finish on Footboard .. 28

Figure 20: Finishing the Plywood Top ... 28

Figure 21: Mounting of Drawer Sliders .. 29

Figure 22: Mounting Drawer Faces .. 29

Figure 23: Damaged Footboard Leg ... 30

Figure 24: Repaired Footboard Leg .. 30

Figure 25: Second Repaired Footboard Leg ... 30

Figure 26: Second Damaged Footboard Leg .. 30

Figure 27: 3D Printed Fan Covers .. 31

Figure 28: Wireless Charger Mount (Lights On) .. 31

Figure 29: Wireless Charger Mount (Lights Off) ... 31

Figure 30: Wireless Charger Mount (Glowing) .. 32

Figure 31: Touch Screen Mount ... 32

https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579240
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579241
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579242
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579243
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579244
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579245
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579246
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579247
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579248
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579249
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579250
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579251
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579252
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579253
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579254
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579255
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579256
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579257
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579258
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579259
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579260
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579261
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579262
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579263
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579264
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579265
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579266
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579267
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579268
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579269
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579270

ENT 497 Senior Design 5

Figure 32: Left View with Color Animation .. 49

Figure 33: Right View with Color Animation .. 49

Figure 34: Right View with White Light .. 49

Figure 35: Left View with White Light .. 49

Figure 36: Across Headboard ... 50

Figure 37: Inside Headboard ... 50

Figure 38: Side View with White Light .. 50

Figure 39: Extended Drawer ... 50

Figure 40: Mounted Minifridge .. 50

Figure 41: Inside Minifridge Box ... 50

Figure 42: Sample of Light Strip Colors... 51

Figure 43: Wiring in Electronics Bay ... 51

Figure 44: Subwoofer in Other Minifridge Box ... 51

Figure 45: Sound Bar in Footboard .. 51

Figure 46: View Along Main Frame Lights ... 51

Figure 47: View up at Headboard Lights .. 51

Figure 48: Wireless Charger Menu Pop-Up ... 52

Figure 49: Main GUI Menu .. 52

Figure 50: Ambient Sound Menu ... 53

Figure 51: Custom Color Menu .. 54

Figure 52: Light Main Menu... 54

Figure 53: Solid Color Animation Light Menu .. 55

Figure 54: Rainbow Animation Light Menu .. 55

Figure 55: Alarm Clock Screen .. 56

Figure 56: Alarm Clock Sound Menu ... 57

Figure 57: Origional Electrical Design ... 62

Figure 58: Final Electrical Design .. 63

Figure 59: Headboard Side View .. 64

Figure 60: Headboard Front View .. 64

Figure 61: Footboard Front View ... 64

Figure 62: Main Frame Side View.. 64

Figure 63: Full Bed Side View ... 65

Figure 64: Main Frame Top View .. 65

Figure 65: Dimetric View of Complete Bed with Technology Installed 66

Figure 66: Full Bed Top View .. 66

Figure 67: Full Bed Foot View ... 66

https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579271
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579272
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579273
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579274
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579275
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579276
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579277
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579278
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579279
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579280
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579281
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579282
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579283
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579284
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579285
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579286
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579287
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579288
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579289
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579290
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579291
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579292
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579293
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579294
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579295
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579297
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579298
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579299
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579300
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579301
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579302
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579303
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579304
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579305
https://d.docs.live.net/7c97f0cf46f1e40f/Documents/School/Senior%20Design%201/Klopfenstein%20Waidelich%20King%20of%20Kings%20TechBed%20Senior%20Design%20Final%20Report.docx#_Toc71579306

ENT 497 Senior Design 6

Design Research

 Research began by searching online for other technology integrated bedframes that were

on the market, and it quickly became clear that there were not many options to choose from. A

bedframe, at its core, is a very simple structure when its only task is to support a mattress, so

little creativity has been placed into it for the mass market. The closest thing to the design of the

King of Kings TechBed was the Ultimate

Bed [1], which sported a speaker system

and some storage under the bed, as well as

other technologies and features the King of

Kings TechBed lacked. However, the style

was very modern, and according to the

King of Kings group, quite ugly. It lacked

the natural wooden appearance the King of

Kings group was aiming to achieve.

Another website [2] discussed various technology bedframes, but all appeared impractical and

too modern for the style to last, such as was the case for the Somnus-Neu Bedframe (see figure

1). It was also unclear how many of the bedframes presented in the article were actually

available for consumers verses being designs that didn’t make it to production due to low

demand. Finally, no bedframes contained the concept of a minifridge built into the bed, and very

few had the RGBW lighting system similar to what the Kings of Kings TechBed would display.

 After the initial research on bedframe concepts already available, the group began to

explore the technology wanted in the bed and identifying which product should be designed

around. The first technology piece explored was the minifridge. While a freezer or icemaker was

originally desired, the size of minifridges available that sported such features, such as the

Frigidaire 3.1 cubic foot mini fridge [3], were far too large to be properly integrated into the bed.

There was also too much space available in the fridge, leading to inefficient use of furniture

space. Ultimately, the group settled on using an Insignia 1.7 cubic foot mini fridge [4]. While

this meant the bed would not be able to have a freezer, and therefore ice, it also meant the bed

could be designed to incorporate the minifridge underneath the bed as opposed to a nightstand

attachment. This particular minifridge also was made by a reputable brand and had a lot of good

reviews.

Figure 1: The Somnus-Neu Bedframe [2]

ENT 497 Senior Design 7

 The second piece of technology chosen was the sound system. A few of the features

desired were HDMI input and output for integration with a projector, a surround sound layout,

and a subwoofer. While initial plans were to buy the mixer and speakers separately, the decision

was made to choose a soundbar for the main speakers and place it in the footboard. With the new

parameter of a soundbar, the Vizio 5.1.2 Home Theatre Soundbar System [5] became the

obvious choice for the design. Another advantage of the system was a relatively low cost,

smaller dimensioned speakers for easier integration, and multiple input options for both a

projector and Raspberry Pi.

 The third main piece of technology researched was the lights. Originally, the group was

researching six-pin LED strips, such as the Giderwel RGBWW LED Strip Lights [6], but the

problems with that option quickly became clear. First of all, the light sections were overly spread

out, leading to inconsistent lighting and obvious gaps. Second, the entire strip would be the

same, as there was no option to individually access the LEDs. Third, the strips were too wide to

easily install around the bedframe. In need of knowledge on lighting options, the King of Kings

group met with [7] Mike Kwaitkowski, an electrical engineering technologies instructor at

Northwest State Community College. He directed us to Adafruit NeoPixels [8] as our choice

lighting option. These lights would solve all the problems brought up by the Giderwel option,

along with providing more resources for assistance when programming the software.

 The final main piece of technology that needed chosen was the different fans that would

be implemented on the bed. However, two different

parameters existed for these fans. The ones on the

headboard needed to be powerful, capable of moving

massive amounts of air in order to create a stead breeze

over the sleepers. It also didn’t matter if they were louder,

as that would provide a background noise for sleepers that

would be off in non-sleeping hours. However, the fans to

cool the minifridge compartments and electronics bay

needed to be slow, steady, and quiet, as they would be on

consistently. Using these parameters, the group choose to use Highfine 120mm 4000RPM CPU

Cooling Fans [9] for the headboard and Antec 120mm case fans [10] for the constant cooling

Figure 2: Highfine 120mm CPU Fan [9]

ENT 497 Senior Design 8

operations. This provided an added benefit of economical purchasing, as the Antec fans came in

a pack of five, the number needed.

 The decision for which fans to use in headboard later changed to Wathai 12038 fans [15]

instead of the original Highfine 120mm fans. There were several factors in making the change,

with the largest being the desire for the Raspberry Pi to be capable of controlling the speed of the

fans. The newly selected fans have a four-pin connection, while the Highfine fans were a three-

pin connection. The added pin is a Pulse Width Modulation pin, or PWM. This is what will allow

the Raspberry Pi to enact control over the fan’s RPM. The specifications for the fan remained at

12V, but with an increased RPM from 4000RPM to 5300RPM. The chosen 12V power supply

unit was also able to power these fans, so the fans ended up being the only parts that were

changed on the project after purchasing.

 A Raspberry Pi 4 Model B [11] will control the various technologies through an interface

with the Raspberry Pi official 7in touch screen [12]. This version of Raspberry Pi was chosen to

make sure it had as much power as possible for future-proof purposes, as well as enough RAM

for a complex program while still being able to operate a touch screen. The official 7in touch

screen was a perfect combination, as it will allow for smooth interfacing with the control systems

and will eliminate needs to labels buttons, switches, and potentiometers had they been physical.

 Finally, the King of Kings

group had to learn about

woodworking and wood design of

large furniture. Obviously, this

level of information is difficult to

learn in an online format, so

various experts in the field were

consulted on the matter. The first

consultant was Randy Wise [13],

an engineering consultant and

construction manager. His

information consisted of various wood types and their advantages and disadvantages. Ultimately,

Figure 3: Final Model of Bed

ENT 497 Senior Design 9

it was his advice that led the King of Kings group to use pine in the design as opposed to a finer

wood type that would be stronger but cost much more.

 The second main resource on wood design was Andrew

Shultz [14], a cabinet builder at Lanz Construction in

Mediapolis, Iowa. His instruction centered around designing

for various wood fasting techniques on furniture, such as

pocket screws and where to

use wood glue. He also

trained the group on the

importance of “facing” a

piece of furniture by

placing a wooden frame on

the front of a structure to hide any wood ends for appearance

purposes.

 After the large technology pieces were chosen and the

knowledge of wood design had been gained, the King of Kings

group began to develop the design of the bedframe. Several of

the main design points included designing the bed for

disassembly into components that could be easily moved, for

the wiring of various components, and for

proper housing and cooling of electronics.

For designing purposes, a model was put

together in SOLIDWORKS 2020, which

supplied the group with a complete rendering

of what the bed would look like and what

sizes all of the parts would be. It also created

a virtual environment that could be used

when doing the detailed designing of several

3D printed components.

Figure 5: Design for Touch Screen Mount

Figure 4: Design for Air Deflector

Figure 6: Design of Headboard

ENT 497 Senior Design 10

 For the structure of the bed itself, little attention was paid to the specific weight

distribution and strength of the frame. The reason for this was simple. A bedframe is meant to

hold a mattress and occupants. At most, it will only experience a few hundred pounds of weight.

Thus, in our design, the goal was to simply overbuild it strength-wise, as we needed the space

and style of strength anyway. Plywood framing around the drawers and minifridge provided a

column grid for weight distribution to the floor of the room, and a plywood top for the mattress

to sit on, as opposed to boards spaced evenly across, provided a cheaper and more consistent

weight distribution solution. The

resulting design didn’t have a

weight limit, but it was very clear

that the bed is built strong enough

to hold way more weight than it

will ever experience. Thus, with

all considerations taken into

account during the design phase,

no specific calculations needed to

be done.

 Due to a minifridge not being designed to be in an enclosed space, fans were built into

the back of the minifridge boxes for airflow and cooling purposes. As we wanted the bed to be

capable of having the minifridge being on either side of the bed, we built the main frame

modules as mirror images of each other. These fans are controlled by their own hard-wired

switch to prevent a case of improper ventilation due to a computer glitch. The design was made

so the subwoofer for the sound system could be stored in the minifridge box that wasn’t being

used. This also allowed the heavy vibrations to be transferred into the bedframe itself, thus

giving the experience of listening to audio through the sound system more exhilarating.

 The resulting design fit all of our specifications. The bedframe breaks down into smaller

modules for moving purposes: footboard, headboard, two main frame halves, and the mattress

and top plywood boards. Each piece, while large in size, can fit through modern bedroom doors

with careful guidance. The frame also neatly integrates the technology pieces as desired.

Figure 7: Final Model of Bed Side View

ENT 497 Senior Design 11

Step by Step Plan:

Developing the Design

A. Research Existing Frame Designs

B. Choose Technology to Integrate

i. Sound system

1. Surround sound

2. Theatre capable

3. Easily integrated into bedframe

ii. Minifridge

1. Compact

2. Large enough to hold a few drinks and snack food

3. Door that can hinge from either side

iii. Strip lights

1. RGBW capable

2. 100% dimmable

3. Can be cut into sections and connected together

4. Can be interfaced with Raspberry Pi

a. Can smoothly change colors

b. Possible unique light patterns

c. All lighting options controlled by main control panel

iv. Fans for cooling sleepers and minifridge

1. Small and compact

2. Easily interfaced on control panel

3. Controllable fan speed

4. Run quietly

v. Raspberry Pi

1. Interfaced into control panel on headboard

a. Touchscreen for main interface

b. Possible potentiometer for brightness

c. Buttons for color mode selection

d. Possible light automation

ENT 497 Senior Design 12

i. Lights automatically turn on in the morning

ii. Lights automatically turn on in the evening

2. Control fans, lights, and more

a. User can control fan speed

b. User can control light color and brightness

c. User can turn on and off outlets on bed

C. Research Designing Products out of Wood

i. What sizes of wood are available

ii. What type of wood should be used

1. Pine is the most economical option

2. Wood can either be clear (no knots) or knotty

iii. Fastening

1. Components can be fastened with pockets screws

2. Wood glue works in some areas, but wood expansion must be

considered

3. Avoid showing grain-ends when possible

4. Large surfaces can be made with Cabinet Quality pine plywood

iv. Most abnormal sizes can be obtained with a planer and a table saw

D. Design Modular Bedframe

i. Headboard

1. Can detach from bed

2. Have space for lighting

3. Have electronics bay for control panel and any wiring

ii. Footboard

1. Can detach from bed

2. Designed for strip lights along the back

3. Space for built in sound bar

4. Designed for easy access to wiring

iii. Two Mainframe Modules

1. Minifridge must be incorporated

2. Minifridge must be able to go on either side of bed

ENT 497 Senior Design 13

3. Drawers should be built in to make use of excess space under bed

E. Design Electrical Controls

i. One main plug to wall outlet

ii. Two uncontrolled outlet boxes (for fridge, sound system, and any other

always-on electronics)

iii. Two controlled outlet boxes (controlled by relays connected to Raspberry

Pi)

iv. Power supply for fans

1. Fans consist of four sets of two

a. One set of two on either side of the headboard

b. One set of two for each minifridge compartment

v. Power supply for NeoPixels

Construction Logistics Plan

F. Transportation

i. Large, enclosed trailer

1. Borrow from Phillip Jackson Family

ii. Truck to pull trailer with

1. Chris Waidelich or Jerry Klopfenstein

G. Construction Location

i. Rough board cutting

1. Waidelich Shed

2. Rocke Wood Shop (IL)

3. Lanz Construction (IA)

ii. Board finishing and fastening

1. Lanz Construction (IA)

H. Electrical Assembly and Project Staging

i. Northwest State Community College

Construction of Bedframe

I. Footboard

i. Prepare main posts

1. Add grooves and chamfers

ENT 497 Senior Design 14

2. Cut posts down to size

ii. Tongue & Groove wall

1. Add grooves and chamfers to boards and cut to length

2. Glue top channel together and the bottom channel together

3. Build speaker box base and attach to top channel

4. Attach posts to footboard base

5. Lay rubber/foam compression strip

6. Assemble T&G wall and secure with speaker box base/top channel

iii. Build speaker box

1. Cut side boards to shape and mount

2. Add top mounting blocks

3. Build footboard top

a. Add chamfers and finish wood

b. Resin in screws to align with mounting holes

iv. Final Assembly

1. Make sure all parts fit together

2. Sand any rough areas smooth

3. Add finish

J. Headboard

i. Main Frame

1. Prepare Main Posts

2. Use extra T&G channels for sides

3. Pocket screw cross members to posts

ii. Headboard Housing

1. Cut base to size and secure to frame

2. Add dividers

3. Cut and mount front face frame

4. Cut, glue, and mount top frame

5. Screw on headboard top

6. Secure backing plywood

iii. Final Assembly

ENT 497 Senior Design 15

1. Make sure all parts are fitting correctly and the frame is within

dimension

2. Cut holes for electrical wires and NeoPixels

3. Sand any rough areas smooth

4. Add finish

K. Right and Left-hand Frame Modules

i. Cut plywood sheets to size

ii. Construct main beams

iii. Cut top frame pieces and secure together

iv. Cut front frame pieces and secure together

v. Main assembly

1. Construct frame from prepared plywood pieces

2. Build minifridge box

a. Cut holes for cooling fans

b. Finish interior

3. Add front and top faces to plywood frame

4. Add drawers

a. Mount drawer rails

b. Mount drawer faces to drawer boxes

c. Add drawer handles

5. Check fit dimensions

6. Ensure modules fit together well

7. Sand any rough areas

8. Add finish

L. Final Assembly

i. Build fan grids

1. 3D print fan grids

2. Install in proper holes on frame

ii. Assemble all modules

1. Check module fit with each other

2. Make final holes and pathways for electrical wiring

ENT 497 Senior Design 16

Installation of Electrical Components

M. Main Electrical Outlets

i. Main cord to junction box

1. Power leading to footboard for speaker bar

ii. Mount electrical outlet boxes

1. Two directly from junction box

2. Two through relays controlled by Raspberry Pi

N. Installation of Sound System and Minifridge

i. Sound system

1. Test sound system outside of bedframe to ensure function

2. Mount speaker bar in footboard

3. Mount subwoofer under center of bed

4. Mount surround speakers in headboard

5. Run HDMI cables and speaker wires

ii. Minifridge

1. Test minifridge to ensure function

2. Mount minifridge in compartment

3. Run minifridge and monitor temperature with and without fans

O. Programming of Raspberry Pi (outside of bedframe)

i. Touchscreen

1. Develop program for interfacing with touchscreen

2. Test program and work out bugs

ii. Relay-controlled outlets

1. Add program to activate and deactivate relays from touch screen

2. Test and debug program

iii. NeoPixel Strips

1. Develop program for controlling NeoPixels from touchscreen

2. Test and debug program

3. Cut NeoPixels to needed lengths and connect into replica of what it

will be on bed

ENT 497 Senior Design 17

4. Develop program and interface to control the different sectors

separately

a. Headboard left

b. Headboard Right

c. Around the Frame

5. Test and debug control program

6. Develop program for passive color patterns

7. Test and debug program

iv. Fan controllers

1. Minifridge fans

a. Develop program to passively control cooling fans for

minifridge

b. Test and debug program

2. Sleeper cooling fans

a. Develop program to control fans for headboard

b. Develop interface for head fan controls

c. Test and debug program

P. Installation of Raspberry Pi

i. Mount the Raspberry Pi in the control box

ii. Make control panel

1. 3D Print control panel

2. Secure touch screen to control panel

3. Mount buttons/potentiometers to panel

4. Install panel on headboard

iii. Connect control panel connections to Raspberry Pi

iv. Secure any circuit boards into control box

Q. Installation of NeoPixel Strips

i. Install the NeoPixel strips around the edge of the bedframe

ii. Install the NeoPixel strips in left and right compartments

iii. Connect strips back to Raspberry Pi

R. Installation of Cooling fans

ENT 497 Senior Design 18

i. Screw all eight fans into location

ii. Connect wires back to control box

Final Testing and Staging

S. Test Sound System and Minifridge

i. Ensure sound system works through various input sources

ii. Ensure minifridge is cooling properly

iii. Ensure minifridge isn’t overheating and cooling fans are working properly

T. Test Raspberry Pi Interface

i. Test relay interface

ii. Test fan interface

1. Left and right fan sets should work separately

2. Speed control is working properly

3. Fans can be turned off

4. Fans with fridge should run automatically

5. Fans with empty compartment should be left off

iii. Test NeoPixels

1. Test various passive color patters

2. Make sure the different sectors can be turned off independently

3. Test brightness adjustment on all sectors

U. Assemble Bed in Staging Area

i. Bed frame fully assembled in staging area

ii. Make bed

1. Place mattress on bed

2. Add sheets, pillows, and bedspread

3. Add accessories to headboard, snacks to fridge

4. Display lighting

Project Timeline:

This project was the responsibility of both members of the group, and each one

participated in some way on each task. Each phase of project development was assigned to one

ENT 497 Senior Design 19

person to take the lead on that specific phase, but the other team member was still actively

involved with that task as it progressed, allowing for the gain in knowledge and experience to be

shared by all team members.

Member Responsibilities:

• Jacob Klopfenstein:

o Mechanical Structure Design

o Wood Construction

o Transportation/Travel

o Electrical Wiring and Troubleshooting

o Papers/Progress Reports

• Chris Waidelich:

o Electrical Design and Schematic

o Raspberry Pi Programming

o GUI Development

o Program Debugging

o Slideshows/Presentations

Throughout the project, there were various deviances from the originally crafted timeline.

All of these instances related back to lack of experience and knowledge of exactly how the

project would be executed and what components would take more time. As seen in the Gantt

chart for the project, the construction of the bed and the programming was supposed to be run

congruently, with equal amounts of time divided for each piece of technology. In reality, the

construction of the bedframe started a little late (January 4th, as opposed to the projected January

1st), yet still finished months early (February 17th, as opposed to April 1st).

Meanwhile, the electrical install and programming progress didn’t go according to the

schedule at all. Instead, the GUI was developed first, with simple tasks like the fans and relay

controls being completed in a few days. The lights, however, took a majority of the programming

time, due to major complications with Raspberry Pi control integration. While a solution was

found, the total programming time was longer in that area than expected. Wiring was installed

for one component at a time instead of all at once as originally projected. This was done in order

ENT 497 Senior Design 20

to test the programming for each section, which was very beneficial to the project. Obviously, all

of these factors were not reflected on the original timeline.

Finally, a few additional software projects were added. An alarm clock feature with

custom alarms, ambient sound menu, and more advanced light menus to allow for a color wheel

and custom animations all extended the programming time even more than originally planned. In

the end, even with all the delays and changes, the project finished on April 14th instead of the

projected April 22.

Please Refer to Gantt Chart in Appendix C

Cost Projection:

The projected cost for the technology that will integrated into the bed was approximately

$2,183. This included the major prefabricated components such as the minifridge, sound system,

lights, mattress, and other components.

The projected cost for the hardware needed to construct the bed was approximately $415.

This include all major fasteners, including screws, bolts, drawer slides (side mount), and corner

brackets for attaching the headboard and footboard to the main frames.

The projected cost for the electrical components needed to wire and power the bed was

approximately $250. This included various wires, connectors and plugs, receptacles, and power

supply units to power each of the bed’s components.

Finally, the projected cost for the stock wood supplies needed to construct this bed was

approximately $2,005. This included the assembled drawer boxes, plywood sheets, and various

stock pine boards that would be cut to shape during construction.

