
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year 

Compressed Bit-sliced Signature Files An

Index Structure for Large Lexicons

Fazli Can∗ Ben Carterette†

∗Miami University, commons-admin@lib.muohio.edu
†Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/9

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1999-001

Compressed Bit-sliced Signature Files
An Index Structure for Large Lexicons

Fazli Can and Ben Carterette

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

Compressed Bit-sliced Signature Files
An Index Structure for Large Lexicons

by
Fazli Can and Ben Carterette
Systems Analysis Department

Miami University
Oxford, Ohio 45056

Working Paper #99-001

Compressed Bit-sliced Signature Files
An Index Structure for Large Lexicons

Fazli Can Ben Carterette

Systems Analysis Department
Miami University

Oxford, OH 45056, USA
E-mail: canftcarterba) @muohio.edu

Tel: 1 -(5 13) 529-5950 (478 1)

ABSTRACT
We use the signature file method to search for partially
specified terms in large lexicons. To optimize efficiency,
we use the concepts of the partially evaluated bit-sliced
signature file method and memory resident data structures.
Our system employs signature partitioning, compression,
and term blocking. We derive equations to obtain system
design parameters, and measure indexing efficiency in
terms of time and space. The resulting approach provides
good response time and is storage-efficient. In the
experiments we use four different lexicons, and show that
the signature file approach outperforms the inverted file
approach in certain efficiency aspects.

KEYWORDS: Lexicon search, n-grams, signature files.

JNTRODUCTJON
Information retrieval (IR) is a prevalent activity in today's
information-oriented world. Systms ranging from a
personal digital assistant (PDA) to a World-Wide Web
search engine such as AltaVista need to be able to
efficiently retrieve information from databases of small to
hard-to-imagine sizes. In these systems queries are
commonly executed in environments based on the Boolean
or vector space models [SAL89]. For query:document
matching most IR systems require a list of all terms
(lexicon) used in the database. Depending on the user
needs, the lexicon may contain the actual words as they
appear in the documents or the word stems. After locating
a query term in a lexicon, an IR system can easily locate the
other information needed for the subsequent steps of query
processing by using a pointer associated with individual
lexicon words. Efficient lexicon indexing is crucial in
overall system efficiency.

The most common file structures used in IR systems are
inverted files and signature files [SALT89, WIT94J. In this
study our database is a lexicon of actual words and we will
develop a signature-based indexing scheme for efficient
lexicon searches for partially specified terms.

Searching a lexicon for a partially specified term using the
inverted file method involves a list of segments of terms
(called n-grams) with a corresponding list of terms those n-
grams appear in. When a user enters a query, the query
term is split into its n-grams, and the lists of words that
contain those n-grams are returned and merged. The
common elements of these lists are the potential matches to
the user's query term [ZOB93].

In this paper we use the superimposed signature file method
[CHR84] (for the sake of brevity we will henceforth drop
the adjective 'superimposed'). In the signature file method,
each attribute of an object which describes the object is
hashed into a bit string of size F by setting S bits to "1"
(on-bit) where S << F. Object signatures are obtained by
superimposing (bitwise ORing) the signatures of object
attributes. Within the context of this study, objects are
terms and attributes are term n-grams. To minimize search
time, the signature file is stored in main memory. In other
words, it is not strictly a file anymore; however, we will
follow traditional naming and use the term "file."

To optimize efficiency, we use a modified version of the
Partially evaluated Bit-Sliced Signature File (PBSSF)
method [KOC96a, KOC96b, KOC971. Our approach
employs partitioning, compression, and blocking within the
framework of PBSSF. We derive equations to describe the
system and obtain its design parameters. We measure
system efficiency in terms of time and space. Pros and
cons of our system are compared with the inverted file
approach.

We start by describing the term n-gram and the principal
concepts of signature files. We then present the basic
signature file system we will be using Partially Evaluated
Bit Sliced Files (PBSSF). We proceed to add partitioning,

compression, and blocking, in that order, to improve the
overall performance of the system, interspersing these
modifications with justifications and test results. Finally,
we briefly introduce other approaches and compare our
system to the inverted file system described by Zobel et. al.
[ZOB 931.