In total, the projected cost of the completed bed was approximately $4,850. The main

source of funding was the Armin Fleck Senior Design Scholarship, which provided King of

Kings TechBed with $4,000 toward the project. All additional funding was supplied by the team

members. Below is the BOM for the project and all the parts it was projected to require and the

respective prices of the components:

ENT 497 Senior Design 21

Technology Products: Quantity: Cost: Total Cost:

VIZIO 36" 5.1.2 Home Theater Sound System with Dolby Atmos® | SB36512-

F6
1 $ 499.99 $ 499.99

Insignia™ - 1.7 Cu. Ft. Mini Fridge - Black Model:NS-CF17BK9 1 $ 99.99 $ 99.99

Adafruit NeoPixel Digital RGBW LED Strip - White PCB 60 LED/m PRODUCT

ID: 2842 (4 meters)
2 $ 107.80 $ 215.60

Adafruit NeoPixel Digital RGBW LED Strip - White PCB 60 LED/m PRODUCT

ID: 2842 (2 meters)
1 $ 53.90 $ 53.90

Raspberry Pi 4 Model B - 8GB RAM 1 $ 75.00 $ 75.00

Raspberry Pi 7" Touch Screen Display PRODUCT ID: 2718 1 $ 79.95 $ 79.95

Pair of Bedside Reading Lamps Deeplite 1 $ 29.99 $ 29.99

Wireless Charger Set 2 $ 24.99 $ 49.98

Noctua NF-P12 redux-1700 PWM, High Performance Cooling Fan, 4-Pin,

1700 RPM (120mm, Grey)
4 $ 13.90 $ 55.60

Antec 120mm Case Fan, PC Case Fan High Performance, 3-pin Connector,

PF12 Series 5 Packs
1 $ 24.99 $ 24.99

Nectar King Size Mattress 1 $ 999.00 $ 999.00

Total Technology Cost: $ 2,183.99

Hardware/Fasteners: Quantity: Cost: Total Cost:

1"x1" Key-hole Slide Corner Bracket 8 $ 4.00 $ 32.00

5/16" x 1.5"Lag Bolts (4pk) 4 $ 1.31 $ 5.24

Kreg Pocket Screws - 1-1/4", #8 Coarse, Washer-Head, 500ct 1 $ 14.99 $ 14.99

32" Drawer Sliders USF-NJ81A02-31 8 $ 41.98 $ 335.84

eBoot 100 Pieces Adhesive Cable Clips 1 $ 7.25 $ 7.25

Various other washers, nuts, and bolts 1 $ 20.00 $ 20.00

Total Hardware Cost: $ 415.32

Electrical Supplies: Quantity: Cost: Total Cost:

1875W Flat Plug Extension Cord 20 Feet 14 AWG 15A Black 20FT 1 $ 17.99 $ 17.99

Junction Box 1 $ 1.99 $ 1.99

4 in. x 2 in. Electrical Box 5 $ 0.99 $ 4.95

ENT 497 Senior Design 22

Wire Duplex Outlet 4 $ 4.49 $ 17.96

14 AWG Electrical Wire (25') 1 $ 14.99 $ 14.99

20 AWG Electrical Wire (100' spool) 1 $ 13.95 $ 13.95

 5 Way Spring Terminal Block (20pk) 1 $ 11.89 $ 11.89

3 Way Spring Terminal Block (20pk) 1 $ 9.59 $ 9.59

2 Way Spring Terminal Block (20pk) 1 $ 10.79 $ 10.79

Controlled Relay (3 pack) 1 $ 7.99 $ 7.99

Solder Wire 1 $ 8.00 $ 8.00

Wire Shrink 2 $ 1.99 $ 3.98

3-pin JST SM Plug + Receptacle Cable Set 8 $ 1.50 $ 12.00

Various Other Electrical Components 1 $ 30.00 $ 30.00

12V 5A Power Supply 1 $ 11.19 $ 11.19

Aclorol 5V 40A 200W Power Supply 1 $ 22.49 $ 22.49

Raspberry Pi USB-C 5V Power Supply 1 $ 10.99 $ 10.99

High-Speed Male to Female HDMI Extension Cable - 15 Feet 1 $ 14.99 $ 14.99

High-Speed Male to Female HDMI Extension Cable - 6 Feet 1 $ 7.50 $ 7.50

High-Speed HDMI Cable, 15 Feet 1 $ 11.99 $ 11.99

High-Speed HDMI Cable, 6 Feet 1 $ 7.00 $ 7.00

Total Electrical Supply Cost: $ 252.22

Wood/Boards: Quantity: Cost: Total Cost:

.75" x 11.25" x 10' Pine Board 4 $ 79.17 $ 316.68

.75" x 7.25" x 8' Pine Board 1 $ 34.36 $ 34.36

.75" x 5.5" x 8' Pine Board 3 $ 24.65 $ 73.95

.75" x 3.5" x 8' Pine Board 8 $ 15.13 $ 121.04

.75" x 1.5" x 10' Pine Board 16 $ 8.68 $ 138.88

3" x 3" x 8' Pine Board 3 $ 58.22 $ 174.66

1.5" x 3.5" x 8' Pine Board 4 $ 25.26 $ 101.04

Tongue & Groove 7\16" x 5" x 10' Pine Boards 7 $ 19.17 $ 134.19

Drawer Box 32" x 9.675" x 27.8125" Pine with Clear Finish 8 $ 66.26 $ 530.08

1/4" x 4' x 8' Appearance Grade Pine Plywood 1 $ 26.99 $ 26.99

ENT 497 Senior Design 23

15/32" x 4' x 8' Pine Plywood Grade A 1 $ 48.93 $ 48.93

15/32" x 4' x 8' Pine Plywood Grade BC 8 $ 38.00 $ 304.00

Total Wood Cost: $ 2,004.80

Total Overall Cost: $ 4,856.33

 The actual costs ended up being higher than originally projected. While some of the

technology, including the sound system and minifridge, were bought at discounted prices due to

a sale at the time of purchase, the higher cost of headboard fans, added Apple Watch chargers,

more LED lights for the charger mounts, and other costs pushed the actual technology cost to

around $2,375. Underestimations in electrical supplies and hardware costs were also higher,

coming in at around 365 for electrical supplies and $425 for hardware. The wood budget was

approximately $1975, coming in slightly underbudget.

 The main source of overbudgeting the project again stems from lack of knowledge and

experience, along with unforeseen events that left added cost to the project. First, a trailer was

promised to us by friends to use when transporting the bed to Ohio from Iowa where it was

assembled, but last minute the trailer was deemed busy and we couldn’t use it. This led to a $250

transportation charge to rent a trailer instead. Second, lack of experience in wood working led us

to neglect to include the cost of finishing supplies. This includes the wood stain, sealer, and

finish product, which totaled to an additional $100. Finally, the biggest cost that we neglected to

factor in was tool and shop space rental for the construction process. Originally, we believed we

could build the project with tools we had, but it became clear that wasn’t possible. We ended up

renting some space and shop tools in Iowa, which added an additional $500 to the project. The

total added costs to the project were approximately $1000 higher than expected.

Building of Project

 The King of Kings TechBed was finished on April 17th, 2021, when the final installments

were completed and the last major software bugs were patched. Seeing the bed go from a

concept, then to a design, and finally into a finished product that is both “cool” and usable was

an amazing experience for both team members.

ENT 497 Senior Design 24

Construction of Bed Frame

 The process of building the bed began with the

framing of the footboard. The design consisted of a

frame build around tongue and groove paneling. This

frame had a groove all the way around it for the T&G to

sit in, with a foam weatherstrip placed between the

T&G paneling and frame to keep pressure on the

paneling while allowing for the wood to expand and

contract due to temperature and humidity without

damaging the frame.

Next, holes were drilled in the posts that

began from the top of the posts and exited below

where the mattress would sit, allowing for wires

to be passed through. The top beam of the frame

also held a groove for the lights that would be

placed in the footboard, along with hidden wire

channels for powering and controlling the lights.

These grooves were cut with a combination of

dado blade and band saw. Once the bottom

portion of the footboard was finished, the speaker

box was constructed and secured on top. The top

of the footboard is removable to allow for access

in during the wiring process. The way this works

is bolts protruding downward from the footboard

top that fit through holes in framing on the

speaker box, after which nuts can be threaded on

to secure the top in place. Finally, bolts were

placed in the side of the posts where the main

frame will attach via the custom brackets.

Figure 8: Foam Strip

Figure 10: Footboard Framing and T & G

Figure 9: Speaker Box

ENT 497 Senior Design 25

The headboard again began with a

base frame, with the side panels using excess

lumber from the footboard to made an exact

copy of the footboard framing style for the

lights there. In this case, holes had to be

carefully drilled in the back for the wiring

channels, as the access for the wires to enter

and exit were in back of the pieces instead of

the top like the footboard. A post in the

center of the frame was discussed, but it was

decided as unnecessary due to the headboard

box itself acting as a beam. Any bowing and

warping that would take place would be fairly

minimal.

The headboard box was then

constructed. Because the joints were not exact

corners, and we didn’t want any screw heads

exposed for aesthetic purposes, we opted to

use biscuit connectors for these points.

Grooves were cut into both pieces where the

connection would take place, and wooden

“biscuits” inserted. With large amounts of

wood glue to ensure a solid connection,

everything was clamped tightly. While the

joints worked very well, the clamps were not

placed properly, and without adequate

support in the center for the way the box was

sitting while still drying, a slight warp was

developed. Measured to be around a quarter

inch, the warpage wasn’t enough to redo the

Figure 11: Biscuit Connections

Figure 12: Headboard Box

Figure 13: Drilling Holes for Fans

ENT 497 Senior Design 26

build, but enough that the trained eye could spot. The warpage was reduced as the rest of the

construction took place and the proper support was added to the headboard box design, but it was

never fully removed.

Adding the face frame helped reduce the warpage

even more, as the frame both aids appearances, hides any

end grain, and acts as support beams for the structural

integrity of the headboard box. The top frame was also

placed on, completing the large construction phases for the

headboard box. It was decided that it would be easier to

mount the top of the headboard box after the wood was

finished. Holes were then drilled in the sides of the

headboard box and the framing glued in place for the

headboard fans. Finally, the sanding process took place to

prepare the headboard for finishing. It

should be noted the headboard box

backing was left off for the same reason

as the top, as mounting after finishing

the wood would be a much better

process.

For the main frames, the process

was a little more complicated. The side

Figure 15: Mounting Brackets

Figure 14: Mounting Side Frames

ENT 497 Senior Design 27

frames were constructed, which was

then used to mark where the brackets

would mount on the footboard and

headboard. This process was done by

mounting the brackets to the

footboard and headboard, then

mounting the brackets to the main

frame front face with screws. This

allowed for a perfect fit on mounting

brackets (although that later proved

to be a slight problem when one of

the brackets had to be remounted and

didn’t fit quite as smoothly the

second time).

The top beam of the main frame front face side frames also contained a groove for the

NeoPixel lights, cut with the same blade that cut the groove in the footboard frame piece. Wiring

notches were also placed in the beam for hidden wiring purposes.

The minifridge boxes were constructed next. A higher-grade plywood was used for

aesthetic purposes. It was also thicker, which makes the boxes capable of bearing a lot of weight.

This was done on purpose for possible

future expansion projects, as discussed in

the conclusions and recommendations

section of this report. The main plywood

sections were made after the minifridge

boxes. The sections of plywood had to be

carefully assembled in order to keep

everything square, as the drawer sliders

would eventually be mounted to them.

The minifridge boxes were then mounted

to the side frames, with the final step

being to assemble the drawer framing with

Figure 16: Mounting Minifridge Box

Figure 17: Drawer Space Framing

ENT 497 Senior Design 28

the side framing. The entire process was one of the

most complicated parts of the project, as need for the

drawers to fit and function within the constraints was

crucial.

During the mounting of the plywood drawer

space framing to the side face frames, we had to

constantly

ensure our

tolerances were being held in check. During the clamping

process, multiple cracks were heard as the wood was

manipulated to fit the correct shapes and have tight

mounts. It was discovered that the face frame had cracked

above one of the minifridge boxes somewhere along the

process. Glue was used to fix the damage, and after

drying, the wood was sanded smooth. While still slightly

visible in the above image, the damage was nearly

impossible to find after the wood was finished. This was

the biggest case of damage during construction.

The next step was finishing the wood.

All parts of each module had to be carefully

sanded and prepared. A wood stain was

applied first. We choose Chestnut Base as the

color of the stain, as it matches most other

furniture colors. Next, a sealer was applied to

the wood to protect it. This layer was again

given a light sanding before a finishing coat

was applied. This coat was designed to give

the wood a glossy appearance and act as a final protection coating for the wood. The process

took two days, as each coat had to dry before the next could be applied. During this process, it

Figure 18: Fixed Face Frame After Crack

Figure 19: Wood Finish on Footboard

Figure 20: Finishing the Plywood Top

ENT 497 Senior Design 29

must be noted the topping plywood and drawer faces were also cut, sanded, and finished along

with the rest of the modules and pieces.

Mounting the drawers was the final

stage of the construction process. This was

done in three phases: the mounting of the

slider on the boxes, the mounting of the

slider on the main frame, and the mounting

of the drawer face and handles.

The first phase of mounting the

sliders on the drawer boxes consisted of

mounting the internal part of the slider to

the drawer boxes, using careful

measurements to ensure they will line up in the main frame. The second phase consisted of

mounting rail mounting pieces to the sides of the drawer box space, as the plywood itself was too

thin to mount the drawers directly to in the first place. This was the design plan all along. Then,

the outer portion of the drawer slider was mounted to the rail mounts, again using careful

measurements to ensure the boxes would

be positioned correctly.

Finally, the drawer faces were

mounted to the drawer boxes. By

mounting the drawers in this order, we

didn’t have to worry about mounting the

drawers absolutely perfectly in order for

the face to look nice. The drawer could be

slightly crooked in one way or another,

but as long as the face frame was mounted

with a centering to the opening in the

Figure 21: Mounting of Drawer Sliders

Figure 22: Mounting Drawer Faces

ENT 497 Senior Design 30

frame instead of to the drawer box itself, any misalignment

would go unnoticed. Mounting went well, with only one drawer

proving to be mounted at a slight angle, causing one of the

drawer face corners to protrude from an otherwise flush face.

However, the deformation was less than a sixteenth of an inch,

so it was ignored. After the handles were added to the drawers,

the plywood tops were placed

on.

This completed the

construction process of the

physical bedframe. The last

major milestone was

transportation back to Ohio

from Iowa. As previously

mentioned, the trailer that was

going to be borrowed for the

journey was unavailable at the

time of transportation. A U-

Haul was rented from a nearby

town, and the bed frame

modules were placed in the

trailer, carefully wrapped in

protective blankets, and driven back to Ohio. However, there

wasn’t enough packing underneath the legs of the footboard,

leading to damage from parts of the wood chipping off due to

rough roads. Thankfully, the damage was mostly hidden after

being glued back on and coloring put on any white pine

showing through the damaged stain.

The only other assembly that took place was the printing of 3D components for the fans

and air deflector assembly. The assembly took place as the pieces were printed and were

mounted alongside the process of wiring. In some case, parts were modified and reprinted based

Figure 23: Damaged Footboard Leg

Figure 24: Repaired Footboard Leg

Figure 26: Second Damaged Footboard

Leg

Figure 25: Second Repaired Footboard

Leg

ENT 497 Senior Design 31

on slight design changes or incorrect hole dimensions.

The main 3D printed parts were for 120mm fan

covers, air deflector mechanism, touch screen mount,

and wireless chargers. For the fan covers, the design

was made to be a tight slip-fit into the holes in the

wood. Behind the visible cover is a small structure

designed to give the guard strength should someone

push the covers with their hand, such as a child. For

the air deflectors, the mechanism was sanded in places

for a smooth fit. The deflector blade attaches to the

post via 3D printed mounting grips. These grips were

designed to be held on with friction by tightening the

screws. Most parts of the air deflectors worked well,

but small extensions were added on top, along with

airfoils directly to the headboard box top, because too

much air was escaping around the deflector.

The touch screen mount was going to be too

large to print in a single piece, so it was printed in two

separate pieces with a smaller piece that could be

friction fit and glued in slots to give the frame strength.

The second aspect was that the frame had to be

assembled and mounted in a way that access could be

gained to the

electronics

bay through

the front panel. Thus, an outer structure, the one

printed in two pieces, screws directly to the front face

of the headboard box while the main panel screws into

that. Finally, it was decided to print the physical

control knobs on their own sub-panel for future-

Figure 27: 3D Printed Fan Covers

Figure 29: Wireless Charger Mount (Lights Off)

Figure 28: Wireless Charger Mount (Lights On)

ENT 497 Senior Design 32

proofing purposes. If the user would ever want to

change what the physical controls were, they wouldn’t

have to reprint the entire panel.

The final 3D printed parts to be created and

mounted were the wireless charger mounts. The three-

tier design was built for the modern trio of wireless

charging accessories: smartphone, wireless earbuds,

and smart watch. In this case, the smart watch designed

for was specifically and Apple Watch, while the wireless earbuds and phone chargers can fit any

brand. These chargers are of course plugged into a relay

controlled plug for the Raspberry Pi to control. A

second feature that was added was internal paths

throughout the structure. There were select paths for the

wiring that would power the charging pads themselves,

and other paths made for stringing LED lights through.

Since the plastic used to make the wireless charging

mounts, as opposed to black PLA for the other 3D

printed parts, the internal lights allowed the wireless

charger mounts to glow a brilliant white when toggled on via physical button (explained more in

the programming section of this report), and would glow a neon green when toggled off after a

minute or two of charging.

As the physical construction ended, the focus shifted to running all the wires needed to

power and control the bed, along with the testing of various programming aspects and refinement

of the graphic user interface, as put together by Chris Waidelich.

Programming

 The King of King’s Techbed program was mainly written in Python and Kivy. Python is

an interpreted, object-oriented, high-level programming language with dynamic semantics. Kivy

is an open-source Python library for rapid development of applications that make use of

innovative user interfaces, such as multi-touch apps. Python was chosen because of its user

friendly, high leveled characteristics. It made for an easier experience when writing code for the

Figure 30: Wireless Charger Mount (Glowing)

Figure 31: Touch Screen Mount

ENT 497 Senior Design 33

King of King’s Techbed program. Kivy was chosen for the graphical user interface because out

of all the graphical user interfaces available on the Raspberry Pi, Kivy provided the most modern

and up-to-date look.

Referencing the King of King’s program code there are two program files. The first

program file is the Python file and the second file is the Kivy file. The Python file is for

importing libraries, defining variables and GPIO pins, defining classes and functions, and more.

The Kivy file is for coding and organizing Kivy widgets. There are two files when writing code

for Kivy because if only one file were used, the main file could become very long. This approach

keeps the program organized and more efficient to manage. By coding conventions, libraries are

imported at the beginning of the programming file so they can be used throughout program.

Likewise, the King of King’s Techbed program imported 38 libraries at the beginning of the

Python file. Below is a list of some of the important libraries that were imported into the

program.

• Screen Manager

• Parser

• String Property

• List Property

• Label Base

• Backlight

• Popup

• Clock

• Builder

• App

• GPIO

• LED Animations

• Threading

ENT 497 Senior Design 34

• Board

• Neopixel

• Time

• Pygame

• Datetime

• Encoder

• Re

• Decimal

These libraries and their functionality will be discussed throughout the rest of the report.

The second section of code is where the Neopixel LED light strips are initialized,

variables are defined, GPIO and PWM pins are defined, the Pygame audio channel is set up, the

backlight object is defined, and more. Specifically looking at lines 34 and 35 the Label Base

library is used to import a new font. Kivy only has so many fonts available and there were other

fonts desired. Centaur was the desired font. The Label Base library allowed for the import of this

font. Looking at lines 37 through 42 the Neopixel LED light strips are initialized. Neopixel

lights use a different method of interacting with the GPIO pins compared to other general-

purpose outputs. The Neopixel lights use the board library to do this. The King of King’s

Techbed program has the light strips communicate with pin 10 by setting the variable pixel_pin

equal to board.D10. The other lines of code set up the number of LED lights that will light up,

the brightness, pixel order, etc. Looking at lines 43 through 50, variables are set up for the GPIO

devices. These variables help identify a given GPIO and can be referenced by the variable name

to be used.

The next section of code, lines 52 through 61, determines the identification system for the

GPIO pins and sets up the numbered pins as either an input or an output. The identification

system can either be the physical pin number or the GPIO number. The King of King’s Techbed

uses the GPIO identification system. The next section of code, lines 70 through 75, creates the

Pygame audio channel, the encoder object, and the screen brightness object. When running the

ENT 497 Senior Design 35

program, the audio channel does not have anything loaded into it. By default, the King of King’s

Techbed program loads the birdsong alarm, so no errors occur. The last section of code is where

the encoder function is defined along with global variables that contribute to this function. The

encoder function adjusts the brightness of the screen. It does this with an event detection on the

25th pin. Whenever the Raspberry Pi senses a voltage change on pin 25 it fires off the change

brightness function. The changes brightness function works by using three global variables x, y

and Count. X is set equal to the value of the encoder and y is set to the previous value of the

encoder. If x is greater than y when the function is executed, then it adds 10 to the variable Count

and the screen brightness value. If x is less than y, then 10 is subtracted from Count and the

screen brightness value. There are also other statements to ensure that the value never goes under

0 or above 100. The last section of code is where the encoder button press function is defined. It

also uses an event detect to execute itself. If the voltage changes on GPIO pin 1, then the toggle

white noise function is fired off. The toggle white noise simply pauses and plays the audio file

loaded into the pygame channel.

The next section of code is where the Main Screen is initialized, and its functions are

defined. The main screen is one of the most complex screens in terms of the number of functions

that are defined. The first function is the Relay on function titled “ROn”. This function takes one

additional argument which identifies which relay to turn on. This function simply turns on a

relay if it is not already on. The next function on the main screen is the Relay Off function, titled

“ROff”. This function works in a similar fashion as the Relay On function except it turns off a

relay. The third function defined for the Main Screen is the Left Fan on function. This function

does more than just turning a relay on or off. It also sets the speed of the left fan, changes the left

slider position, and changes the left fan label text accordingly. Getting into more detail, if the

state of the left fan relay is on or equal to 1, executing this function sets the left fan speed to 0,

changes the slider position to zero, and changes the fan label text to 0. If the left fan relay state is

off or equal to 0, then executing this function sets the left fan speed to 25, changes the slider

position to 25, and sets the left fan label text to 25. The right fan Off function works in a very

similar fashion as the left fan on function except it adjusts the right fan speed, slider position, and

label text. The fifth and sixth function on the main screen are the change left fan speed and

change right fan speed titled LFanCS and RFanCS. These functions take an additional argument,

value1 and value2, and changes the value of these PWM devices in real time. The seventh

ENT 497 Senior Design 36

function on the Main Screen is the power off function. This function sets all the output devices to

OFF and then exits the program. The eigth function is the updateTime function. The updateTime

function works a little different than the other functions. This is because it is performed on a

specified time interval. It runs every five seconds. This function has many sub functions inside of

it which update the time and date labels, adjusts the am/pm label position, and checks to see if an

alarm needs to go off. The sub function that updates the time and date labels works by utilizing

the datetime module. It does this by taking the hour, minute, and am/pm parameters of the

datetime module and setting them equal to the time and am/pm label text. The date works a little

differently because when using the day and month parameter of the datetime module a number is

returned instead of the word. For example, 1 is returned for Monday and January. To get around

this, a case switch function was utilized. The case switch functions takes the given number and

then gives the equivalent word value to that number. To get the date and year, the program

simply takes the date and year parameter of the datetime module and sets it equal to the date

label text. The next lines of code, lines 246 through 250, assure that the time and am/pm label are

aligned properly. Since times very from 3 digits to 4 digits the program needs to align these

labels accordingly. The next sub function in the update time function is the open alarm function.

This function does what it implies. It opens the alarm popup when the function is executed. The

last portion of the code, lines 260 through 280, checks to see if an alarm needs to go off. It does

this by simply comparing the current time string to the alarm string. This code also turns on the

Neopixel LED lights slowly from five minutes before the alarm is supposed to turn on until the

alarm needs to turn on. It does this by first taking the current alarm string and subtracting five

minutes from it. Then it compares that five minutes before alarm string to the current time string

and if they are equal, it sets a Boolean variable lightBool equal to True. Then one last if

statement checks to see if lightBool is true and the brightness of the lights is less than 255. If this

if statement holds true than the alarm lights begin to turn on. These lights continue to get brighter

as the update time function continues to execute. The last function on the main screen is the on

enter function and on kv post functions. The on enter function checks to see if an alarm is set so

it can activate the alarm icon.The on_kv_post function executes the update time function as soon

as the main screen is opened and then every five seconds after that.

The next section of code is where the Advanced Color Screen is initialized, and its functions are

defined. This screen is a little simpler than the main screen in terms of the number of functions

ENT 497 Senior Design 37

that are defined. At the beginning of this screen there are four global variables labeled r,g,b,w.

These variables are used by multiple screens to change the rgbw values of the Neopixel Led

lights. The first function on the Advanced Color Screen is the addWhite function. This function

takes an extra argument titled value which gives the white slider the ability to change the amount

of white that is showing on the Neopixel LED light strips. When the user adjusts the slider on the

Advanced Color Screen, they adjust the value of the white light in real time. The second function

on the Advanced Color screen is the tuner function. This function is like the add white function

except it alters the green and red values on the Neopixel LED lights. This allows the user to

create a warmer or colder color by adding or subtracting the value of red and green that is

showing on the Neopixel LED light strips. The last function is the clear light’s function. This

function sets the r,g,b,w values to zero which turns off the lights all together.

The third screen in the King of Kings Techbed Program is the LED Animations 1 screen.

An animation is a moving graphic that displays on the Neopixel LED light strips. This screen

plays and customizes the first six LED animations available. At the beginning of the LED

Animations 1 screen there are four different variables titled speed1, cString, size1, and

colorTouple that aid in adjusting the properties of the Neopixel lights. The first function on the

LED Animations screen is the set size function. This function does as the name implies and sets

the size of the animation where it is applicable. It does this by taking an extra argument titled val

and then sets that equal to the global variable size1. The next function is the set speed function.

This function works a lot like the set size function except it sets the speed where applicable. The

third function on the LED Animations screen is the set color function. This function is very

complex because it needs to set the color of the animation, display the text in a label, and set the

color of the label text to the color that is displayed.

The first part of the set color function is the case switch function which selects the

appropriate color text to display based off of the position of the color slider. Then once the color

is selected on the color slider the appropriate color needs to be selected for the text and for the

Neopixel lights. A series of if statements run through the possible position selections on the

slider and sets the appropriate color value. The third function on the LED Animations screen is

the set Animation State function. This function seven global bool values that represent each of

the animations available on the first Animation screen. When this function is executed, it sets all

of these variables to False. Then depending on which animation was selected, that animation

ENT 497 Senior Design 38

Boolean value is set to true. It does this by first addressing which animation the user selected.

When the user selects an animation, a number 0 – 6, is returned. The if statements determine

which number was returned and sets the appropriate animation Boolean variable to True. The

fourth function on the LED Animations 1 screen is the start thread function. The program needs

to utilize multithreading because the animations need to be run inside of an infinite loop. If

multi-threading was not implemented, then the main program would get stuck inside of this loop.

So, the first section of the start thread function is where the seven different animations are

initialized. These different initializations take many parameters such as speed, size, and color.

This is where the global variables speed1, cString, and colorTouple are used to adjust the

animation properties.

The fifth function in the LED Animations screen is the startThread function. Since

Python has no way of terminating threads inside of the main thread there needed to be a work

around in order stop and terminate a thread. The way this was accomplished was by declaring a

global variable inside of the start thread function. Depending on what this variable is set to it will

determine whether a thread will be created later in this function. This function starts the

appropriate animation infinite loop inside a thread based of which animation Boolean variable is

true and if the stop_thread variable is false. The sixth function on the LED Animations 1 screen

is the Stop Thread function. This function sets global variable stop_thread to false. This breaks

the infinite loop that the animation is running in and then terminates the thread. The last function

on the LED Animations screen is the UpdateTime2 function. This function is identical to the

updateTime function on the main screen. The difference is that it displays the time in the labels

on the LED Animations 1 Screen.

The fourth screen part of the King of King’s Techbed program is the LEDAnimations 2 screen.

This screen is almost identical to the LED Animations 1 screen except that it has different

variable and function names, and it runs rainbow animations.

The fifth screen in the King of King’s Techbed program is the LED color screen. This screen sets

the solid color of the Neopixel LED lights. The first function of the LED color screen is the set

color function. Inside of this function there are four global variables titled r,g,b,w that are used

throughout the program. These variables are then set to zero and sent out to the Neopixel lights

to ensure an accurate color selection every time the function is run. Then, in real time, values are

ENT 497 Senior Design 39

then retrieved from what the user selected on the color picker wheel. These value are converted

to an integer and then set equal to the global r,g,b,w values that were declared earlier. Then once

these values are set, they are sent out to the Neopixel LED light strips and displayed. The second

function on the LED color screen is the clear light’s function. This sends out a zero value for

each of the r,g,b,w parameter on the Neopixel LED light strip and turns the lights off.

The sixth screen that is part of the King of King’s Techbed program is the alarm screen.

At the beginning of this screen there are global variables atime, which is short for alarm time,

and am/pm that are declared to be accessed throughout the program. They are set to zero at first

to assure that there are no alarms set. The first function on the alarm screen is the set alarm

function. The King of King’s Techbed program utilized the Regular Expression library to ensure

that no invalid times could be set for the alarm time. This function does what the title implies. It

sets the user input equal to the global variable atime and then sets the alarm. There are two

subfunctions that are defined under the set time function which are the open ValidPopup and

open InvalidPopup functions. A series of if statements check to see if a valid or invalid time was

submitted. If the alarm is a valid time, a Popup appears titled valid alarm. This Popup reminds

the user of what time they set their alarm and to press continue to return to the main screen. If the

user enters an invalid time, a Popup appears showing what the user submitted. The Popup tells

the user they need to enter a valid time and they press continue to return back to the alarm

screen.

The second function on the alarm screen is the setAMPM. This function sets the global

am/pm variable to am or pm based off what the user picked. The third function on the Alarm

Screen is the time Input function. This function takes what the user is writing and puts it in a text

box. It also assures that the user cannot write over 5 characters because this would result in an

invalid time. The fourth function on the Alarm screen is the backspace function. This function

does what its name implies. It deletes a character from the farthest position to the right. The fifth

function on the Alarm screen is the turnAlarmOff function. This function sets the global atime

variable equal to zero, shuts off any audio that is playing, and turns the Neopixel lights off.

Essentially turning the alarm off. The last function on the Alarm Screen is the updateTime3

function. This works identically to the other updateTime functions, but it displays the time on the

Alarm Screen.

ENT 497 Senior Design 40

The seventh screen in the King Of King’s Techbed program is the Alarm Sounds screen.

This screen works as a place where the user can test out and select an alarm they like. This

screen has a global variable declared at the top named current alarm. This variable holds the

name of the current selected alarm and assures that this alarm sound is played when the alarm

goes off. The first function is the load Alarm function. This function takes an extra argument,

which is the path of the alarm sound and loads it into the audio channel. It then sets itself equal

to the currentAlarm variable. The second and third function on the Alarm Sounds screen are the

play and stop sound functions. They simply do what the name imply. They play or stop whatever

audio file is loaded in the audio channel. The last function on the Alarm Sounds Screen is the

updateTime4. This works just like the other updateTime functions and displays the current time

on this screen.

The eighth and last screen of the King of King’s Tehcbed program is the White noise

screen. This screen works just like the Alarm Sounds Screen, except it provides users a place to

select white noises and it provides the extra functionality of pausing a sound. The pause function

checks to see if there are any sounds playing, and if there is, then the audio file is paused. If there

are no sounds playing, and there is an audio file loaded into the channel, then the file resumes

playing where it was last paused.

The next portion of code is where the Popup menus are defined, and their functionality is

also defined. The first popup that is defined is the Valid Popup. This popup is simple in terms of

functionality. When the popup appears on the screen it executes a function that shows what the

user entered for an alarm.

The next popup that is defined is the Invalid Popup. This popup is basically the same as

the Valid Popup except it also tells the user that they need to re-enter a valid time.

The third popup that is defined is the alarm popup. The first function that is in the Alarm

Popup is the turn alarm off function. This function sets the global variable atime to zero, which

turns the alarm off. It also stops the current audio file and changes the activated icon on the home

page to its off position. The next function is the turn alarm and lights off function. This function

is the same as the turn alarm off function, but it also turns off the lights that were turned on from

the alarm. Adding both functions allowed for the user to decide whether they want to leave the

lights on so they can see when the alarm goes off.

ENT 497 Senior Design 41

The fourth Popup that is defined is the LWCPopup. This stands for Left Wireless Charger

Popup. This popup appears when the user turns on the wireless chargers. Since everyone knows

that it is not good to leave your phone plugged into a charger when it is completely charged, the

King of King’s Techbed gives users various options for how long to turn on the wireless

chargers. When the popup appears, the user has four different options to choose from: 1.5 hours,

1 hour, 30 mins, and On. The wireless chargers then stay on for the amount of time that was

pressed. The icons also stay lit up to show that they are on. The first function inside of the left

wireless charger is the timed relay function. This function has two subfunctions that are titled

relayOn and relayOff. When a time is pressed in the popup, the relay On function is executed.

Then the clock interval function waits for the specified time to pass and then executes the relay

off function. The second function in the left wireless charger popup is the relay On function. This

function just turns the relay on if the user decides to turn the wireless chargers on indefinitely.

The last popup named RWCPopup works in a similar way as the LWCPopup except it controls

the left wireless charger.

Line 1033 is another important line of code because it uses the builder library to load the

Kivy file. This line of code is important because without it the program file would not be able to

build the GUI and function correctly.

The last line of code is where the app class is defined. The app class is the base for

creating Kivy applications. It is the main entry point into the Kivy run loop. Here the Screen

Manager and all the other screens are defined as well. The screen manager does about what the

name implies. It allows for other screens to be defined and it cycles through the screens when the

user or code tells it to do so.

That is a detailed overview of how the Python file works in the King of King’s Techbed

program. The Kivy file is the second file, and this is where the widgets are organized and where

the GUI is built and functions are binded to the GUI events. At the top of the file there is a

library called Factory that will be later described in the report.

The first section of code in the Kivy file is where the Main Screen GUI is defined. Here

the name of the screen is set to main, and the declaration of a float layout is stated. The name of

the screen is important because it is how the screen manager switches between different screens

and it is also how different classes access properties from that screen. The float layout is how the

ENT 497 Senior Design 42

widgets can be laid out in the screen. Kivy offers many different layouts but the float layout was

desired because it allows for the programmer to choose exactly where they want the widgets to

go. Looking inside of the float layout there are five labels, nine buttons, and two sliders. When

looking at each of the widgets there are many properties that can be set to change the behavior

and appearance of the widget. For example, the first label has 6 different properties that are

defined. It has an id, color, font, font size, size, and position property. These properties allows it

to have the widget appear and behave how it was intended. Every widget has a set of properties

that can be set to get a desired appearance and behavior. The six labels were used to display the

date, time, and cooling fan percentage speed. The sixth widget was the LED light button.

Looking at the properties for this button there is a property that states on press. This

means that on the press of this button it performs the function that is set equal to it. This is also

known as binding a function to the button. The function that is bond to this button is

app.root.current = “advancedcolor”. This function takes the user to the advanced color screen

from the main screen. Lastly it can be seen that the last property is an image. A Led light image

was used as an icon for this button instead of text. This was to give it a more modern look. The

seventh and eighth widgets on the main screen are the left and right lamp buttons. Rounded

Toggle buttons were chosen because they have two states. They have a down and a normal state.

The desired outcome was to have the button icon light up to a pink color when the button was in

the down state. Then when the icon was in the normal state it would stop executing any functions

that were running and return to a black color.

The other advantage of having two states is that each state can have a function bond to

them. In this case the down state had the ROn function bond to it and the normal state had the

ROff function bond to it. These functions will turn the left lamp relay on for the left button and

the right relay for the right button. This was the case for most of the toggle buttons in the King of

King’s Techbed program. The ninth and tenth widgets on the main screen are the left wireless

charger and right wireless charger toggle buttons. These toggle buttons have the ROn function

bond to the down state and the ROff function bond to the normal state. The eleventh widget on

the main screen was the white noise button. This button has a function that takes the user from

the main screen to the white noise screen bond to it.

ENT 497 Senior Design 43

The twelfth widget on the main screen is the power button. This button has the power off

function bound to it. This function will turn all of the output devices off and then exit the

program. The thirteenth widget is the alarm button. This button has a function bond to it which

will take the user from the main screen to the Alarm screen. The fourteenth and fifteenth widget

is the left and right fan buttons. These are toggle buttons, and they have the LFanOn and

RFanOn functions bound to their normal and down states. If the fan was previously off, these

functions will turn the assigned fan on, set the slider position to 25 percent, and set the label text

to 25 %. If the fan was on these functions will turn the assigned fan off, set the slider position to

zero percent, and set the label text to 0%. The last two widgets on the main screen are the left

and right fan sliders. These sliders are bound to the LFanCS and RFanCS functions and will

change the speed of the cooling fans to the desired speed in real time. They are also bound to a

function that shows the position of the slider in a percentage format in the assigned labels.

The next portion of code on the KV file is where the Advanced Color GUI is defined.

Here the name is set to advanced color and a float layout is utilized. This screen has a total of

eight widgets defined. It has four buttons, two labels, and two sliders. The first widget is the

custom color rounded button. This has a function bound to it which will take it to the custom

colors screen from the advanced color screen. The second widget is the animations rounded

button. This button has a function bound to it that will take it from the Animations screen from

the advanced color screen. The third widget on the advanced color screen is the clear lights

rounded button. This button has the clear lights function bound to it and will clear the value of

the r,g,b,w variables and turn the lights off. The fourth widget that is on the Animations screen is

the return button. This has a function bound to it which will take the user back to the main screen

from the Advanced Color Screen. The fifth and sixth widgets are labels. These widgets simply

show what which slider stands for in the following widgets. The last two widgets are the tunable

slider and the add white slider. The tunable slider is bound to a function that adjusts the value of

the green and red parameters on the Neopixel lights in real time. This allows the user to create a

warmer or colder color. The white slider is bound to a function that adjusts the white value of the

Neopixel lights. This allows the user to create a lighter or darker color.

The next portion of the code in the KV file is where the LED Animations 1 screen is

defined. Here the name is set to animations and the float layout is utilized. This screen has

twenty widgets. These include ten buttons, eight labels, and two sliders. The first two widgets are

ENT 497 Senior Design 44

the time and date labels. These labels display the current time and am/pm information. These

labels do not have functions bound because they have functions that access the label properties to

update the time on a five second interval in the Python file. The next six widgets that are on the

LED animation screen are six rounded toggle buttons. In Kivy, toggle buttons can be set to a

group to assure that only one toggle button is pressed down, and the rest are up. In this case,

these six buttons are set to one group called animations. Each of these six toggle buttons have a

function bound to them that sends value signifying which button was pressed. This sets a

Boolean value true in the Python file which lets the program know which animation to have set

up for use. The next two widgets on the LED Animations Screen are the pause and play buttons.

These buttons are bound to the start Thread and stop Thread function. When the user presses the

play button the play icon lights up and the animation starts. When the user presses the stop

button the play icon goes back to black and the animation stops. The next two widget on this

screen are the return button and rainbow animations button. The return button is bound to a

function that returns it to the main screen. The rainbow animations button has a function bound

to it that will take the user to the LED Animations 2 screen from the current screen. The next

four widgets on the LED Animations Screen are the labels. The color and speed label simply

have color and speed set for there text to show what the two sliders stand for. The other two

labels show what speed and color the animation is set to based off the slider positions. The last

two widgets on the LED Aniamtions Screen are the speed and color sliders. These sliders have

functions bound to them which allow the user to adjust the color and speed of the animation. The

LED Animations 2 screen is almost identical to this screen except it plays rainbow animations

and it has speed and size as the customizable properties instead of color and speed.

The fifth screen that is defined in the KV file is the LED color screen. Here the name was

set to ccolor which is short for custom color. The floatlayout was utilized for this screen as well.

The custom color screen has five widgets. It has a color picker and three buttons. The first

widget defined on the custom color screen is the color picker. The color picker is a color wheel

that can be used to generate a custom color. Depending on where the user touches on the color

wheel the color wheel will generate rgbw, hsv, and hexadecimal values that match the color the

user created. These values are set equal to the rgbw values in the Python file. The user can

display this color on the Neopixel lights if they decide to. The next widget on the custom color

screen is the set button. Since the color wheel does not work in real time to display colors on the

ENT 497 Senior Design 45

Neopixel light strips a set button needed to be made. The set button is bound to a function that

sends the necessary information out to the LED light strips to display the color. The next widget

in the KV file is the clear button. This button does what it implies and is bound to a color that

clears the rgbw values and turned the lights off. The last widget on the custom color screen is the

return button. This button is bound to a function that takes the user back to the advanced color

menu.

The sixth screen defined in the KV file is the Alarm screen. The Alarm Screen name was

set to alarmscreen and utilized a float layout. The alarm screen has 23 widgets. It has five labels,

fifteen buttons, two checkboxes and a text input box. The first two labels are the date and time

labels. These label’s properties are accessed by the Python file and display and update the time

every five seconds. The third widget is the alarm label. This label simply displays where the text

input box is where the user is going to input an alarm time. The fourth widget is the time input

text box. This is where the alarm shows up as the user inputs the information with the numbered

buttons which will be further explained in the paper. The next four widgets are two labels and

two checkboxes. Checkboxes work in groups and only allow for one of them to be checked. This

is what was desired because the user needed to choose between am and pm. The two labels

differentiate the two checkboxes from am to pm. The text in these labels are “am” and “pm”

respectively. The two checkboxes are then bound to functions that set the alarm time to am or

pm. The next widget is alarm button. This button is bound to a function that takes the user to the

alarm sounds menu from the alarm menu. The next two widgets are buttons as well. These

buttons are the set and cancel button. The set button is bound to a function that will take the text

and am/pm parameters and will attempt to set the alarm. The Python file will check to see if this

time is valid or not and if it is the alarm will be set. The cancel button is bound to a function that

will turn the alarm off and erase the any previous alarms that were set. This button will also take

the user back to the main screen. The next 12 widgets are buttons that make up a custom

keyboard that the user can use to set alarm times. The buttons have text from 0-9, a colon, and a

backspace. These buttons have functions bound to them to allow typing alarm times and

backspacing if needed to.

The seventh screen that is defined on the KV file is the Alarm Sounds screen. This

screen’s name is set to alarmSound and utilizes the float layout. This screen has 17 widgets.

These are two labels and fifteen buttons. Like a lot of the screens the first two labels display the

ENT 497 Senior Design 46

time and date. The next twelve widgets are toggle buttons. Each of these toggle buttons are apart

of a group and represent the alarms that are preloaded into the King of King’s Techbed program.

Since these buttons are in a group only one of the alarms can be selected at a time. Once a user

selects an alarm the text turns pink. These buttons are bounded to functions that will load the

designated alarm file into the audio channel and also set them equal to a variable that will ensure

that this file will be played if an alarm goes off. The next two buttons are the play and stop

buttons. These buttons are bound to functions that will allow the user to listen to an alarm to

make sure that is what they want set. Then the stop button is bound to a stop function which

stops the audio file. The last widget on the alarm sounds screen is the return button. This button

is bound to a function that returns the user to the alarm screen.

The last screen that is defined in the Kv file is the white sounds screen. This screen is

very similar to the alarm screen except the user chooses from ambient sounds to fall asleep to

instead of alarms. Like the alarm screen the time and date are displayed at the top of the screen.

There are also twelve toggle buttons that the user can choose from to select an ambient sound. At

the bottom is where the white noise screen differs a little bit from the alarm screen. There is an

extra button that allows the user to pause the ambient sound. It was chosen to do this because the

white noise files are so long that the user might want to pause the sound instead of stopping it.

The next section of the KV file is where the Popups were defined. There was a total of

five Popups in the Kivy file. Each of these popups have parameters at the beginning of their

decleration that define the title, size, position on the screen, and background. Every popup in the

Kivy file was .6 by .6 in size, was positioned at the x and y coordinates .2, and .9, and had a

black background with a blue border.

Digging in deeper the first popup that was defined was the valid alarm popup. This

popup’s title was set to “Alarm Notice!” and also utilized the float layout. The valid popup had

only two widgets which were a label and a button. The label displayed the alarm time that the

user entered and let the user know that it was a valid time. The button was bound to a function

that simply closed the popup and sent the user back to the main screen.

The next popup that was defined was the Invalid popup. This popup’s title was set to

“Alarm notice!” and used the float layout. The invalid poup had two widgets. It had a label and a

button. The label let the user know what they set as an alarm and let them know that it was an

ENT 497 Senior Design 47

invalid input. The button closed out of the popup and returned the user back to the alarm screen

to enter a valid time.

The next two popups that were defined were the left and right wireless charger popups.

These popups were titled “Left Wireless Charging Configuration” and “Right Wireless Charging

Configuration” respectively. They both used a float layout and had four widgets which were

buttons. The first three buttons had 30 minutes, 1 hour, and 1.5 hours set to their texts. This text

represented the amount of time the wireless charger would stay on. These buttons also had

functions bound to them that would set a timer for how long the wireless charger would stay on.

They also had a function bound to them that would close out of the popup and take the user back

to the main screen. The last button had the text “On” inside of the button. This button had a

function bound to it that would turn the button on indefinitely and then close out of the popup

and take the user back to the main screen.

The last popup that was defined was the Alarm Popup. The alarm popup was responsible

for going off when the alarm would go off. This popup’s title was set to “Alarm Notice!” and

utilized the float layout. This popup had only two widgets which were two buttons. These two

buttons were the turn alarm off button and turn everything off button. The first button had a

function bound to it that would turn the audio off and reset the alarm value when the alarm went

off. The second button had a function bound to it that would also turn the alarm audio off and

reset the alarm value, but it would also turn the lights off.

The last section of the code in the Kivy file is where custom widgets were made. By

default, Kivy uses square buttons and toggle buttons. Round buttons were desired to get a more

of a modern look. So, the last several lines of codes is where custom widgets were defined so the

King of King’s Techbed program could utilize round buttons.

As stated above, most of the program was written in Python and Kivy on the Raspberry

Pi. A small portion of code was written on an Arduino in C++ though. This was because a servo

motor needed to be controlled by the Raspberry Pi using an encoder. This requires analog inputs

which the Raspberry Pi does not have. An ADC could have been used to get around to solve this,

but this would have taken up pins the Neopixel lights needed, and it also made the code much

more complex. So instead, an Arduino was used.

ENT 497 Senior Design 48

The first section of code in the C++ script is where the necessary libraries were imported.

In the case of the C++ Arduino script only the servo motor library needed to be imported. This

library was used to control the servo motors properly.

The next section of code is where variables are defined, and servo motors are initialized.

Since there was only two servo motors there was only a left and right servo motor initialized.

The next two lines of code is where variables are created to reference the servo motor pins and

set them up as an output. The next six variables were created to aid in the process of creating the

functions. The next eight variables are defined to help with the functionality of the rotary

encoders. The last eight variables are defined to help with the functionality of the button press of

the rotary encoders.

The next section of code is where the input and output pins are setup. There are multiple

input and output pins setup for the servo motors and multiple pins for the rotary encoders. There

are also variables set up for determining the position of the rotary encoders and Boolean

variables to help with debouncing the button presses of the encoders.

The last section of the code is where the functionality is defined. The first block of code

is where the debouncing method is defined for the left encoder. It is also where the encoders can

turn on the left wireless charging lights. The next block of code is where the debouncing method

is defined for the right rotary encoder. It is also where the encoders can turn on the right wireless

charging lights.

The last section of code is where the functionality for the turning of the rotary encoders

are. In these last two functions when the rotary encoders are turned left the servo motors rotate

left. When the rotary encoders are turned right then the servo motors rotate right.

Throughout the programming progress, several bugs were uncovered as the programming

for each system was designed. As mentioned above, it became necessary to branch off some of

the processing to a designated microprocessor in the form of an Arduino Uno. Thankfully, the

project ended with a fully functional code, which can be found in Appendix D and E of this

report.

ENT 497 Senior Design 49

Results

 The resulting project was something the King of Kings TechBed group was proud to have

created. The resulting wooden structure and function of the bed electronics turned out very well.

While there are a few areas where things could have been done differently to make an even

better finished product, the project is declared a success by Jacob Klopfenstein and Chris

Waidelich.

Finished Bed Photos

Figure 32: Left View with Color Animation Figure 33: Right View with Color Animation

Figure 35: Left View with White Light Figure 34: Right View with White Light

ENT 497 Senior Design 50

Figure 41: Inside Minifridge Box Figure 40: Mounted Minifridge

Figure 37: Inside Headboard Figure 36: Across Headboard

Figure 38: Side View with White Light Figure 39: Extended Drawer

ENT 497 Senior Design 51

Figure 45: Sound Bar in Footboard Figure 44: Subwoofer in Other Minifridge Box

Figure 42: Sample of Light Strip Colors Figure 43: Wiring in Electronics Bay

Figure 47: View up at Headboard Lights Figure 46: View Along Main Frame Lights

ENT 497 Senior Design 52

Graphical User Interface

 The GUI was made completely from scratch for the interface for this bed. While there

will always be minor bugs, as there are for any software, we have amazingly been able to work

out most of them. The touch screen is responsible, the program is stable and operable, and the

physical controls integrate well with the touch screen controls. This next sections talks through

what you see on each menu and how it functions.

Starting with the main menu,

when you press top button, which is

the ambient sounds button, this takes

you to another screen that you can

select to play relaxing music/sounds

in the background. When you press

the lamp buttons, they turn on the left

and right lamps through relay

control. Also, it can be noticed that

the lamp icons light up showing the user that the lamps are on. When lamp button is pressed this

turns off the lamp and turns the icon off showing that the lamps are off. The wireless charger

buttons work in a similar fashion except when you press these buttons a pop up appears. This

pop up asks the user if they want to turn on the wireless chargers for a pre-determined set of time

or if they want to turn it on indefinitely. Once the user selects one of the given options the popup

disappears, the icon lights up, and the wireless charger turns on through relay control. If the user

pressed a preset time, the wireless

charger stays for the given amount

of time and then turns off. When the

wireless charger turns off the icon

also deactivates. If the user chose to

turn the wireless charger on

indefinitely then the user presses

the button to turn it off.

Next, the cooling fans will

be covered. When the cooling fan

Figure 49: Main GUI Menu

Figure 48: Wireless Charger Menu Pop-Up

ENT 497 Senior Design 53

button is pressed it turns the cooling fan on with a relay and sets the speed to 25 percent. It sets

the speed by changing the duty cycle of the PWM signal that is sent to the fan. This also lights

up the icon showing that the fan is turned on. The user will also see that the fan speed percentage

is shown on the top percentage label and the slider is set to a 25 percent position. This is where

the sliders come into play. The user can decide which speed they want the fans to be set to by

sliding the slider up and down to a desired position. The label percentage changes as the slider

moves showing the user what speed they are at. Lastly, if the user wants to turn the fan off they

can toggle the cooling fan button and the fans relay will turn off. Doing this will also set the fan

speed percentage to zero and putting the slider position to zero. It should also be noted that due

to the nature of the fans selected for this project, most of the slider (1% - 99%) is actually around

35% - 75% of the fan speed. Once the slider hits 100%, only then will the fan jump up to full

power, while the fan cannot operate under 35%.

The next button is the LED lights button. This button will take the user to the advanced

light menu where they will have several options for altering the light settings. The last two

buttons at the bottom are the power off and alarm buttons. The alarm button will take the user to

the alarm screen where they will be able to set an alarm and modify other alarm settings. And the

power off button. This button will power off all relays and electronics and will shutdown the

King of King’s software.

The next screen that

will be referenced is the

ambient sound screen. It can

be seen there are 12 different

ambient sounds the user can

choose from to play in the

background. When the user

selects a sound, such as white,

the text will light up to show

that that sound is the current

selected loaded sound. The user can select the play button at the bottom left of the screen to play

the sound indefinitely. When the user selects the play button the icon will light up signifying

that the ambient sound is currently playing. They can press the return button to go back to the

Figure 50: Ambient Sound Menu

ENT 497 Senior Design 54

main menu while the sound continues to play on. The user can also go back to the ambient sound

screen and press the pause button to pause the sound. This will pause the sound instead of

restarting the sound like the stop button will do. The user can also click the middle rotary

encoder to toggle between pause and play. Lastly, the user can select the stop button which will

stop the sound and restart the audio file so it can be played from the beginning again. If the user

wants to change the current loaded sound, is all they need to do is just press another provided

sound and that button will light up and the other sound text will turn off. They can press the

return button which will take them back to the main menu.

The next screen that will be

referenced is the custom solid

colors screen. The user gets to this

screen by pressing the LED light

button on the main menu and then

this will take them to the advanced

light menu. The user can then press

the Custom Color button and then

will arrive to the custom color

screen. On the custom color screen,

you will see a color wheel, 3 buttons, and 8 different sliders. The color wheel works in two

different ways to turn the LED lighting on. The first way the user can use this is to pinch in and

out to alter different color settings and brightness. Then the user can choose different colors and

then select their desired color. Once the color is selected it will show up on the slider background

and these values will be loaded into

the color variables. The user can

press the set color button, and this

will light the LED lights up to the

chosen color. The second way the

user can use the color wheel is

adjusting the color sliders. On the

left, you can see 7 different sliders

labeled R for red, G for green, b for

Figure 52: Light Main Menu

Figure 51: Custom Color Menu

ENT 497 Senior Design 55

blue, a for alpha, h for hue, s for saturation, and v for color value. The user can also adjust these

sliders to change the desired color. The last two buttons are the clear and return button. The clear

button sets the color variables to zero and turns the lights off. The return button sends the user

back to the advanced light menu.

The next screen that will be

referenced is the advanced light

menu. Here the user is

provided with several options

to adjust light settings. The

screen has two sliders and 4

buttons. The two sliders labeled

W and T are for tuning the

lights to a desired effect. The

slider labeled w adjust the

amount of white that is added to the light. The slider labeled T adjusts the red and green values

of the light. This allows the user to create a warmer or colder color. The two buttons labeled

custom color and animations will take the user to the custom color screen and animations

screens. The clear buttons clear the light values and turns the lights off. The return button sends

the user back to the main menu.

The next screen I will be

referenced is the basic

animations screen. Here

the user can decide from

6 different animations.

When the user selects a

certain animation the text

lights up signifying that

animation is loaded and

selected. They can also

select between the color

and size slider to adjust

Figure 53: Solid Color Animation Light Menu

Figure 54: Rainbow Animation Light Menu

ENT 497 Senior Design 56

the animation settings. They can then press the play and pause buttons to start and stop the

animations. The page 2 button will take the user to another page of animations to select from.

The return button will take the user back to the advanced light menu.

The next screen that will be referenced is the rainbow animations screen. This screen is a lot like

the basic animations screen page, but it has rainbow animations instead. Like the basic animation

screen the user selects the desired animation, changes the settings, and then starts and stops the

animations with the play and pause button. The user can select the return button to take them

back to the advanced light menu or press the page one and take them back to the advanced light

menu.

The next screen that will

be referenced is the

Alarm Screen. Here the

user has the options to set

an alarm time and set the

alarm sound. The user

sets the alarm time by

pressing the numbered

buttons on the right. The

selected numbers appear

in the alarm text box

showing the user what they’ve written. Then the user selects am or pm and then determining am

or pm. They then select an alarm sound. To set the alarm the user needs to select “Set”. If the

user submits a valid time a pop up shows up telling them the alarm time the have selected. The

user can press the close button on the popup, and this will take them back to the main menu. On

the main menu they will see the alarm button lit up signifying that there is an alarm set. If the

user selects an invalid time, a pop up appears telling the user that they have entered an invalid

time. The user then presses the close button which returns them back to the alarm screen to set a

valid alarm and the incorrect alarm is not set. The last two buttons that were not mentioned were

the alarm sound button and the cancel button. When the alarm sound is pressed the user is taken

to the alarm sound screen where they can select an alarm sound. When the user presses the

cancel button it erases any set alarms and takes them back to the main menu. Lastly when an

Figure 55: Alarm Clock Screen

ENT 497 Senior Design 57

alarm is set, the LED lights will slowly start to light up to a warm value 5 minutes before the

alarm is set to go off. When the alarm goes off a pop up comes up where there are two different

options to choose from. These two options are turn alarm off and turn all off. If the user selects

turn alarm off the alarm is turned off and is erased from the memory but the light stays on. If

turned all off is selected the alarm and lights turn off and the alarm is erased from the memory.

When either option is selected the user returns to the main menu.

The last screen that

will be referenced

is the Alarm

Sounds Screen.

This screen works a

lot like the ambient

sound screen except

the sound doesn’t

play indefinitely

and there is no

pause button. An

alarm can be

selected by simply pressing one of the alarm buttons. When the button is pressed the alarm is

loaded and the text lights up signifying that that alarm is selected. The user can play the alarm

too to hear what the alarm sounds like. The user then can stop the alarm if they’ve heard enough

by pressing the stop button. Once the alarm is selected the user can press the return button which

will take them back to the alarm screen.

Results Summary

 In all the success of the project, we can easily consider this project a complete success.

The resulting bedframe is one that one of us will use for years to come, while at the same time

giving us a cool story to tell about our senior design project at Miami University. However, in

the midst of this success, there are still issues with the bed we noticed in final testing. The main

issue is with the right servo motor for the right air deflector. Due to the amount of power the

minifridge takes, when the compressor turns on and off, a power lapse in the system causes the

right servo, and only the right servo, to drift to the zero position, no matter where it is set to be. It

Figure 56: Alarm Clock Sound Menu

ENT 497 Senior Design 58

is theorized that adding a large capacitor to give more consistent power levels might work, but

that alteration has yet to be implemented. The second issue is with the GUI alarm lights

integration. While initially working, the lights haven’t been growing brighter properly before the

alarm goes off. This is presumably a simple software fix and is being researched. Finally, the

chosen 5V power supply unit has a built in fan that is extremely noisy. The plan for the future is

to swap out the power supply unity for a different one with a quiet fan. This change doesn’t

effect the bed’s performance in any way. Other than those three issues, the bed functions as

expected.

Conclusion and Recommendation for Further Study:

The King of Kings TechBed was outlined in the objectives of the project proposal. It is by

the work and knowledge of the group, Jacob Klopfenstein and Chris Waidelich, that the various

goals and parameters laid out at the beginning of this project were achieved. There are no initial

requirements for the product that are not accomplished in the resulting product, plus, a few bonus

features were added to the design that were not initially planned on.

This project isn’t perfect, by any means. Because the group members lacked knowledge

of woodworking, there are minor defects in the construction of the frame and imperfect

tolerances in places. Thankfully, there were no major flaws that would render the project

unusable or too ugly to use. For the most part, the technology was able to cover up a majority of

any inconsistencies from construction.

One thing that was noticed throughout the project was the fact that the bed was so

outlandish to begin with, once a person heard that a minifridge was installed on the bed, any

category of recommendation could be given for future expansions, including the addition of a

roll up TV from the footboard, remote controlled lift to automatically sit the bed up into an

incline for viewing media, the mounting of a microwave or toaster oven on the headboard, or

even a launch mechanism to throw the occupants out of bed if they didn’t get up within five

minutes of the alarm going off. Of course, these are just the comments heard the most often, as

there were many others not recounted here. Of course, nearly all of these expansions could be

completed at some point. The minifridge boxes were designed to be strong enough that a remote

“sit-up” system could be installed.

ENT 497 Senior Design 59

Also, because there are still a wide variety of ports and pins available on both the

Raspberry Pi and Arduino, there is lots of room to expand programming with, with a large

variety of controlled systems and sensors that could be added. One of the most prominent

example of future expansion in this area is the addition of temperature sensors in the minifridge

box and electronics bay to regulate the speed of the cooling fans in those boxes instead of the

fans being either “on” or “off”. Finally, with the bed being so tall, it might be necessary to swap

out of the drawers for a pull-out step stool that can be used to get in and out of the bed once the

user reaches an older age.

The King of Kings TechBed is finished and will go to the possession of Jacob

Klopfenstein at the completion of this project. The total estimate of time input on the project

between all team members is between 500-600 hours from design to final bug fixes. This project

represents the culmination of our collective knowledge from the courses we have taken from

Miami University and displays our abilities and experience in both building something with

mechanical, electrical, and programming aspects, along with the management of a complex

project.

ENT 497 Senior Design 60

References

[1] “The Ultimate Bed With Integrated Massage Chair, Speakers and Desk.” Website.

ultimatesmartbed.com/product/ultimate-bed/ (September 10, 2020).

[2] “Coolest High Tech Smart Beds.” Website. furniturefashion.com/10-of-the-coolest-high-

tech-beds/ (September 10, 2020).

[3] “Frigidaire – 3.1 Cu. Ft. Mini Fridge.” Website. bestbuy.com/site/frigidaire-3-1-cu-ft-

mini-fridge-silver/6257387.p?skuId=6257387 (September 10, 2020).

[4] “Insignia – 1.7 Cu. Ft. Mini Fridge.” Website. bestbuy.com/site/insignia-1-7-cu-ft-mini-

fridge-black/6145100.p?skuId=6145100 (September 10, 2020).

[5] “Vizio – 5.1.2-Channel Soundbar System.” Website. bestbuy.com/site/vizio-5-1-2-

channel-soundbar-system-with-6-wireless-subwoofer-and-dolby-atmos-

black/6288824.p?skuId=6288824 (September 13, 2020).

[6] “Giderwel RGBWW LED Strip Lights.” Website. amazon.com/GIDERWEL-Flexible-

300LEDsChangingKitchen/dp/B07JKNFMC3/ (September 15, 2020).

[7] Mike Kwaitkowski, private communication, September, 2020.

[8] “Adafruit NeoPixel Digital RGBW LED Strip – Black PCB 60 LED/m.” Website.

adafruit.com/product/2837?length=1 (September 14, 2020).

[9] “Highfine 12cm 12mm 200CFM 4000RPM CPU Cooling Fan.” Website.

amazon.com/HIGHFINE4000RPMCoolingFFC1212DEComputer/dp/B01LLYQ2VE/

(October 1, 2020).

[10] “Antec 120mm Case Fan.” Website. amazon.com/Antec-F12-Performance-

NoiseValue/dp/B07PFBPHL6/ (October 1, 2020).

[11] “Raspberry Pi4 Model B Quad Core 64 Bit.” Website. amazon.com/Raspberry-Model-

QuadCoreBluetooth/dp/B08C4SK5C3/ (September 14, 2020).

[12] “Raspberry Pi 7” Touch Screen Display.” Website. amazon.com/Raspberry-Pi-7-

TouchscreenDisplay/dp/B0153R2A9I/ (September 14, 2020).

http://www.ultimatesmartbed.com/product/ultimate-bed/
https://furniturefashion.com/10-of-the-coolest-high-tech-beds/
https://furniturefashion.com/10-of-the-coolest-high-tech-beds/
http://www.bestbuy.com/site/frigidaire-3-1-cu-ft-mini-fridge-silver/6257387.p?skuId=6257387
http://www.bestbuy.com/site/frigidaire-3-1-cu-ft-mini-fridge-silver/6257387.p?skuId=6257387
http://www.bestbuy.com/site/insignia-1-7-cu-ft-mini-fridge-black/6145100.p?skuId=6145100
http://www.bestbuy.com/site/insignia-1-7-cu-ft-mini-fridge-black/6145100.p?skuId=6145100
http://www.bestbuy.com/site/vizio-5-1-2-channel-soundbar-system-with-6-wireless-subwoofer-and-dolby-atmos-black/6288824.p?skuId=6288824
http://www.bestbuy.com/site/vizio-5-1-2-channel-soundbar-system-with-6-wireless-subwoofer-and-dolby-atmos-black/6288824.p?skuId=6288824
http://www.bestbuy.com/site/vizio-5-1-2-channel-soundbar-system-with-6-wireless-subwoofer-and-dolby-atmos-black/6288824.p?skuId=6288824
https://www.amazon.com/GIDERWEL-Flexible-300LEDs-Changing-Kitchen/dp/B07JKNFMC3/ref=sr_1_3?dchild=1&keywords=6+pin+led+strips&qid=1606960868&s=hi&sr=1-3
https://www.amazon.com/GIDERWEL-Flexible-300LEDs-Changing-Kitchen/dp/B07JKNFMC3/ref=sr_1_3?dchild=1&keywords=6+pin+led+strips&qid=1606960868&s=hi&sr=1-3
https://www.adafruit.com/product/2837?length=1
https://www.amazon.com/HIGHFINE-4000RPM-Cooling-FFC1212DE-Computer/dp/B01LLYQ2VE/ref=sr_1_1?dchild=1&keywords=4000+rpm+120mm+fan&qid=1606964200&sr=8-1
https://www.amazon.com/Antec-F12-Performance-NoiseValue/dp/B07PFBPHL6/ref=sr_1_4?dchild=1&keywords=120mm+case+fan+5+pack&qid=1606964436&sr=8-4
https://www.amazon.com/Antec-F12-Performance-NoiseValue/dp/B07PFBPHL6/ref=sr_1_4?dchild=1&keywords=120mm+case+fan+5+pack&qid=1606964436&sr=8-4

ENT 497 Senior Design 61

[13] Randy Wise, private communication, September, 2020.

[14] Andrew Shultz, private communication, October, 2020.

[15] “Waithai 12038 120mmx38mm 5300rpm High Airflow 12V 4pin PWM FG DC

Brushless Cooling Fan.” Website. amazon.com/Wathai-5300rpm-Airflow-Brushless-

Cooling/dp/B07SGWNV5J/ (January 28, 2021).

https://www.amazon.com/Wathai-5300rpm-Airflow-Brushless-Cooling/dp/B07SGWNV5J/(January
https://www.amazon.com/Wathai-5300rpm-Airflow-Brushless-Cooling/dp/B07SGWNV5J/(January

ENT 497 Senior Design 62

Appendix A: Electrical Design

Figure 57: Origional Electrical Design

ENT 497 Senior Design 63

Figure 58: Final Electrical Design

ENT 497 Senior Design 64

Appendix B: Mechanical Design

Figure 60: Headboard Front View

Figure 59: Headboard Side View

Figure 61: Footboard Front View

Figure 62: Main Frame Side View

ENT 497 Senior Design 65

Figure 64: Main Frame Top View

Figure 63: Full Bed Side View

ENT 497 Senior Design 66

Figure 66: Full Bed Top View

Figure 67: Full Bed Foot View

Figure 65: Dimetric View of Complete Bed with Technology Installed

ENT 497 Senior Design 67

Appendix C: Gantt Chart

ENT 497 Senior Design 68

ENT 497 Senior Design 69

ENT 497 Senior Design 70

Appendix D: Main Python Program

#Importing Needed Modules and Libraries

from kivy.uix.screenmanager import ScreenManager, Screen

from dateutil import parser

from kivy.properties import StringProperty

from kivy.properties import ListProperty

from kivy.core.text import LabelBase

from rpi_backlight import Backlight

from kivy.uix.popup import Popup

from kivy.lang import Builder

from kivy.clock import Clock

from kivy.app import App

import RPi.GPIO as GPIO

from adafruit_led_animation.animation.blink import Blink

from adafruit_led_animation.animation.colorcycle import ColorCycle

from adafruit_led_animation.animation.chase import Chase

from adafruit_led_animation.animation.comet import Comet

from adafruit_led_animation.animation.pulse import Pulse

from adafruit_led_animation.animation.rainbow import Rainbow

from adafruit_led_animation.animation.rainbowchase import RainbowChase

from adafruit_led_animation.animation.rainbowcomet import RainbowComet

from adafruit_led_animation.animation.rainbowsparkle import RainbowSparkle

from adafruit_led_animation.animation.sparkle import Sparkle

from adafruit_led_animation.animation.sparklepulse import SparklePulse

from adafruit_led_animation.color import (

 PURPLE,

 YELLOW,

 WHITE,

 AMBER,

 JADE,

 TEAL,

 PINK,

 MAGENTA,

 ORANGE,

 BLUE,

 RED,

 GREEN,

 GOLD,

 AQUA,

 CYAN,

ENT 497 Senior Design 71

)

import threading

import board

import neopixel

import time

import busio

import digitalio

import pygame

import datetime

import Encoder

from multiprocessing import Process

import re

import sys

from decimal import *

import sched, time

from os import system

getcontext().prec = 2

importing Centaur font

LabelBase.register(name = "Centaur",

 fn_regular = "centaur.ttf")

pixel_pin = board.D10

num_pixels = 491

ORDER = neopixel.GRBW

pixels = neopixel.NeoPixel(pixel_pin, num_pixels, brightness=1,

 auto_write=False, pixel_order=ORDER)

#Initilizing Variables for GPIOLWC = 17

LWC = 17

RWC = 4

LL = 22

RL = 27

RFan = 13

LFan = 19

LFanR = 7

RFanR = 9

GPIO.setmode(GPIO.BCM)

#Setting up desired GPIO pins as outputs

GPIO.setup(LWC, GPIO.OUT)

GPIO.setup(RWC, GPIO.OUT)

GPIO.setup(LL, GPIO.OUT)

ENT 497 Senior Design 72

GPIO.setup(RL, GPIO.OUT)

GPIO.setup(LFan, GPIO.OUT)

GPIO.setup(RFan, GPIO.OUT)

GPIO.setup(LFanR, GPIO.OUT)

GPIO.setup(RFanR, GPIO.OUT)

#Initializing pwm pins

pwm1 = GPIO.PWM(LFan, 25000)

pwm1.start(0)

pwm2 = GPIO.PWM(RFan, 25000)

pwm2.start(0)

pygame.mixer.init()

pygame.mixer.music.load("Birdsong.mp3")

Brightness = Encoder.Encoder(23,24)

backlight = Backlight()

GPIO.setup(25, GPIO.IN, GPIO.PUD_DOWN)

GPIO.setup(1, GPIO.IN, GPIO.PUD_DOWN)

global Count

Count = 0

global y

y = 0

def bEncode(channel):

 global y

 global Count

 x = Brightness.read()

 if x > y and Count < 76:

 Count = Count + 10

 if x < y and Count > 20:

 Count = Count - 10

ENT 497 Senior Design 73

 if x < y and Count <= 20:

 Count = Count - 5

 if Count < 1:

 Count = 3

 backlight.brightness = Count

 y = x

GPIO.add_event_detect(25, GPIO.BOTH, callback = bEncode, bouncetime=100)

currentAlarm = ("Birdsong.mp3")

def toggleWhiteNoise(self):

 pygame.mixer.init()

 if(pygame.mixer.music.get_busy() == True):

 pygame.mixer.music.pause()

 app = App.get_running_app()

 app.root.get_screen('whitenoise').ids.pause.state = "down"

 app.root.get_screen('whitenoise').ids.pause.source = '/home/pi/Desktop/Final

GUI/activated icons/pause.png'

 else:

 pygame.mixer.music.unpause()

 app = App.get_running_app()

 app.root.get_screen('whitenoise').ids.pause.state = 'normal'

GPIO.add_event_detect(1, GPIO.BOTH, callback = toggleWhiteNoise, bouncetime=500)

global r,g,b,w

r = 0

g = 0

b = 0

w = 0

global brightVal

brightVal = 0

class MainScreen(Screen):

ENT 497 Senior Design 74

 def ROn(self, Pin):

 GPIO.output(Pin, GPIO.HIGH)

 def ROff(self, Pin):

 GPIO.output(Pin, GPIO.LOW)

 def LFanON(self, *args):

 state1 = GPIO.input(LFanR)

 if state1 == 1:

 self.ids.leftFan.state == 'normal'

 GPIO.output(LFanR, GPIO.LOW)

 pwm1.ChangeDutyCycle(25)

 self.ids.leftSlider.value = 25

 if state1 == 0:

 self.ids.leftFan.state == 'down'

 GPIO.output(LFanR, GPIO.HIGH)

 pwm1.ChangeDutyCycle(0)

 self.ids.leftSlider.value = 0

 def RFanON(self, *args):

 state1 = GPIO.input(RFanR)

 if state1 == 1:

 self.ids.rightFan.state == 'normal'

 GPIO.output(RFanR, GPIO.LOW)

 pwm2.ChangeDutyCycle(25)

 self.ids.rightSlider.value = 25

 if state1 == 0:

 self.ids.rightFan.state == 'down'

 GPIO.output(RFanR, GPIO.HIGH)

 pwm2.ChangeDutyCycle(0)

 self.ids.rightSlider.value = 0

 # Left Fan Speed function.

 def LFanCS(self, instance, value1):

 pwm1.ChangeDutyCycle(int(value1))

 # Right Fan speed function.

 def RFanCS(self, instance, value2):

 pwm2.ChangeDutyCycle(int(value2))

 def powerOff(self):

 GPIO.output(RFanR, GPIO.HIGH)

ENT 497 Senior Design 75

 GPIO.output(LFanR, GPIO.HIGH)

 GPIO.output(RWC, GPIO.HIGH)

 GPIO.output(LWC, GPIO.HIGH)

 GPIO.output(LL, GPIO.HIGH)

 GPIO.output(RL, GPIO.HIGH)

 pixels.fill((0,0,0,0))

 pixels.show()

 sys.exit()

GPIO.add_event_detect(1, GPIO.BOTH, callback = LFanON, bouncetime=500)

 global aBool

 aBool = False

 global lightBool

 lightBool = False

 def updateTime(self, *args):

 pattern1 = re.compile("^[1][0-2][:][0-5]\d")

 pattern2 = re.compile("^[1-9][:][0-5]\d")

 #datetibject created from datetime module

 now = datetime.datetime.now()

 #Setting Day of week value to variable DOW

 DOW = datetime.datetime.today().weekday()

 DOW = DOW

 #Setting Month of Year to variable MOY

 MOY = int(now.strftime('%-m'))

 #Setting Year value to variable YEAR

 YEAR = now.strftime('%Y')

 #Setting Day value to variable DAY

 DAY = now.strftime('%-d')

 #Converting Day of Week Value to appropriate

 def Dint_to_DString(day):

 switcher = {

 0: "Monday",

 1: "Tuesday",

 2: "Wednesday",

 3: "Thursday",

 4: "Friday",

 5: "Saturday",

 6: "Sunday",

 }

ENT 497 Senior Design 76

 return switcher.get(day)

 def Mint_to_MString(month):

 switcher = {

 1: "January",

 2: "February",

 3: "March",

 4: "April",

 5: "May",

 6: "June",

 7: "July",

 8: "August",

 9: "September",

 10: "October",

 11: "November",

 12: "December",

 }

 return switcher.get(month)

 #Settng date and time label text to actual date and time

 self.ids.timeLabel.text = now.strftime('%-I:%M')

 self.ids.ampmLabel.text = now.strftime('%p')

 self.ids.dateLabel.text = (Dint_to_DString(DOW) + ", " + Mint_to_MString(MOY) + " "

+ DAY + ", " + YEAR)

if(re.search(pattern1, now.strftime('%-I:%M'))):

 # Alarm function checking to see if Alarm time matches

 if((re.search(pattern1, now.strftime('%-I:%M')))):

 self.ids.ampmLabel.pos_hint = {'x' : .65, 'top' : .88}

 if((re.search(pattern2, now.strftime('%-I:%M')))):

 self.ids.ampmLabel.pos_hint = {'x' : .6, 'top' : .88}

 def open_alarm_popup(self):

 alarmPopup1 = AlarmPopUp()

 alarmPopup1.open()

 global currentAlarm

 global aBool

ENT 497 Senior Design 77

 if str(atime) == now.strftime('%-I:%M') and str(ampm) == now.strftime('%p') and aBool

== False:

 pygame.mixer.music.load(currentAlarm)

 pygame.mixer.music.play(loops=-1)

 open_alarm_popup(self)

 aBool = True

 if atime != "0":

 now = datetime.datetime.now()

 fivmin = "0:05"

 fivMinParse = datetime.datetime.strptime(fivmin, '%H:%M')

 alarmParse = datetime.datetime.strptime(atime, '%H:%M')

 fivMinBef = alarmParse - fivMinParse

 string1 = str(fivMinBef)

 stringMod = string1[0:5]

 if str(stringMod) == now.strftime("%-I:%M"):

 global lightBool

 lightBool = True

 global brightVal

 if lightBool == True and brightVal < 255:

 brightVal = int(brightVal + 4.25)

 pixels.fill((0,0,0,brightVal))

 pixels.show()

 def on_enter(self):

 global atime

 if atime == "0":

 self.ids.alarm1.source = '/home/pi/Desktop/Final GUI/icons/alarm.png'

 if atime != "0":

 self.ids.alarm1.source = '/home/pi/Desktop/Final GUI/activated icons/alarm1.png'

 def on_kv_post(self, basewidget):

 Clock.schedule_once(self.updateTime)

 Clock.schedule_interval(self.updateTime, 5)

class AdvancedColor(Screen):

ENT 497 Senior Design 78

 global r,g,b,w

 def addWhite(self, instance, val):

 global w

 w = int(val)

 pixels.fill((r,g,b,w))

 pixels.show()

 def tuner(self, instance, val):

 global r, g

 r = int(val)

 g = int(val*.38)

 pixels.fill((r,g,b,w))

 pixels.show()

 def clearLights(self):

 self.ids.whiteSlider.value = 0

 self.ids.tunableSlider.value = 0

 global r

 global g

 global b

 global w

 r = 0

 g = 0

 b = 0

 w = 0

 pixels.fill((r,g,b,w))

 pixels.show()

 pixels.fill((0,0,0,0))

 pixels.show()

class LEDAnimations1(Screen):

 global speed1

 speed1 = 1

 global cString

 cString = "N/A"

 global size1

 size1 = 1

ENT 497 Senior Design 79

 global colorTuple

 colorTuple = (0,0,0,0)

 def setSize(self, instance, val):

 global size1

 size1 = int(val)

 self.ids.sizevallabel.text = str(size1)

 def setSpeed(self, instance, val):

 global speed1

 speedInt = int(val)

 speed1 = (speedInt/100)

 self.ids.speedvallabel.text = str(speed1)

 def setColor(self, instance, val):

 global cString

 global colorTuple

 def num_to_color(color):

 switcher = {

 1: "RUBY RED",

 2: "CURSED RED",

 3: "AMBER",

 4: "YELLOW",

 5: "LIME",

 6: "EMERALD",

 7: "FORREST",

 8: "MINT",

 9: "AQUA",

 10: "BABY BLUE",

 11: "LIGHT BLUE",

 12: "SAPPHIRE",

 13: "DARK BLUE",

 14: "PALE BLUE",

 15: "VIOLET",

 16: "DARK PINK",

 17: "LIGHT PINK",

 18: "HOT PINK",

 19: "WHITE",

ENT 497 Senior Design 80

 20: "SOFT WHITE",

 }

 return switcher.get(color)

 cint = int(val)

 cString = num_to_color(cint)

 if cint == 1:

 self.ids.colorValLabel.color = (1,0,0,1)

 colorTuple = (255,0,0,0)

 if cint == 2:

 self.ids.colorValLabel.color = (100/255,0,0,1)

 colorTuple = (100,0,0,0)

 if cint == 3:

 self.ids.colorValLabel.color = (1,95/255,0,1)

 colorTuple = (255,95,0,0)

 if cint == 4:

 self.ids.colorValLabel.color = (1,1,0,1)

 colorTuple = (255,255,0,0)

 if cint == 5:

 self.ids.colorValLabel.color = (100/255,1,0,1)

 colorTuple = (100,255,0,0)

 if cint == 6:

 self.ids.colorValLabel.color = (0,1,0,1)

 colorTuple = (0,255,0,0)

 if cint == 7:

 self.ids.colorValLabel.color = (0,50/255,0,1)

 colorTuple = (0,50,0,0)

 if cint == 8:

 self.ids.colorValLabel.color = (0,1,50/255,1)

 colorTuple = (0,255,50,0)

 if cint == 9:

 self.ids.colorValLabel.color = (0,1,150/255,1)

 colorTuple = (0,255,150,0)

 if cint == 10:

 self.ids.colorValLabel.color = (0,1,1,1)

 colorTuple = (0,255,255,0)

 if cint == 11:

 self.ids.colorValLabel.color = (0,85/255,1,1)

 colorTuple = (0,85,255,0)

 if cint == 12:

ENT 497 Senior Design 81

 self.ids.colorValLabel.color = (0,0,1,1)

 colorTuple = (0,0,255,0)

 if cint == 13:

 self.ids.colorValLabel.color = (0,0,100/255,1)

 colorTuple = (0,0,100,0)

 if cint == 14:

 self.ids.colorValLabel.color = (50/255,0,1,1)

 colorTuple = (51,0,255,0)

 if cint == 15:

 self.ids.colorValLabel.color = (125/255,0,1,1)

 colorTuple = (125,0,255,0)

 if cint == 16:

 self.ids.colorValLabel.color = (1,0,1,1)

 colorTuple = (255,0,255,0)

 if cint == 17:

 self.ids.colorValLabel.color = (1,60/255,150/255,1)

 colorTuple = (255,5,100,100)

 if cint == 18:

 self.ids.colorValLabel.color = (1,0,105/255,1)

 colorTuple = (255,0,75,25)

 if cint == 19:

 self.ids.colorValLabel.color = (1,1,1,1)

 colorTuple = (0,0,0,255)

 if cint == 20:

 self.ids.colorValLabel.color = (50/255,50/255,50/255,1)

 colorTuple = (0,0,0,50)

 self.ids.colorValLabel.text = str(cString)

 def setAnimationState(self, animationId):

 global blinkBool

 global cometBool

 global chaseBool

 global colorcycleBool

 global pulseBool

 global sparkleBool

 global sparklepulseBool

 blinkBool = False

ENT 497 Senior Design 82

 cometBool = False

 chaseBool = False

 pulseBool = False

 sparkleBool = False

 sparklepulseBool = False

 if animationId == 1:

 blinkBool = True

 if animationId == 2:

 cometBool = True

 if animationId == 3:

 chaseBool = True

 if animationId == 4:

 pulseBool = True

 if animationId == 5:

 sparkleBool = True

 if animationId == 6:

 sparklepulseBool = True

 global stop_thread

 stop_thread = True

 def startThread(self):

 global speed

 global cString

 global stop_thread

 global size1

 stop_thread = False

 blink = Blink(pixels, speed = speed1, color = colorTuple)

 comet = Comet(pixels, speed = speed1, color = colorTuple, tail_length = size1, bounce =

True)

 chase = Chase(pixels, speed = speed1, size = size1, spacing = 6, color = BLUE)

 pulse = Pulse(pixels, speed = speed1, color = colorTuple, period = 3)

 def startAnimation():

 global stop_thread

 global blinkBool

 global cometBool

 global chaseBool

ENT 497 Senior Design 83

 global pulseBool

 global sparkleBool

 global sparklepulseBool

 blink = Blink(pixels, speed = .75, color = colorTuple)

 chase = Chase(pixels, speed = .001, size = size1, spacing = 6, color = colorTuple)

 comet = Comet(pixels, speed = .001, color = colorTuple, tail_length = size1,

 bounce = True)

 pulse = Pulse(pixels, speed = (size1/500), color = colorTuple, period = size1)

 sparkle = Sparkle(pixels, speed = (size1/100), color = colorTuple, num_sparkles =

size1)

 sparkle_pulse = SparklePulse(pixels, speed = (size1/500), color = colorTuple)

 while blinkBool == True and stop_thread == False:

 blink.animate()

 if stop_thread == True:

 break

 while cometBool == True and stop_thread == False:

 comet.animate()

 if stop_thread == True:

 break

 while chaseBool == True and stop_thread == False:

 chase.animate()

 if stop_thread == True:

 break

 while pulseBool == True and stop_thread == False:

 pulse.animate()

 time.sleep(.001)

 if stop_thread == True:

 break

 while sparkleBool == True and stop_thread == False:

 sparkle.animate()

 if stop_thread == True:

 break

 while sparklepulseBool == True and stop_thread == False:

 sparkle_pulse.animate()

 if stop_thread == True:

 break

 t1 = threading.Thread(target = startAnimation)

 t1.start()

ENT 497 Senior Design 84

 def stopThread(self):

 global stop_thread

 stop_thread = True

 pixels.fill((0,0,0,0))

 pixels.show()

 time.sleep(.5)

 pixels.fill((0,0,0,0))

 pixels.show()

 def updateTime2(self, *args):

 pattern1 = re.compile("^[1][0-2][:][0-5]\d")

 pattern2 = re.compile("^[1-9][:][0-5]\d")

 now = datetime.datetime.now()

 self.ids.timeLabel.text = now.strftime('%-I:%M')

 self.ids.ampmLabel.text = now.strftime('%p')

 if(re.search(pattern1, now.strftime('%-I:%M'))):

 self.ids.ampmLabel.pos_hint = {'x' : .87, 'top' : .95}

 if(re.search(pattern2, now.strftime('%-I:%M'))):

 self.ids.ampmLabel.pos_hint = {'x' : .82, 'top' : .95}

 def on_kv_post(self, basewidget):

 Clock.schedule_once(self.updateTime2)

 Clock.schedule_interval(self.updateTime2, 3)

class LEDAnimations2(Screen):

 global speed2

 speed2 = 1

 global cString1

 cString1 = "N/A"

 global size2

 size2 = 1

 global colorTuple2

 colorTuple2 = (0,0,0,0)

 global rainbow1Bool

 rainbow1Bool = False

ENT 497 Senior Design 85

 def setSize(self, instance, val):

 global size2

 size2 = int(val)

 self.ids.sizevallabel.text = str(size2)

 def setSpeed(self, instance, val):

 global speed2

 speedInt = int(val)

 speed2 = (speedInt/100)

 self.ids.speedvallabel.text = str(speed2)

 def setColor(self, instance, val):

 global cString1

 global colorTuple2

 def num_to_color(color):

 switcher = {

 1: "RUBY RED",

 2: "CURSED RED",

 3: "AMBER",

 4: "YELLOW",

 5: "LIME",

 6: "EMERALD",

 7: "FORREST",

 8: "MINT",

 9: "AQUA",

 10: "BABY BLUE",

 11: "LIGHT BLUE",

 12: "SAPPHIRE",

 13: "DARK BLUE",

 14: "PALE BLUE",

 15: "VIOLET",

 16: "DARK PINK",

 17: "LIGHT PINK",

 18: "HOT PINK",

 19: "WHITE",

 20: "SOFT WHITE",

 }

 return switcher.get(color)

ENT 497 Senior Design 86

 cint = int(val)

 cString = num_to_color(cint)

 if cint == 1:

 self.ids.colorValLabel.color = (1,0,0,1)

 colorTuple = (255,0,0,0)

 if cint == 2:

 self.ids.colorValLabel.color = (100/255,0,0,1)

 colorTuple = (100,0,0,0)

 if cint == 3:

 self.ids.colorValLabel.color = (1,95/255,0,1)

 colorTuple = (255,95,0,0)

 if cint == 4:

 self.ids.colorValLabel.color = (1,1,0,1)

 colorTuple = (255,255,0,0)

 if cint == 5:

 self.ids.colorValLabel.color = (100/255,1,0,1)

 colorTuple = (100,255,0,0)

 if cint == 6:

 self.ids.colorValLabel.color = (0,1,0,1)

 colorTuple = (0,255,0,0)

 if cint == 7:

 self.ids.colorValLabel.color = (0,50/255,0,1)

 colorTuple = (0,50,0,0)

 if cint == 8:

 self.ids.colorValLabel.color = (0,1,50/255,1)

 colorTuple = (0,255,50,0)

 if cint == 9:

 self.ids.colorValLabel.color = (0,1,150/255,1)

 colorTuple = (0,255,150,0)

 if cint == 10:

 self.ids.colorValLabel.color = (0,1,1,1)

 colorTuple = (0,255,255,0)

 if cint == 11:

 self.ids.colorValLabel.color = (0,85/255,1,1)

 colorTuple = (0,85,255,0)

 if cint == 12:

 self.ids.colorValLabel.color = (0,0,1,1)

 colorTuple = (0,0,255,0)

 if cint == 13:

ENT 497 Senior Design 87

 self.ids.colorValLabel.color = (0,0,100/255,1)

 colorTuple = (0,0,100,0)

 if cint == 14:

 self.ids.colorValLabel.color = (50/255,0,1,1)

 colorTuple = (51,0,255,0)

 if cint == 15:

 self.ids.colorValLabel.color = (125/255,0,1,1)

 colorTuple = (125,0,255,0)

 if cint == 16:

 self.ids.colorValLabel.color = (1,0,1,1)

 colorTuple = (255,0,255,0)

 if cint == 17:

 self.ids.colorValLabel.color = (1,60/255,150/255,1)

 colorTuple = (255,5,100,100)

 if cint == 18:

 self.ids.colorValLabel.color = (1,0,105/255,1)

 colorTuple = (255,0,75,25)

 if cint == 19:

 self.ids.colorValLabel.color = (1,1,1,1)

 colorTuple = (0,0,0,255)

 if cint == 20:

 self.ids.colorValLabel.color = (50/255,50/255,50/255,1)

 colorTuple = (0,0,0,50)

 self.ids.colorValLabel.text = str(cString1)

 def setAnimationState(self, animationId):

 global rainbow1Bool

 global rainbow2Bool

 global rainbowChaseBool

 global rainbowCometBool

 global rainbowSparkleBool

 global colorCycleBool

 rainbow1Bool = False

 rainbow2Bool = False

 rainbowChaseBool = False

 rainbowCometBool = False

 rainbowSparkleBool = False

ENT 497 Senior Design 88

 colorCycleBool = False

 if animationId == 1:

 rainbow1Bool = True

 if animationId == 2:

 rainbow2Bool = True

 if animationId == 3:

 rainbowChaseBool = True

 if animationId == 4:

 rainbowCometBool = True

 if animationId == 5:

 rainbowSparkleBool = True

 if animationId == 6:

 colorCycleBool = True

 global stop_thread

 stop_thread = True

 def startThread(self):

 global speed

 global cString

 global stop_thread

 global size2

 global threadActive2

 stop_thread = False

 rainbow = Rainbow(pixels, speed = speed2, period = size2)

 rainbow_chase = RainbowChase(pixels, speed = speed2, size = size2, spacing = 5)

 rainbow_comet = RainbowComet(pixels, speed = .001, tail_length = size2, bounce =

True)

 colorcycle = ColorCycle(pixels, speed = 2, colors = [RED, YELLOW, GREEN, GOLD,

BLUE, PURPLE, TEAL, PINK, AQUA, WHITE])

 rainbow_sparkle = RainbowSparkle(pixels, speed = speed2, num_sparkles = size2)

 def startAnimation():

 global size1

 global rainbow1Bool

 global rainbow2Bool

 global rainbowChaseBool

ENT 497 Senior Design 89

 global rainbowCometBool

 global rainbowSparkleBool

 global colorCycleBool

 rainbow = Rainbow(pixels, speed = speed2, period = size2)

 rainbow_chase = RainbowChase(pixels, speed = speed2, size = size2, spacing = 3)

 rainbow_comet = RainbowComet(pixels, speed = .001, tail_length = size2, bounce =

True)

 colorcycle = ColorCycle(pixels, speed = 2, colors = [RED, YELLOW, GREEN,

GOLD, BLUE, PURPLE, TEAL, PINK, AQUA, WHITE])

 def wheel(pos):

 if pos < 0 or pos > 255:

 r = g = b = 0

 elif pos < 85:

 r = int(pos * 3)

 g = int(255 - pos * 3)

 b = 0

 elif pos < 170:

 pos -= 85

 r = int(255 - pos * 3)

 g = 0

 b = int(pos * 3)

 else:

 pos -= 170

 r = 0

 g = int(pos * 3)

 b = int(255 - pos * 3)

 return (r, g, b, 0)

 def rainbow_cycle(wait):

 global size2

 for j in range(255):

 for i in range(num_pixels):

 pixel_index = (i * 256 // (num_pixels // size2)) + j

 pixels[i] = wheel(pixel_index & 255)

 pixels.show()

 time.sleep(wait)

ENT 497 Senior Design 90

 while rainbow1Bool == True and stop_thread == False:

 rainbow_cycle(.001)

 if stop_thread == True:

 break

 while rainbow2Bool == True and stop_thread == False:

 rainbow.animate()

 if stop_thread == True:

 break

 while rainbowChaseBool == True and stop_thread == False:

 rainbow_chase.animate()

 if stop_thread == True:

 break

 while rainbowCometBool == True and stop_thread == False:

 rainbow_comet.animate()

 time.sleep(.001)

 if stop_thread == True:

 break

 while rainbowSparkleBool == True and stop_thread == False:

 rainbow_sparkle.animate()

 if stop_thread == True:

 break

 while colorCycleBool == True and stop_thread == False:

 colorcycle.animate()

 if stop_thread == True:

 break

 t1 = threading.Thread(target = startAnimation)

 t1.start()

 def stopThread(self):

 global rainbow1Bool

 if rainbow1Bool == True:

 raPU = rainbowAnimationPU()

 raPU.open()

 global stop_thread

 stop_thread = True

 pixels.fill((0,0,0,0))

 pixels.show()

 time.sleep(.5)

ENT 497 Senior Design 91

 pixels.fill((0,0,0,0))

 pixels.show()

 def updateTime2(self, *args):

 pattern1 = re.compile("^[1][0-2][:][0-5]\d")

 pattern2 = re.compile("^[1-9][:][0-5]\d")

 now = datetime.datetime.now()

 self.ids.timeLabel.text = now.strftime('%-I:%M')

 self.ids.ampmLabel.text = now.strftime('%p')

 if(re.search(pattern1, now.strftime('%-I:%M'))):

 self.ids.ampmLabel.pos_hint = {'x' : .87, 'top' : .95}

 if(re.search(pattern2, now.strftime('%-I:%M'))):

 self.ids.ampmLabel.pos_hint = {'x' : .82, 'top' : .95}

 def on_kv_post(self, basewidget):

 Clock.schedule_once(self.updateTime2)

 Clock.schedule_interval(self.updateTime2, 3)

class LEDColor(Screen):

 def setColor(self):

 global r

 global g

 global b

 r = 0

 g = 0

 b = 0

 pixels.fill((0,0,0,0))

 pixels.show()

 red = Decimal(self.ids.colorpicker.color[0])

 red = float(red) * 255

 r = int(red)

 green = Decimal(self.ids.colorpicker.color[1])

ENT 497 Senior Design 92

 green = float(green) * 255

 g = int(green)

 blue = Decimal(self.ids.colorpicker.color[2])

 float(blue)

 blue = float(blue) * 255

 b = int(blue)

 alpha = Decimal(self.ids.colorpicker.color[3])

 a = int(alpha)

 pixels.fill((r,g,b,a))

 pixels.show()

 def clearLights(self):

 global r

 global g

 global b

 global a

 r = 0

 g = 0

 b = 0

 a = 0

 pixels.fill((r,g,b,a))

 pixels.show()

class AlarmScreen(Screen):

 global atime

 atime = "0"

 global ampm

 ampm = ""

 pygame.mixer.music.load("Birdsong.mp3")

 def setAlarm(self):

 global atime

 global aBool

 aBool = False

 atime = self.inp1.text

 pattern1 = re.compile("^[1][0-2][:][0-5]\d")

 pattern2 = re.compile("^[1-9][:][0-5]\d")

ENT 497 Senior Design 93

 def open_Vpopup(self):

 validPopup1 = ValidPopUp()

 validPopup1.open()

 validPopup1.addAlarmText()

 def open_InVpopup(self):

 invalidPopup1 = InValidPopUp()

 invalidPopup1.open()

 invalidPopup1.addAlarmText()

 if((re.search(pattern1, atime)) or (re.search(pattern2, atime)) and (ampm ==

 "AM" or ampm == "PM")):

 open_Vpopup(self)

 else:

 open_InVpopup(self)

 def setAMPM(self, AMorPM):

 global ampm

 ampm = str(AMorPM)

 def timeInput(self, timeCharacter):

 timestr = self.ids.timeInput.text

 timelength = len(timestr)

 if(timelength <= 4):

 previous = self.ids.timeInput.text

 self.ids.timeInput.text = f'{previous}{timeCharacter}'

 def backspace(self):

 def convert(s):

 str1 = ""

 return(str1.join(s))

 ti = self.ids.timeInput.text

 charint = len(ti)

 if(charint >= 1):

 new = list(ti)

 new[-1] = ''

ENT 497 Senior Design 94

 self.ids.timeInput.text = convert(new)

 else:

 pass

 def turnAlarmOff(self):

 global atime

 global lightBool

 lightBool = False

 pygame.mixer.music.stop()

 atime = "0"

 pixels.fill((0,0,0,0))

 pixels.show()

 def updateTime2(self, *args):

 pattern1 = re.compile("^[1][0-2][:][0-5]\d")

 pattern2 = re.compile("^[1-9][:][0-5]\d")

 now = datetime.datetime.now()

 self.ids.timeLabel.text = now.strftime('%-I:%M')

 self.ids.ampmLabel.text = now.strftime('%p')

 if(re.search(pattern1, now.strftime('%-I:%M'))):

 self.ids.ampmLabel.pos_hint = {'x' : .435, 'top' : .93}

 if(re.search(pattern2, now.strftime('%-I:%M'))):

 self.ids.ampmLabel.pos_hint = {'x' : .4, 'top' : .93}

 def on_kv_post(self, basewidget):

 Clock.schedule_once(self.updateTime2)

 Clock.schedule_interval(self.updateTime2, 29)

class AlarmSounds(Screen):

 global currentAlarm

 def loadAlarm(self, Sound):

 global currentAlarm

ENT 497 Senior Design 95

 pygame.mixer.music.load(Sound)

 currentAlarm = Sound

 def playAlarm(self):

 if(pygame.mixer.music.get_busy() == True):

 self.ids.play.state = 'down'

 pygame.mixer.music.play(loops = -1)

 else:

 pygame.mixer.music.play(loops = -1)

 self.ids.play.state = 'down'

 def stopAlarm(self):

 pygame.mixer.music.stop()

 def updateTime3(self, *args):

 pattern1 = re.compile("^[1][0-2][:][0-5]\d")

 pattern2 = re.compile("^[1-9][:][0-5]\d")

 now = datetime.datetime.now()

 self.ids.timeLabel.text = now.strftime('%-I:%M')

 self.ids.ampmLabel.text = now.strftime('%p')

 if(re.search(pattern1, now.strftime('%-I:%M'))):

 self.ids.ampmLabel.pos_hint = {'x' : .68, 'top' : .93}

 if(re.search(pattern2, now.strftime('%-I:%M'))):

 self.ids.ampmLabel.pos_hint = {'x' : .62, 'top' : .93}

 def on_kv_post(self, basewidget):

 Clock.schedule_once(self.updateTime3)

 Clock.schedule_interval(self.updateTime3, 29)

class WhiteNoise(Screen):

 def LoadSound(self, Sound):

 global currentAlarm

 pygame.mixer.music.load(Sound)

 currentAlarm = Sound

ENT 497 Senior Design 96

 def PlaySound(self):

 if(pygame.mixer.music.get_busy() == True):

 self.ids.play2.state = 'down'

 pygame.mixer.music.play(loops = -1)

 else:

 pygame.mixer.music.play(loops = -1)

 self.ids.play2.state = 'down'

 def stop(self):

 pygame.mixer.music.pause()

 def pause(self):

 pygame.mixer.init()

 if(pygame.mixer.music.get_busy() == True):

 pygame.mixer.music.pause()

 self.ids.pause.state = 'down'

 else:

 pygame.mixer.music.unpause()

 def updateTime4(self, *args):

 pattern1 = re.compile("^[1][0-2][:][0-5]\d")

 pattern2 = re.compile("^[1-9][:][0-5]\d")

 now = datetime.datetime.now()

 self.ids.timeLabel.text = now.strftime('%-I:%M')

 self.ids.ampmLabel.text = now.strftime('%p')

 if(re.search(pattern1, now.strftime('%-I:%M'))):

 self.ids.ampmLabel.pos_hint = {'x' : .67, 'top' : .93}

 if(re.search(pattern2, now.strftime('%-I:%M'))):

 self.ids.ampmLabel.pos_hint = {'x' : .62, 'top' : .93}

 def on_kv_post(self, basewidget):

 Clock.schedule_once(self.updateTime4)

 Clock.schedule_interval(self.updateTime4, 29)

ENT 497 Senior Design 97

class ValidPopUp(Popup):

 def addAlarmText(self):

 self.ids.alarmlabel.text = "Alarm set for " + atime + " " + ampm

class InValidPopUp(Popup):

 def addAlarmText(self):

 self.ids.alarmlabel.text = "Invalid Alarm: Enter a Valid Time..."

class AlarmPopUp(Popup):

 global aBool

 aBool = False

 global lightBool

 lightBool = False

 def turnAlarmOff(self):

 global atime

 global aBool

 aBool = False

 pygame.mixer.music.stop()

 atime = "0"

 global lightBool

 lightBool = False

 app = App.get_running_app()

 app.root.get_screen('main').ids.alarm1.source = '/home/pi/Desktop/Final

GUI/icons/alarm.png'

 def turnAlarmandLightsOff(self):

 global atime

 pygame.mixer.music.stop()

 global lightBool

 lightBool = False

 global aBool

 aBool = False

 atime = "0"

 pixels.fill((0,0,0,0))

 pixels.show()

 app = App.get_running_app()

ENT 497 Senior Design 98

 app.root.get_screen('main').ids.alarm1.source = '/home/pi/Desktop/Final

GUI/icons/alarm.png'

class LWCPopUp(Popup):

 def timedRelay(self, time):

 def relayOn(self):

 GPIO.output(LWC, GPIO.LOW)

 def relayOff(self):

 GPIO.output(LWC, GPIO.HIGH)

 app = App.get_running_app()

 app.root.get_screen('main').ids.leftWC.state = 'normal'

 Clock.schedule_once(relayOn)

 Clock.schedule_once(relayOff, time)

 def relayOn(self):

 GPIO.output(LWC, GPIO.LOW)

class RWCPopUp(Popup):

 def timedRelay(self, time):

 def relayOn(self):

 GPIO.output(RWC, GPIO.LOW)

 def relayOff(self):

 GPIO.output(RWC, GPIO.HIGH)

 app = App.get_running_app()

 app.root.get_screen('main').ids.rightWC.state = 'normal'

 Clock.schedule_once(relayOn)

 Clock.schedule_once(relayOff, time)

 def relayOn(self):

 GPIO.output(RWC, GPIO.LOW)

class rainbowAnimationPU(Popup):

ENT 497 Senior Design 99

 def turnLightsOFF(self, x):

 time.sleep(12)

 pixels.fill((0,0,0,0))

 pixels.show()

 self.ids.cd.text = "Ready to Close"

 def on_kv_post(self, basewidget):

 Clock.schedule_once(self.turnLightsOFF)

Initilizaiton of Builder to read KV file

presentation = Builder.load_file("final_master.kv")

#Initilizing App for foundation of program

class finalMasterApp(App):

 def build(self):

 ScreenManagement = ScreenManager()

 ScreenManagement.add_widget(MainScreen(name = 'main'))

 ScreenManagement.add_widget(AdvancedColor(name = 'advancedcolor'))

 ScreenManagement.add_widget(LEDColor(name = 'customcolor'))

 ScreenManagement.add_widget(LEDAnimations1(name = 'animations'))

 ScreenManagement.add_widget(LEDAnimations2(name = 'animations2'))

 ScreenManagement.add_widget(AlarmScreen(name = 'alarmScreen'))

 ScreenManagement.add_widget(AlarmSounds(name = 'alarmSound'))

 ScreenManagement.add_widget(WhiteNoise(name = 'whitenoise'))

 return ScreenManagement

if __name__== "__main__":

 finalMasterApp().run()

ENT 497 Senior Design 100

Appendix E: Main Kivy Program

#:import Factory kivy.factory.Factory

#Initilizing Main Screen

<MainScreen>:

 name: "main"

 #Utilizing Float Layout format

 FloatLayout:

 Label:

 id:timeLabel

 color: (10/255.0,0,150/255.0,1)

 font_name: "Centaur"

 font_size: 175

 size_hint: (.6,.3)

 pos_hint: {"x": .13, "top": 1}

 Label:

 id:ampmLabel

 color: (10/255.0,0,150/255.0,1)

 font_name: "Centaur"

 font_size: 88

 size_hint: (.2,.15)

 pos_hint: {"x": .65, "top": .88}

 Label:

 id: dateLabel

 font_size: 35

 font_name: "Centaur"

 color: (10/255.0,0,150/255.0,1)

 size_hint: (.2,.5)

 pos_hint: {"x": .4, "top": .93}

 Label:

 id: LFan

 text: "0%"

 color: (10/255.0,0,90/255.0,1)

 font_size: 30

 size_hint: (.2,.2)

 pos_hint: {"x": .0, "top": 1}

ENT 497 Senior Design 101

 Label:

 id: RFan

 text: "0 %"

 halign: 'right'

 font_size: 30

 color: (10/255.0,0,90/255.0,1)

 size_hint: (.2,.2)

 pos_hint: {"x": .82, "top": 1}

 RoundedButton2:

 id: LEDLights

 font_size: 15

 pos_hint: {"x": .33, "top": .475}

 size_hint: (.34, .2)

 on_press: app.root.current = "advancedcolor"

 Image:

 source: '/home/pi/Desktop/Final GUI/icons/LED.png'

 color: (1,0,0,1)

 center_x: self.parent.center_x

 center_y: self.parent.center_y

 RoundedTButton:

 id: leftLamp

 font_size: 15

 pos_hint: {"x": .2, "top": .575}

 size_hint: (.14, .11)

 on_press:

 if self.state == "normal": \

 root.ROn(22)

 if self.state == "down": \

 root.ROff(22)

 on_state:

 if self.state == "normal": \

 leftLamp1.source = '/home/pi/Desktop/Final GUI/icons/lamp.png'

 if self.state == "down": \

 leftLamp1.source = '/home/pi/Desktop/Final GUI/activated icons/lamp.png'

 Image:

ENT 497 Senior Design 102

 id: leftLamp1

 source: '/home/pi/Desktop/Final GUI/icons/lamp.png'

 center_x: self.parent.center_x

 center_y: self.parent.center_y

 RoundedTButton:

 id: rightLamp

 font_size: 15

 pos_hint: {"x": .67, "top": .575}

 size_hint: (.13, .11)

 on_press:

 if self.state == "normal": \

 root.ROn(27)

 if self.state == "down": \

 root.ROff(27)

 on_state:

 if self.state == "normal": \

 rightLamp1.source = '/home/pi/Desktop/Final GUI/icons/lamp.png'

 if self.state == "down": \

 rightLamp1.source = '/home/pi/Desktop/Final GUI/activated icons/lamp.png'

 Image:

 id: rightLamp1

 source: '/home/pi/Desktop/Final GUI/icons/lamp.png'

 center_x: self.parent.center_x

 center_y: self.parent.center_y

 RoundedTButton:

 id: leftWC

 font_size: 15

 pos_hint: {"x": .21, "top": .315}

 size_hint: (.13, .11)

 on_press:

 pu = Factory.LWCPopUp()

 if self.state == "normal": \

 root.ROn(17)

 if self.state == "down": \

 pu.open()

ENT 497 Senior Design 103

 on_state:

 if self.state == "normal": \

 leftWC1.source = '/home/pi/Desktop/Final GUI/icons/WirelessCharging.png'

 if self.state == "down": \

 leftWC1.source = '/home/pi/Desktop/Final GUI/activated

icons/WirelessCharging.png'

 Image:

 id: leftWC1

 source: '/home/pi/Desktop/Final GUI/icons/WirelessCharging.png'

 center_x: self.parent.center_x

 center_y: self.parent.center_y

 RoundedTButton:

 id: rightWC

 font_size: 15

 pos_hint: {"x": .67, "top": .315}

 size_hint: (.13, .11)

 on_press:

 pu = Factory.RWCPopUp()

 if self.state == "normal": \

 root.ROn(4)

 if self.state == "down": \

 pu.open()

 on_state:

 if self.state == "normal": \

 rightWC1.source = '/home/pi/Desktop/Final GUI/icons/WirelessCharging.png'

 if self.state == "down": \

 rightWC1.source = '/home/pi/Desktop/Final GUI/activated

icons/WirelessCharging.png'

 Image:

 id: rightWC1

 source: '/home/pi/Desktop/Final GUI/icons/WirelessCharging.png'

 center_x: self.parent.center_x

 center_y: self.parent.center_y

 RoundedButton:

 id: whiteNoise

ENT 497 Senior Design 104

 font_size: 20

 pos_hint: {"x": .439, "top": .63}

 color: (0,0,0,1)

 size_hint: (.13, .11)

 on_press:

 app.root.current = "whitenoise"

 Image:

 source: '/home/pi/Desktop/Final GUI/icons/whitenoise3.png'

 center_x: self.parent.center_x

 center_y: self.parent.center_y

 RoundedTButton:

 id: powerbtn

 font_size: 15

 pos_hint: {"x": .53, "top": .205}

 size_hint: (.13, .11)

 on_press:

 root.powerOff()

 app.stop()

 Image:

 source: '/home/pi/Desktop/Final GUI/icons/power.png'

 center_x: self.parent.center_x

 center_y: self.parent.center_y

 RoundedButton:

 id: Alarm

 font_size: 15

 pos_hint: {"x": .34, "top": .205}

 size_hint: (.13, .11)

 on_press: app.root.current = "alarmScreen"

 Image:

 id: alarm1

 source: '/home/pi/Desktop/Final GUI/icons/alarm.png'

 center_x: self.parent.center_x

 center_y: self.parent.center_y

 RoundedTButton:

ENT 497 Senior Design 105

 id: leftFan

 font_size: 15

 pos_hint: {"x": .0245, "top": .15}

 size_hint: (.13, .11)

 on_press: root.LFanON(*args)

 on_state:

 if self.state == "normal": \

 leftFan1.source = '/home/pi/Desktop/Final GUI/icons/cpufan1.png'

 if self.state == "down": \

 leftFan1.source = '/home/pi/Desktop/Final GUI/activated icons/cpufan1.png'

 Image:

 id: leftFan1

 source: '/home/pi/Desktop/Final GUI/icons/cpufan1.png'

 center_x: self.parent.center_x

 center_y: self.parent.center_y

 RoundedTButton:

 id: rightFan

 font_size: 15

 pos_hint: {"x": .848, "top": .15}

 size_hint: (.13, .11)

 on_press: root.RFanON(*args)

 on_state:

 if self.state == "normal": \

 rightFan1.source = '/home/pi/Desktop/Final GUI/icons/cpufan1.png'

 if self.state == "down": \

 rightFan1.source = '/home/pi/Desktop/Final GUI/activated icons/cpufan1.png'

 Image:

 id: rightFan1

 source: '/home/pi/Desktop/Final GUI/icons/cpufan1.png'

 center_x: self.parent.center_x

 center_y: self.parent.center_y

 Slider:

 id: leftSlider

 min:0

 font_size: 20

 size_hint: (.1, .6)

ENT 497 Senior Design 106

 orientation: 'vertical'

 pos_hint: {"x": .04, "top": .8}

 on_value: LFan.text = str(int(leftSlider.value)) + "%"

 on_value: root.LFanCS(*args)

 Slider:

 id: rightSlider

 font_size: 20

 size_hint: (.1, .6)

 orientation: 'vertical'

 pos_hint: {"x": .86, "top": .79}

 on_value: RFan.text = str(int(rightSlider.value)) + "%"

 on_value: root.RFanCS(*args)

<AdvancedColor>:

 name: "advancedcolor"

 FloatLayout:

 RoundedButton2:

 id: customcolor1

 text: "Custom Color"

 font_size: 30

 size_hint: (.4,.25)

 pos_hint: {"x": .51, "top": .875}

 color: (10/255.0,0,150/255.0,1)

 font_name: "Centaur"

 on_press: app.root.current = "customcolor"

 RoundedButton2:

 id: animations

 text: "Animations"

 size_hint: (.4,.25)

 font_size: 30

 pos_hint: {"x": .51, "top": .55}

 color: (10/255.0,0,150/255.0,1)

 font_name: "Centaur"

 on_press: app.root.current = "animations"

 RoundedButton:

ENT 497 Senior Design 107

 id: clear

 text: "Clear"

 pos_hint: {"x": .5, "top": .19}

 size_hint: (.2, .15)

 font_name: "Centaur"

 font_size: 20

 color: (10/255.0,0,150/255.0,1)

 on_press: root.clearLights()

 RoundedButton:

 id: return

 pos_hint: {"x": .75, "top": .19}

 size_hint: (.2, .15)

 font_name: "Centaur"

 color: (10/255.0,0,150/255.0,1)

 on_press: app.root.current = "main"

 Image:

 source: '/home/pi/Desktop/Final GUI/icons/return.png'

 center_x: self.parent.center_x

 center_y: self.parent.center_y

 Label:

 id: white

 text: "W"

 font_size: 45

 color: (10/255.0,0,150/255.0,1)

 size_hint: (.2, .1)

 pos_hint: {"x": .01, "top": .95}

 Label:

 id: tune

 text: "T"

 font_size: 45

 color: (10/255.0,0,150/255.0,1)

 size_hint: (.2, .1)

 pos_hint: {"x": .2385, "top": .95}

 Slider:

 id: whiteSlider

ENT 497 Senior Design 108

 font_size: 20

 min: 0

 max: 255

 size_hint: (.1, .75)

 orientation: 'vertical'

 pos_hint: {"x": .06, "top": .855}

 on_value: root.addWhite(*args)

 Slider:

 id: tunableSlider

 font_size: 20

 min: 0

 max: 255

 size_hint: (.1, .75)

 orientation: 'vertical'

 pos_hint: {"x": .29, "top": .855}

 on_value: root.tuner(*args)

<LEDAnimations1>:

 name: "animations"

 FloatLayout:

 Label:

 id:timeLabel

 color: (10/255.0,0,150/255.0,1)

 font_name: "Centaur"

 font_size: 135

 size_hint: (.4,.2)

 pos_hint: {"x": .45, "top": .98}

 Label:

 id:ampmLabel

 color: (10/255.0,0,150/255.0,1)

 font_name: "Centaur"

 font_size: 75

 size_hint: (.1,.2)

 pos_hint: {"x": .88, "top": .9}

 text: "PM"

 RoundedTButton:

ENT 497 Senior Design 109

 id: blink

 group: "animations"

 text: "Blink"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .52 ,"top": .75}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 blink.color = (1,0,0,1)

 if self.state == "normal": \

 blink.color = (0,0,1,1)

 on_press:

 play.state = "normal"

 on_press:

 if self.state == "down": \

 root.setAnimationState(1)

 RoundedTButton:

 id: comet

 group: "animations"

 text: "Comet"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .76 ,"top": .75}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 comet.color = (1,0,0,1)

 else: \

 comet.color = (0,0,1,1)

 on_press:

 play.state = "normal"

 if self.state == "down": \

 root.setAnimationState(2)

ENT 497 Senior Design 110

 RoundedTButton:

 id: chase

 group: "animations"

 text: "Chase"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .52 ,"top": .55}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 chase.color = (1,0,0,1)

 else: \

 chase.color = (0,0,1,1)

 on_press:

 play.state = "normal"

 if self.state == "down": \

 root.setAnimationState(3)

 RoundedTButton:

 id: sparkle

 group: "animations"

 text: "Twinkle"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .76 ,"top": .55}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 sparkle.color = (1,0,0,1)

 else: \

 sparkle.color = (0,0,1,1)

 on_press:

 play.state = "normal"

 if self.state == "down": \

 root.setAnimationState(5)

ENT 497 Senior Design 111

 RoundedTButton:

 id: pulse

 group: "animations"

 text: "Pulse"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .52 ,"top": .35}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 pulse.color = (1,0,0,1)

 else: \

 pulse.color = (0,0,1,1)

 on_press:

 play.state = "normal"

 if self.state == "down": \

 root.setAnimationState(4)

 RoundedTButton:

 id: sparklepulse

 group: "animations"

 text: "Sparkle"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .76 ,"top": .35}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 sparklepulse.color = (1,0,0,1)

 else: \

 sparklepulse.color = (0,0,1,1)

 on_press:

 play.state = "normal"

 if self.state == "down": \

 root.setAnimationState(6)

 Label:

ENT 497 Senior Design 112

 id: colorlabel

 text: "Color"

 font_size: 30

 size_hint: (.2, .1)

 pos_hint: {"x": .035, "top": 1}

 Label:

 id: colorValLabel

 text: "N/A"

 font_size: 30

 size_hint: (.2, .1)

 pos_hint: {"x": .035, "top": .275}

 Slider:

 id: colorSlider

 font_size: 15

 min: 1

 max: 20

 size_hint: (.1, .6)

 orientation: 'vertical'

 pos_hint: {"x": .08, "top": .9}

 on_value: root.setColor(*args)

 Label:

 id: sizelabel

 text: "Size"

 font_size: 30

 size_hint: (.2, .1)

 pos_hint: {"x": .28, "top": 1}

 Label:

 id: sizevallabel

 text: "N/A"

 font_size: 30

 size_hint: (.2, .1)

 pos_hint: {"x": .285, "top": .275}

 Slider:

 id: sizeSlider

 font_size: 20

ENT 497 Senior Design 113

 min: 1

 max: 20

 size_hint: (.1, .6)

 orientation: 'vertical'

 pos_hint: {"x": .33, "top": .9}

 on_value: root.setSize(*args)

 RoundedTButton:

 id: play

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .04 ,"top": .15}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == 'normal': \

 play1.source = '/home/pi/Desktop/Final GUI/icons/solidplay.png'

 if self.state == 'down': \

 play1.source = '/home/pi/Desktop/Final GUI/activated icons/solidplay.png'

 on_press:

 root.startThread()

 Image:

 id: play1

 source: '/home/pi/Desktop/Final GUI/icons/solidplay.png'

 center_x: self.parent.center_x

 center_y: self.parent.center_y

 RoundedButton:

 id: stop

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .28 ,"top": .15}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_press:

ENT 497 Senior Design 114

 play.state = "normal"

 root.stopThread()

 Image:

 source: '/home/pi/Desktop/Final GUI/icons/solidstop.png'

 center_x: self.parent.center_x

 center_y: self.parent.center_y

 RoundedButton:

 id: return2

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .52 ,"top": .15}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_press: app.root.current = "advancedcolor"

 Image:

 source: '/home/pi/Desktop/Final GUI/icons/return.png'

 center_x: self.parent.center_x

 center_y: self.parent.center_y

 RoundedButton:

 id: page1

 color: (0,0,0,1)

 text: "Rainbow"

 size_hint: (.2, .15)

 pos_hint: {"x": .76 ,"top": .15}

 font_size: 20

 font_name: "Centaur"

 color: (0,0,1,1)

 on_press: app.root.current = "animations2"

<LEDAnimations2>:

 name: "animations2"

 FloatLayout:

 Label:

ENT 497 Senior Design 115

 id:timeLabel

 color: (10/255.0,0,150/255.0,1)

 font_name: "Centaur"

 font_size: 135

 size_hint: (.4,.2)

 pos_hint: {"x": .45, "top": .98}

 Label:

 id:ampmLabel

 color: (10/255.0,0,150/255.0,1)

 font_name: "Centaur"

 font_size: 75

 size_hint: (.1,.2)

 pos_hint: {"x": .88, "top": .9}

 text: "PM"

 RoundedTButton:

 id: rainbow1

 group: "animations"

 text: "Rainbow 1"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .52 ,"top": .75}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 rainbow1.color = (1,0,0,1)

 if self.state == "normal": \

 rainbow1.color = (0,0,1,1)

 on_press:

 play.state = "normal"

 on_press:

 if self.state == "down": \

 root.setAnimationState(1)

 RoundedTButton:

 id: rainbow2

 group: "animations"

ENT 497 Senior Design 116

 text: "Rainbow 2"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .76 ,"top": .75}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 rainbow2.color = (1,0,0,1)

 else: \

 rainbow2.color = (0,0,1,1)

 on_press:

 play.state = "normal"

 if self.state == "down": \

 root.setAnimationState(2)

 RoundedTButton:

 id: rainbowchase

 group: "animations"

 text: "Rainbow Chase"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .52 ,"top": .55}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 rainbowchase.color = (1,0,0,1)

 else: \

 rainbowchase.color = (0,0,1,1)

 on_press:

 play.state = "normal"

 if self.state == "down": \

 root.setAnimationState(3)

 RoundedTButton:

 id: rainbowcomet

 group: "animations"

ENT 497 Senior Design 117

 text: "Rainbow Comet"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .76 ,"top": .55}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 rainbowcomet.color = (1,0,0,1)

 else: \

 rainbowcomet.color = (0,0,1,1)

 on_press:

 play.state = "normal"

 if self.state == "down": \

 root.setAnimationState(4)

 RoundedTButton:

 id: rainbowsparkle

 group: "animations"

 text: "Rainbow Sparkle"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .52 ,"top": .35}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 rainbowsparkle.color = (1,0,0,1)

 else: \

 rainbowsparkle.color = (0,0,1,1)

 on_press:

 play.state = "normal"

 if self.state == "down": \

 root.setAnimationState(5)

 RoundedTButton:

 id: colorcycle

 group: "animations"

 text: "Color Cycle"

ENT 497 Senior Design 118

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .76 ,"top": .35}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 colorcycle.color = (1,0,0,1)

 else: \

 colorcycle.color = (0,0,1,1)

 on_press:

 play.state = "normal"

 if self.state == "down": \

 root.setAnimationState(6)

 Label:

 id: speedlabel

 text: "Speed"

 font_size: 30

 size_hint: (.2, .1)

 pos_hint: {"x": .035, "top": 1}

 Label:

 id: speedvallabel

 text: "N/A"

 font_size: 30

 size_hint: (.2, .1)

 pos_hint: {"x": .035, "top": .275}

 Slider:

 id: speedSlider

 font_size: 20

 min: 0

 max: 15

 size_hint: (.1, .6)

 orientation: 'vertical'

 pos_hint: {"x": .08, "top": .9}

 on_value: root.setSpeed(*args)

 Label:

ENT 497 Senior Design 119

 id: sizelabel

 text: "Size"

 font_size: 30

 size_hint: (.2, .1)

 pos_hint: {"x": .28, "top": 1}

 Label:

 id: sizevallabel

 text: "N/A"

 font_size: 30

 size_hint: (.2, .1)

 pos_hint: {"x": .28, "top": .275}

 Slider:

 id: sizeSlider

 font_size: 20

 min: 1

 max: 20

 size_hint: (.1, .6)

 orientation: 'vertical'

 pos_hint: {"x": .325, "top": .9}

 on_value: root.setSize(*args)

 RoundedTButton:

 id: play

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .04 ,"top": .15}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == 'normal': \

 play1.source = '/home/pi/Desktop/Final GUI/icons/solidplay.png'

 if self.state == 'down': \

 play1.source = '/home/pi/Desktop/Final GUI/activated icons/solidplay.png'

 on_press:

 root.startThread()

ENT 497 Senior Design 120

 Image:

 id: play1

 source: '/home/pi/Desktop/Final GUI/icons/solidplay.png'

 center_x: self.parent.center_x

 center_y: self.parent.center_y

 RoundedButton:

 id: stop

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .28 ,"top": .15}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_press:

 play.state = "normal"

 root.stopThread()

 Image:

 source: '/home/pi/Desktop/Final GUI/icons/solidstop.png'

 center_x: self.parent.center_x

 center_y: self.parent.center_y

 RoundedButton:

 id: return2

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .52 ,"top": .15}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_press: app.root.current = "main"

 Image:

 source: '/home/pi/Desktop/Final GUI/icons/return.png'

 center_x: self.parent.center_x

 center_y: self.parent.center_y

 RoundedButton:

ENT 497 Senior Design 121

 id: page1

 color: (0,0,0,1)

 text: "Solid Color"

 size_hint: (.2, .15)

 pos_hint: {"x": .76 ,"top": .15}

 font_size: 20

 font_name: "Centaur"

 color: (0,0,1,1)

 on_press: app.root.current = "animations"

<LEDColor>:

 name: "ccolor"

 FloatLayout:

 ColorPicker:

 id: colorpicker

 RoundedButton:

 id: clear

 text: "Clear"

 font_size: 17.5

 color: (0,0,1,1)

 size_hint: (.15,.15)

 font_size: 20

 font_name: "Centaur"

 pos_hint: {"x": .84, "top": .97}

 on_press: root.clearLights()

 RoundedButton:

 id:set

 text: "Set Color"

 color: (0,0,1,1)

 font_size: 17.5

 size_hint: (.15,.15)

 font_size: 20

 font_name: "Centaur"

 pos_hint: {"x": .51, "top": .97}

 on_press: root.setColor()

ENT 497 Senior Design 122

 RoundedButton:

 id: return1

 size_hint: (.15,.15)

 pos_hint: {"x": .85, "top": .17}

 font_size: 25

 font_name: "Centaur"

 on_press: app.root.current = "advancedcolor"

 Image:

 source: '/home/pi/Desktop/Final GUI/icons/return.png'

 center_x: self.parent.center_x

 center_y: self.parent.center_y

<AlarmScreen>:

 name: "alarmScreen"

 inp1: timeInput

 FloatLayout:

 Label:

 id: timeLabel

 font_size: 150

 text: ""

 font_name: "Centaur"

 color: (0,0,1,1)

 size_hint: (.45,.25)

 pos_hint: {"top": .985}

 Label:

 id: ampmLabel

 font_size: 50

 text: ""

 font_name: "Centaur"

 color: (0,0,1,1)

 size_hint: (.05,.25)

 pos_hint: {"x": .44 ,"top": .93}

ENT 497 Senior Design 123

 Label:

 id: alabel

 size_hint: (.15, .1)

 text: "Alarm:"

 font_name: "Centaur"

 font_size: 35

 pos_hint: {"top": .69}

 color: (0,0,1,1)

 TextInput:

 id: timeInput

 font_size: 25

 size_hint: (.25,.12)

 pos_hint: {"x": .16, "top": .69}

 font_size: 40

 font_name: "Centaur"

 color: (0,0,1,1)

 Label:

 id: am

 text: "AM"

 size_hint: (.1,.15)

 pos_hint: {"x": .05 ,"top": .54}

 font_size: 35

 font_name: "Centaur"

 color: (0,0,1,1)

 CheckBox:

 id: AM

 group: "AMorPM"

 pos_hint: {"x": .13 ,"top": .52}

 size_hint: (.1,.1)

 on_active: root.setAMPM("AM")

 Label:

 id: pm

 text: "PM"

 size_hint: (.1,.15)

ENT 497 Senior Design 124

 pos_hint: {"x": .27 ,"top": .54}

 font_size: 35

 font_name: "Centaur"

 color: (0,0,1,1)

 CheckBox:

 id: PM

 group: "AMorPM"

 pos_hint: {"x": .35 ,"top": .52}

 size_hint: (.1,.1)

 on_active: root.setAMPM("PM")

 RoundedButton2:

 id: alarm

 pos_hint: {"x": .133, "top": .41}

 size_hint: (.25, .18)

 color: (0,0,1,1)

 font_size: 20

 on_press: app.root.current = "alarmSound"

 Image:

 source: '/home/pi/Desktop/Final GUI/icons/alarmnote.png'

 center_x: self.parent.center_x

 center_y: self.parent.center_y

 RoundedButton:

 id: setAlarm

 text: ("Set")

 size_hint: (.17, .15)

 pos_hint: {"x":.05, "top":.22}

 font_size: 30

 font_name: "Centaur"

 color: (0,0,1,1)

 on_press: root.setAlarm()

 RoundedButton:

 id: cancelAlarm

 color: (0,0,0,1)

 text: "Cancel"

 size_hint: (.17, .15)

ENT 497 Senior Design 125

 pos_hint: {"x": .29 ,"top": .22}

 font_size: 30

 font_name: "Centaur"

 color: (0,0,1,1)

 on_press:

 root.turnAlarmOff()

 app.root.current = "main"

 RoundedButton:

 id: one

 text: "1"

 color: (0,0,0,1)

 size_hint: (.15, .15)

 pos_hint: {"x": .51 ,"top": .93}

 font_size: 40

 font_name: "Centaur"

 color: (0,0,1,1)

 on_release: root.timeInput("1")

 RoundedButton:

 id: two

 text: "2"

 color: (0,0,0,1)

 size_hint: (.15, .15)

 pos_hint: {"x": .67, "top": .93}

 font_size: 40

 font_name: "Centaur"

 color: (0,0,1,1)

 on_press: root.timeInput("2")

 RoundedButton:

 id: three

 text: "3"

 color: (0,0,0,1)

 size_hint: (.15, .15)

 pos_hint: {"x": .83,"top": .93}

 font_size: 40

 font_name: "Centaur"

 color: (0,0,1,1)

 on_press: root.timeInput("3")

ENT 497 Senior Design 126

 RoundedButton:

 id: four

 text: "4"

 color: (0,0,0,1)

 size_hint: (.15, .15)

 pos_hint: {"x": .51, "top": .69}

 font_size: 40

 font_name: "Centaur"

 color: (0,0,1,1)

 on_press: root.timeInput("4")

 RoundedButton:

 id: five

 text: "5"

 color: (0,0,0,1)

 size_hint: (.15, .15)

 pos_hint: {"x": .67, "top": .69}

 font_size: 40

 font_name: "Centaur"

 color: (0,0,1,1)

 on_press: root.timeInput("5")

 RoundedButton:

 id: six

 text: "6"

 color: (0,0,0,1)

 size_hint: (.15, .15)

 pos_hint: {"x": .83,"top": .69}

 font_size: 40

 font_name: "Centaur"

 color: (0,0,1,1)

 on_press: root.timeInput("6")

 RoundedButton:

 id: seven

 text: "7"

 color: (0,0,0,1)

 size_hint: (.15, .15)

 pos_hint: {"x": .51,"top": .45}

 font_size: 40

ENT 497 Senior Design 127

 font_name: "Centaur"

 color: (0,0,1,1)

 on_press: root.timeInput("7")

 RoundedButton:

 id: eight

 text: "8"

 color: (0,0,0,1)

 size_hint: (.15, .15)

 pos_hint: {"x": .67 ,"top": .45}

 font_size: 40

 font_name: "Centaur"

 color: (0,0,1,1)

 on_press: root.timeInput("8")

 RoundedButton:

 id: nine

 text: "9"

 color: (0,0,0,1)

 size_hint: (.15, .15)

 pos_hint: {"x": .83, "top": .45}

 font_size: 40

 font_name: "Centaur"

 color: (0,0,1,1)

 on_press: root.timeInput("9")

 RoundedButton:

 id: backspace

 color: (0,0,0,1)

 size_hint: (.15, .15)

 pos_hint: {"x": .51, "top": .22}

 font_size: 40

 font_name: "Centaur"

 color: (0,0,1,1)

 on_press: root.backspace()

 Image:

 source: '/home/pi/Desktop/Final GUI/icons/backspace1.png'

 center_x: self.parent.center_x

 center_y: self.parent.center_y

ENT 497 Senior Design 128

 RoundedButton:

 id: zero

 text: "0"

 color: (0,0,0,1)

 size_hint: (.15, .15)

 pos_hint: {"x": .67,"top": .22}

 font_size: 40

 font_name: "Centaur"

 color: (0,0,1,1)

 on_press: root.timeInput("0")

 RoundedButton:

 id: colon

 text: ":"

 color: (0,0,0,1)

 size_hint: (.15, .15)

 pos_hint: {"x": .83,"top": .22}

 font_size: 40

 font_name: "Centaur"

 color: (0,0,1,1)

 on_press: root.timeInput(":")

<AlarmSounds>:

 name: "alarmSound"

 FloatLayout:

 Label:

 id: timeLabel

 font_size: 150

 text: ""

 font_name: "Centaur"

 color: (0,0,1,1)

 size_hint: (.6,.25)

 pos_hint: {"x": .15 ,"top": .985}

 Label:

 id: ampmLabel

 font_size: 50

ENT 497 Senior Design 129

 text: ""

 font_name: "Centaur"

 color: (0,0,1,1)

 size_hint: (.05,.25)

 pos_hint: {"x": .67 ,"top": .93}

 RoundedTButton:

 id: alarm1

 group: "alarms"

 text: "Bird Song"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .04 ,"top": .75}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 alarm1.color = (1,0,0,1)

 if self.state == "normal": \

 alarm1.color = (0,0,1,1)

 on_press:

 root.loadAlarm("Birdsong.mp3")

 play.state = "normal"

 RoundedTButton:

 id: alarm2

 group: "alarms"

 text: "Early Riser"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .28 ,"top": .75}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 alarm2.color = (1,0,0,1)

 else: \

 alarm2.color = (0,0,1,1)

 on_press:

ENT 497 Senior Design 130

 root.loadAlarm("Early Riser.mp3")

 play.state = "normal"

 RoundedTButton:

 id: alarm3

 group: "alarms"

 text: "Fighter Jets"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .52 ,"top": .75}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 alarm3.color = (1,0,0,1)

 else: \

 alarm3.color = (0,0,1,1)

 on_press:

 root.loadAlarm("Fighter Jets.mp3")

 play.state = "normal"

 RoundedTButton:

 id: alarm4

 group: "alarms"

 text: "First Light"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .76 ,"top": .75}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 alarm4.color = (1,0,0,1)

 else: \

 alarm4.color = (0,0,1,1)

 on_press:

 root.loadAlarm("First Light.mp3")

 play.state = "normal"

ENT 497 Senior Design 131

 RoundedTButton:

 id: alarm5

 group: "alarms"

 text: "Helicopter"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .04 ,"top": .55}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 alarm5.color = (1,0,0,1)

 else: \

 alarm5.color = (0,0,1,1)

 on_press:

 root.loadAlarm("Helicopter.mp3")

 play.state = "normal"

 RoundedTButton:

 id: alarm6

 group: "alarms"

 text: "Helios"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .28 ,"top": .55}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 alarm6.color = (1,0,0,1)

 else: \

 alarm6.color = (0,0,1,1)

 on_press:

 root.loadAlarm("Helios.mp3")

 play.state = "normal"

 RoundedTButton:

 id: alarm7

 group: "alarms"

ENT 497 Senior Design 132

 text: "Inception"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .52 ,"top": .55}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 alarm7.color = (1,0,0,1)

 else: \

 alarm7.color = (0,0,1,1)

 on_press:

 root.loadAlarm("Inception.mp3")

 play.state = "normal"

 RoundedTButton:

 id: alarm8

 group: "alarms"

 text: "Nuclear"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .76 ,"top": .55}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 alarm8.color = (1,0,0,1)

 else: \

 alarm8.color = (0,0,1,1)

 on_press:

 root.loadAlarm("Nuclear.mp3")

 play.state = "normal"

 RoundedTButton:

 id: alarm9

 group: "alarms"

 text: "Rusty Lake"

 color: (0,0,0,1)

 size_hint: (.2, .15)

ENT 497 Senior Design 133

 pos_hint: {"x": .76 ,"top": .35}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 alarm9.color = (1,0,0,1)

 else: \

 alarm9.color = (0,0,1,1)

 on_press:

 root.loadAlarm("Rusty Lake.mp3")

 play.state = "normal"

 RoundedTButton:

 id: alarm10

 group: "alarms"

 text: "Springtide"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .04 ,"top": .35}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 alarm10.color = (1,0,0,1)

 else: \

 alarm10.color = (0,0,1,1)

 on_press:

 root.loadAlarm("Springtide.mp3")

 play.state = "normal"

 RoundedTButton:

 id: alarm11

 group: "alarms"

 text: "Submarine"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .28 ,"top": .35}

 font_size: 25

 font_name: "Centaur"

ENT 497 Senior Design 134

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 alarm11.color = (1,0,0,1)

 else: \

 alarm11.color = (0,0,1,1)

 on_press:

 root.loadAlarm("Submarine.mp3")

 play.state = "normal"

 RoundedTButton:

 id: alarm12

 group: "alarms"

 text: "Sunny"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .52 ,"top": .35}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 alarm12.color = (1,0,0,1)

 else: \

 alarm12.color = (0,0,1,1)

 on_press:

 root.loadAlarm("Sunny.mp3")

 play.state = "normal"

 RoundedTButton:

 id: play

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .1 ,"top": .15}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_press: root.playAlarm()

 on_state:

 if self.state == 'normal': \

ENT 497 Senior Design 135

 play1.source = '/home/pi/Desktop/Final GUI/icons/solidplay.png'

 if self.state == 'down': \

 play1.source = '/home/pi/Desktop/Final GUI/activated icons/solidplay.png'

 Image:

 id: play1

 source: '/home/pi/Desktop/Final GUI/icons/solidplay.png'

 center_x: self.parent.center_x

 center_y: self.parent.center_y

 RoundedButton:

 id: stop

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .4 ,"top": .15}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_press:

 root.stopAlarm()

 play.state = "normal"

 Image:

 source: '/home/pi/Desktop/Final GUI/icons/solidstop.png'

 center_x: self.parent.center_x

 center_y: self.parent.center_y

 RoundedButton:

 id: return2

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .7 ,"top": .15}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_press: app.root.current = "alarmScreen"

 Image:

 source: '/home/pi/Desktop/Final GUI/icons/return.png'

 center_x: self.parent.center_x

ENT 497 Senior Design 136

 center_y: self.parent.center_y

<WhiteNoise>:

 name: "whitenoise"

 FloatLayout:

 Label:

 id: timeLabel

 font_size: 150

 text: ""

 font_name: "Centaur"

 color: (0,0,1,1)

 size_hint: (.6,.25)

 pos_hint: {"x": .15 ,"top": .985}

 Label:

 id: ampmLabel

 font_size: 50

 text: ""

 font_name: "Centaur"

 color: (0,0,1,1)

 size_hint: (.05,.25)

 pos_hint: {"x": .67 ,"top": .93}

 RoundedTButton:

 id: WN1

 group: "white noise"

 text: "White"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .04 ,"top": .75}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 WN1.color = (1,0,0,1)

 else: \

 WN1.color = (0,0,1,1)

 on_press:

ENT 497 Senior Design 137

 root.LoadSound("White.mp3")

 play2.state = "normal"

 pause.state = "normal"

 RoundedTButton:

 id: WN2

 group: "white noise"

 text: "Pink"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .28 ,"top": .75}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 WN2.color = (1,0,0,1)

 else: \

 WN2.color = (0,0,1,1)

 on_press:

 root.LoadSound("Pink.mp3")

 play2.state = "normal"

 pause.state = "normal"

 RoundedTButton:

 id: WN3

 group: "white noise"

 text: "Brown"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .52 ,"top": .75}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 WN3.color = (1,0,0,1)

 else: \

 WN3.color = (0,0,1,1)

 on_press:

 root.LoadSound("Brown.mp3")

ENT 497 Senior Design 138

 play2.state = "normal"

 pause.state = "normal"

 RoundedTButton:

 id: WN4

 group: "white noise"

 text: "Deep Brown"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .76 ,"top": .75}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 WN4.color = (1,0,0,1)

 else: \

 WN4.color = (0,0,1,1)

 on_press:

 root.LoadSound("Deep Brown.mp3")

 play2.state = "normal"

 pause.state = "normal"

 RoundedTButton:

 id: WN5

 group: "white noise"

 text: "Beach"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .04 ,"top": .55}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 WN5.color = (1,0,0,1)

 else: \

 WN5.color = (0,0,1,1)

 on_press:

 root.LoadSound("Beach.mp3")

 play2.state = "normal"

ENT 497 Senior Design 139

 pause.state = "normal"

 RoundedTButton:

 id: WN6

 group: "white noise"

 text: "Blizzard"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .28 ,"top": .55}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 WN6.color = (1,0,0,1)

 else: \

 WN6.color = (0,0,1,1)

 on_press:

 root.LoadSound("Blizzard.mp3")

 play2.state = "normal"

 pause.state = "normal"

 RoundedTButton:

 id: WN7

 group: "white noise"

 text: "Creek"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .52 ,"top": .55}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 WN7.color = (1,0,0,1)

 else: \

 WN7.color = (0,0,1,1)

 on_press:

 root.LoadSound("Creek.mp3")

 play2.state = "normal"

 pause.state = "normal"

ENT 497 Senior Design 140

 RoundedTButton:

 id: WN8

 group: "white noise"

 text: "Hymns"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .76 ,"top": .55}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 WN8.color = (1,0,0,1)

 else: \

 WN8.color = (0,0,1,1)

 on_press:

 root.LoadSound("Hymns.mp3")

 play2.state = "normal"

 pause.state = "normal"

 RoundedTButton:

 id: WN9

 group: "white noise"

 text: "Train Ride"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .76 ,"top": .35}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 WN9.color = (1,0,0,1)

 else: \

 WN9.color = (0,0,1,1)

 on_press:

 root.LoadSound("Train Ride.mp3")

 play2.state = "normal"

 pause.state = "normal"

ENT 497 Senior Design 141

 RoundedTButton:

 id: WN10

 group: "white noise"

 text: "Royal Library"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .04 ,"top": .35}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 WN10.color = (1,0,0,1)

 else: \

 WN10.color = (0,0,1,1)

 on_press:

 root.LoadSound("Royal Library.mp3")

 play2.state = "normal"

 pause.state = "normal"

 RoundedTButton:

 id: WN11

 group: "white noise"

 text: "Sleep Music"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .28 ,"top": .35}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 WN11.color = (1,0,0,1)

 else: \

 WN11.color = (0,0,1,1)

 on_press:

 root.LoadSound("Sleep Music.mp3")

 play2.state = "normal"

 pause.state = "normal"

ENT 497 Senior Design 142

 RoundedTButton:

 id: WN12

 group: "white noise"

 text: "Thunderstorm"

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .52 ,"top": .35}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_state:

 if self.state == "down": \

 WN12.color = (1,0,0,1)

 else: \

 WN12.color = (0,0,1,1)

 on_press:

 root.LoadSound("Thunderstorm.mp3")

 play2.state = "normal"

 pause.state = "normal"

 RoundedTButton:

 id: play2

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .04 ,"top": .15}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_press: root.PlaySound()

 on_state:

 if self.state == 'normal': \

 play1.source = '/home/pi/Desktop/Final GUI/icons/solidplay.png'

 if self.state == 'down': \

 play1.source = '/home/pi/Desktop/Final GUI/activated icons/solidplay.png'

 Image:

 id: play1

 source: '/home/pi/Desktop/Final GUI/icons/solidplay.png'

 center_x: self.parent.center_x

 center_y: self.parent.center_y

ENT 497 Senior Design 143

 RoundedTButton:

 id: pause

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .28 ,"top": .15}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_press:

 root.pause()

 on_state:

 if self.state == 'normal': \

 pause1.source = '/home/pi/Desktop/Final GUI/icons/pause.png'

 if self.state == 'down': \

 pause1.source = '/home/pi/Desktop/Final GUI/activated icons/pause.png'

 Image:

 id: pause1

 source: '/home/pi/Desktop/Final GUI/icons/pause.png'

 center_x: self.parent.center_x

 center_y: self.parent.center_y

 RoundedButton:

 id: stop

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .52 ,"top": .15}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_press:

 root.stop()

 play2.state = "normal"

 pause.state = "normal"

 Image:

 source: '/home/pi/Desktop/Final GUI/icons/solidstop.png'

 center_x: self.parent.center_x

 center_y: self.parent.center_y

ENT 497 Senior Design 144

 RoundedButton:

 id: return2

 color: (0,0,0,1)

 size_hint: (.2, .15)

 pos_hint: {"x": .76 ,"top": .15}

 font_size: 25

 font_name: "Centaur"

 color: (0,0,1,1)

 on_press: app.root.current = "main"

 Image:

 source: '/home/pi/Desktop/Final GUI/icons/return.png'

 center_x: self.parent.center_x

 center_y: self.parent.center_y

<ValidPopUp>:

 auto_dismiss: False

 title: "Alarm Notice:"

 size_hint: (.6, .6)

 pos_hint: {"x": .2, "top": .9}

 background: 'blackwithborder.jfif'

 FloatLayout:

 Label:

 id: alarmlabel

 pos_hint: {"x": .4, "top": .7}

 size_hint: (.2,.2)

 font_size: 35

 RoundedButton:

 id: pUAbtn

 text: "Close"

 color: (0,0,0,1)

 font_name: "Centaur"

 size_hint: (.25,.25)

 pos_hint: {"x": .675, "top": .3}

 font_size: 25

 on_press: pUAbtn.backgroundcolor = (0,0,0,0)

 on_release: pUAbtn.background_color = (0,0,0,1)

 on_release: app.root.current = "main"

 on_release: root.dismiss()

<InValidPopUp>:

ENT 497 Senior Design 145

 auto_dismiss: False

 title: "Alarm Notice:"

 size_hint: (.6, .6)

 pos_hint: {"x": .2, "top": .9}

 background: 'blackwithborder.jfif'

 FloatLayout:

 Label:

 id: alarmlabel

 pos_hint: {"x": .4, "top": .7}

 size_hint: (.2,.2)

 font_size: 20

 RoundedButton:

 id: pUAbtn

 text: "Close"

 color: (0,0,0,1)

 font_name: "Centaur"

 size_hint: (.25,.25)

 pos_hint: {"x": .675, "top": .3}

 font_size: 25

 on_release: root.dismiss()

<LWCPopUp>:

 auto_dismiss: False

 title: "Left Wireless Charging Configuration"

 size_hint: (.6, .6)

 pos_hint: {"x": .2, "top": .9}

 background: 'blackwithborder.jfif'

 FloatLayout:

 RoundedButton:

 id: thirtyminutes

 text: "30 minutes"

 color: (0,0,0,1)

 font_name: "Centaur"

 size_hint: (.35,.35)

 pos_hint: {"x": .1, "top": .9}

 font_size: 25

 on_press:

 root.timedRelay(1800)

 root.dismiss()

 RoundedButton:

ENT 497 Senior Design 146

 id: onehalfhour

 text: "1.5 Hour"

 color: (0,0,0,1)

 font_name: "Centaur"

 size_hint: (.35,.35)

 pos_hint: {"x": .1, "top": .4}

 font_size: 25

 on_release:

 root.timedRelay(5400)

 root.dismiss()

 RoundedButton:

 id: onehour

 text: "1 Hour"

 color: (0,0,0,1)

 font_name: "Centaur"

 size_hint: (.35,.35)

 pos_hint: {"x": .55, "top": .9}

 font_size: 25

 on_release:

 root.timedRelay(3600)

 root.dismiss()

 RoundedButton:

 id: on

 text: "On"

 color: (0,0,0,1)

 font_name: "Centaur"

 size_hint: (.35,.35)

 pos_hint: {"x": .55, "top": .4}

 font_size: 25

 on_press:

 root.relayOn()

 root.dismiss()

<RWCPopUp>:

 auto_dismiss: False

 title: "Right Wireless Charging Configuration"

 size_hint: (.6, .6)

 pos_hint: {"x": .2, "top": .9}

 background: 'blackwithborder.jfif'

ENT 497 Senior Design 147

 FloatLayout:

 RoundedButton:

 id: thirtyminutes

 text: "30 minutes"

 color: (0,0,0,1)

 font_name: "Centaur"

 size_hint: (.35,.35)

 pos_hint: {"x": .1, "top": .9}

 font_size: 25

 on_press:

 root.timedRelay(1800)

 root.dismiss()

 RoundedButton:

 id: onehalfhour

 text: "1.5 Hour"

 color: (0,0,0,1)

 font_name: "Centaur"

 size_hint: (.35,.35)

 pos_hint: {"x": .1, "top": .4}

 font_size: 25

 on_press: onehalfhour.backgroundcolor = (0,0,0,0)

 on_release: onehalfhour.background_color = (0,0,0,1)

 on_release:

 root.timedRelay(5400)

 root.dismiss()

 RoundedButton:

 id: onehour

 text: "1 Hour"

 color: (0,0,0,1)

 font_name: "Centaur"

 size_hint: (.35,.35)

 pos_hint: {"x": .55, "top": .9}

 font_size: 25

 on_press: onehour.backgroundcolor = (0,0,0,0)

 on_release: onehour.background_color = (0,0,0,1)

 on_release:

 root.timedRelay(3600)

 root.dismiss()

ENT 497 Senior Design 148

 RoundedButton:

 id: on

 text: "On"

 color: (0,0,0,1)

 font_name: "Centaur"

 size_hint: (.35,.35)

 pos_hint: {"x": .55, "top": .4}

 font_size: 25

 on_press: on.backgroundcolor = (0,0,0,0)

 on_release: on.background_color = (0,0,0,1)

 on_release:

 root.relayOn()

 root.dismiss()

<AlarmPopUp>:

 auto_dismiss: False

 title: "Alarm Notice:"

 size_hint: (.6, .6)

 pos_hint: {"x": .2, "top": .9}

 background: 'blackwithborder.jfif'

 FloatLayout:

 RoundedButton:

 id: alarmoff

 text: "Alarm Off"

 color: (0,0,0,1)

 font_name: "Centaur"

 size_hint: (.35,.35)

 pos_hint: {"x": .1, "top": .65}

 font_size: 25

 on_press: root.turnAlarmOff()

 on_release: root.dismiss()

 RoundedButton:

 id: alarmandlightsoff

 text: "All Off"

 color: (0,0,0,1)

 font_name: "Centaur"

 size_hint: (.35,.35)

 pos_hint: {"x": .6, "top": .65}

 font_size: 25

 on_press: root.turnAlarmandLightsOff()

ENT 497 Senior Design 149

 on_release: root.dismiss()

<rainbowAnimationPU>:

 auto_dismiss: False

 title: "Rainbow Animation Notice!"

 size_hint: (.6, .6)

 pos_hint: {"x": .2, "top": .9}

 background: 'blackwithborder.jfif'

 FloatLayout:

 Label:

 id: cd

 color: (0,0,1,1)

 font_name: "Centaur"

 text: "Please Wait..."

 font_size: 65

 pos_hint: {"x": 0, "top": 1.2}

 RoundedButton:

 id: pUAbtn

 text: "Close"

 color: (0,0,1,1)

 font_name: "Centaur"

 size_hint: (.25,.25)

 pos_hint: {"x": .375, "top": .3}

 font_size: 25

 on_release: root.dismiss()

<RoundedTButton@ToggleButton>

 background_color: (0,0,0,0)

 background_normal: ''

 canvas.before:

 Color:

 rgba: (10/255.0,0,50/255.0,1)

 RoundedRectangle:

 size: self.size

 pos: self.pos

 radius: [150]

#Creating Custom small round Button

<WirelessChargerButton>

ENT 497 Senior Design 150

 background_color: (0,0,0,0)

 background_normal: ''

 canvas.before:

 Color:

 rgba: (10/255.0,0,50/255.0,1)

 RoundedRectangle:

 size: self.size

 pos: self.pos

 radius: [150]

<RoundedButton@Button>

 background_color: (0,0,0,0)

 background_normal: ''

 canvas.before:

 Color:

 rgba: (10/255.0,0,50/255.0,1)

 RoundedRectangle:

 size: self.size

 pos: self.pos

 radius: [150]

#Creating Custom Large Round Button

<RoundedButton2@Button>

 background_color: (0,0,0,0)

 background_normal: ''

 canvas.before:

 Color:

 rgba: (10/255.0,0,50/255.0,1)

 RoundedRectangle:

 size: self.size

 pos: self.pos

 radius: [175]

#Changing Slider Color to blue

<Slider>:

 canvas:

 Color:

 rgba: (0, 0, 1,1)

 BorderImage:

 border: self.border_horizontal if self.orientation == 'horizontal' else self.border_vertical

 pos: (self.x + self.padding, self.center_y - self.background_width / 2) if self.orientation

== 'horizontal' else (self.center_x - self.background_width / 2, self.y + self.padding)

ENT 497 Senior Design 151

 size: (self.width - self.padding * 2, self.background_width) if self.orientation ==

'horizontal' else (self.background_width, self.height - self.padding * 2)

 source: (self.background_disabled_horizontal if self.orientation == 'horizontal' else

self.background_disabled_vertical) if self.disabled else (self.background_horizontal if

self.orientation == 'horizontal' else self.background_vertical)

 Color:

 rgba: root.value_track_color if self.value_track and self.orientation == 'horizontal' else

[0, 0, 1,0]

 Line:

 width: self.value_track_width

 points: self.x + self.padding, self.center_y, self.value_pos[0], self.center_y

 Color:

 rgba: root.value_track_color if self.value_track and self.orientation == 'vertical' else [0,

0, 1,0]

 Line:

 width: self.value_track_width

 points: self.center_x, self.y + self.padding, self.center_x, self.value_pos[1]

 Color:

 rgba: (0, 0, 1,1)

 Image:

 pos: (root.value_pos[0] - root.cursor_width / 2, root.center_y - root.cursor_height / 2) if

root.orientation == 'horizontal' else (root.center_x - root.cursor_width / 2, root.value_pos[1] -

root.cursor_height / 2)

 size: root.cursor_size

 source: root.cursor_disabled_image if root.disabled else root.cursor_image

 allow_stretch: True

 keep_ratio: False

ENT 497 Senior Design 152

Appendix F: Arduino Program

#define leftServoA 8

 #define leftServoB 9

 #define rightServoA 11

 #define rightServoB 12

 #include <Servo.h>

 Servo leftServo;

 Servo rightServo;

 int leftServoPin = 5;

 int rightServoPin = 6;

 int leftCounter = 0;

 int rightCounter = 45;

 int aLeftState;

 int aLeftLastState;

 int aRightState;

 int aRightLastState;

 int leftServoPosition = 0;

 int rightServoPosition = 45;

 int leftButton = 10;

 boolean lastButtonLeft = LOW;

 boolean currentButtonLeft = LOW;

 boolean leftLightsOn = false;

 int leftLights = 2;

 int rightButton = 13;

 boolean lastButtonRight = LOW;

 boolean currentButtonRight = LOW;

 boolean rightLightsOn = false;

 int rightLights = 3;

 void setup() {

 pinMode (leftServoA,INPUT);

 pinMode (leftServoB,INPUT);

 pinMode (rightServoA,INPUT);

ENT 497 Senior Design 153

 pinMode (rightServoB,INPUT);

 pinMode (leftServoPin, OUTPUT);

 pinMode (rightServoPin, OUTPUT);

 Serial.begin (9600);

 leftServo.attach(leftServoPin);

 rightServo.attach(rightServoPin);

 delay(10);

 leftServo.write(leftServoPosition);

 rightServo.write(rightServoPosition*4);

 delay(1000);

 leftServo.detach();

 rightServo.detach();

 aLeftLastState = digitalRead(leftServoA);

 aRightLastState = digitalRead(rightServoA);

 pinMode(leftButton, INPUT);

 pinMode(rightButton, INPUT);

 pinMode(leftLights, OUTPUT);

 pinMode(rightLights, OUTPUT);

 }

 boolean debounceLeft (boolean last){

 boolean current = digitalRead (leftButton);

 if (last != current){

 delay (5);

 current = digitalRead (leftButton);

 }

 return current;

 }

 boolean debounceRight (boolean last){

 boolean current = digitalRead (rightButton);

 if (last != current){

 delay (5);

 current = digitalRead (rightButton);

 }

 return current;

 }

ENT 497 Senior Design 154

 void loop() {

 currentButtonLeft = debounceLeft (lastButtonLeft);

 currentButtonRight = debounceRight (lastButtonRight);

 if (lastButtonLeft == LOW && currentButtonLeft == HIGH)

 {

 leftLightsOn = !leftLightsOn;

 }

 lastButtonLeft = currentButtonLeft;

 digitalWrite (leftLights, leftLightsOn);

 if (lastButtonRight == LOW && currentButtonRight == HIGH)

 {

 rightLightsOn = !rightLightsOn;

 }

 lastButtonRight = currentButtonRight;

 digitalWrite (rightLights, rightLightsOn);

 aLeftState = digitalRead(leftServoA);

 aRightState = digitalRead(rightServoA);

 if (aLeftState != aLeftLastState){

 if (digitalRead(leftServoB) != aLeftState) {

 leftCounter --;

 }

 else {

 leftCounter ++;

 }

 if (leftCounter < 0){

 leftCounter = 0;

 }

 if (leftCounter > 40){

 leftCounter = 40;

 }

ENT 497 Senior Design 155

 }

 if (aRightState != aRightLastState){

 if (digitalRead(rightServoB) != aRightState){

 rightCounter --;

 }

 else {

 rightCounter ++;

 }

 if (rightCounter < 5){

 rightCounter = 5;

 }

 if (rightCounter > 45){

 rightCounter = 45;

 }

 }

 aLeftLastState = aLeftState;

 aRightLastState = aRightState;

 if (leftServoPosition != leftCounter){

 leftServo.attach(leftServoPin);

 delay(10);

 leftServo.write(leftCounter*4);

 delay(20);

 leftServo.detach();

 leftServoPosition = leftCounter;

 }

 if (rightServoPosition != rightCounter){

 rightServo.attach(rightServoPin);

 delay(10);

 rightServo.write(rightCounter*4);

 delay(20);

 rightServo.detach();

 rightServoPosition = rightCounter;

 }

 }

ENT 497 Senior Design 156

Appendix G: Weekly Reports

ENT 497 Senior Design 157

ENT 497 Senior Design 158

ENT 497 Senior Design 159

ENT 497 Senior Design 160

ENT 497 Senior Design 161

ENT 497 Senior Design 162

ENT 497 Senior Design 163

ENT 497 Senior Design 164

ENT 497 Senior Design 165

ENT 497 Senior Design 166

ENT 497 Senior Design 167

ENT 497 Senior Design 168

ENT 497 Senior Design 169

ENT 497 Senior Design 170

ENT 497 Senior Design 171

ENT 497 Senior Design 172

ENT 497 Senior Design 173

ENT 497 Senior Design 174

ENT 497 Senior Design 175

ENT 497 Senior Design 176

ENT 497 Senior Design 177

ENT 497 Senior Design 178

ENT 497 Senior Design 179

ENT 497 Senior Design 180

ENT 497 Senior Design 181

ENT 497 Senior Design 182

ENT 497 Senior Design 183

ENT 497 Senior Design 184

Appendix H: Midterm Presentation

ENT 497 Senior Design 185

ENT 497 Senior Design 186

ENT 497 Senior Design 187

ENT 497 Senior Design 188

ENT 497 Senior Design 189

ENT 497 Senior Design 190

ENT 497 Senior Design 191

Appendix I: Senior Design 2 Minute Presentation Script

Hello, my name is Jacob Klopfenstein, and along with my partner, Chris Waidelich, we

designed and built our project “The King of Kings TechBed”. This is a King Bed meant to be the

KING of all king beds, made of white pine to keep a natural wooden appearance while

integrating various modern technologies that everyone would love to have on their beds. These

technologies include a full surround sound system and subwoofer, RGBW lights built directly

into the bedframe, cooling fans in the headboard capable of moving over 400 cubic feet of air per

minute, servo controlled air deflectors to direct the air, computer controlled wireless chargers,

relay controlled headboard lamps, and of course, a minifridge. All these technology features,

save the minifridge itself, are controlled by a raspberry Pi 4B connected to a 7” touch screen with

a custom designed user interface. Other important features of the bed include a total of 8 four and

a half cubic feet sized drawers under the bed to make efficient use of floor space, and the ability

for the bed to come apart into different modules for ease of transportation. The headboard also

supports a projector mounted in the center of the headboard to project on the opposite wall for a

full cinematic experience. The bedframe is capable of fitting either a regular king or a California

King size mattress, depending on which size the user prefers.

And Finally, The touch screen interface utilizes a sleek appearance and calming color

palette that matches any bedroom and that any user can easily use and enjoy. Together, me and

Chris have redefined how a bedframe should look and function in the new technology age. A big

thank you to my colleagues at Miami University for their assistance in the planning and

execution of this project, Armin Fleck Scholarship for financial aid towards the project, and to

all of you for listening to our presentation on “the King of Kings TechBed”, available in stores

nowhere near you.

ENT 497 Senior Design 192

Appendix J: Final Presentation

ENT 497 Senior Design 193

ENT 497 Senior Design 194

ENT 497 Senior Design 195

ENT 497 Senior Design 196

ENT 497 Senior Design 197

ENT 497 Senior Design 198

ENT 497 Senior Design 199

ENT 497 Senior Design 200

Appendix K: Final Project Poster