SIGNATURE FILES
mGrams
Before discussing the various forms of signature files, we
will describe the n-gram concept in greater detail. An n-
gram is a substring of n consecutive characters culled from
a string. For instance, the 3-grams of RETRIEVAL are
RET, ETR, TRI, RIE, IEV, EVA, and VAL. These n-
grams are used to index words in the lexicon. In the
inverted file system, for example, the word list associated
with the 3-gram RET might be RETRIEVAL, RETURN,
RETROACTIVE, and PRETTY. In the signature file
method, an n-gram is hashed to a bit signature of length F
with S on-bits, and n-gram signatures are superimposed to

Term Signature Bit Slices

3-gram
S a m
amm
-Y
sos

generate a term signature. This is shown in greater detail
in Figure1 .

3-gram signature
1000 0000 0001
0010 0010 0000
0000 0001 0010
0000 0110 0000

Sequential Signature Files: SSF
The basic signature file method uses term signatures to
represent words in a document. In its most basic form,
SSF, the N-word lexicon is hashed to a signature file of NF
bits. When the user enters a query, the query term is
hashed to its corresponding term signature. It is then
compared by simple logical AND to each signature of the
signature file, and matches are compared to the query
(term) to verify. Since signatures are approximate
representations, some lexicon terms may pass the signature
file processing phase although they do not match the query.
Such terms are called false drops and they must be
accessed and eliminated by using the actual query n-grams.
Therefore, the performance of a signature file method is
affected by the number of false drop records (FD). If FD
can be estimated accurately, signature file parameters or
processing strategy can be adjusted to obtain a better
response time [KOC97, KOC991.

osa 0000 1000 1000
Mar 0100 0100 0000
ark 0000 0010 1000
McG 0001 0001 0000
cGw 0101 0000 0000
Gwi 0000 0000 0011
wir 0000 1100 0000
ire 0000 0001 0100
Rag 1000 0000 0010
age 0010 0000 0001
ger 0011 0000 0000
ar i 0000 0010 0100
ris 0010 0000 1000

term term signature
s-Y 1010 0011 0011
Sosa 0000 1110 1000
Mark 0100 0110 1000
McGwire 0101 1101 0111
Roger 1011 0000 0011
Mar i s 0110 0110 1100

Query Signature

Figure 1. Illustration of Bit-Sliced Signature Files.

Bit-Sliced Signature Files: BSSF
We could cut out a lot of the processing time by utilizing
the facts that F is much less than N and that S is much less
than F. The signature file can be seen as an N by F matrix.
Once we have the query signature, we find the position of
each on-bit in the signature. We take the columns (bit
slices) corresponding to the on-bit positions and logically
AND them all together. Any on-bits in the resulting N-
element vector correspond to words that may be matches
for the query term. Each of these possible matches is
compared to the query to eliminate false matches. This
method is called "bit-sliced signature processing"
[ROB79].

Figure 1 illustrates the BSSF concept. In this example, F =
12, S = 2, and N = 6. There are 17 separate 3-grams. The
lexicon consists of the words "Sammy", "Sosa", "Mark",
"McGwire", "Roger", and "Maris". The signatures for the
terms are generated by superimposing the signatures of all
the 3-grams in the term. The user enters the query term
"Mark". A query signature is generated, and the slices
corresponding to on-bits in the query signature (the grayed
columns in Figure 1) are logically ANDed to generate an
answer vector (shown on the far right of Figure 1). The on-
bits in the answer vector correspond to possible matches.
In this case, "Mark" and "Maris" are the possible matches.
Then the false drop resolution process begins to check for
false matches. "Maris" is eliminated at this stage.

TEST DATA
We used four text files in the following tests (Table 1). The
King James Bible, from Project Gutenberg, has 17,594
unique words. Ulysses, by James Joyce, has almost twice
as many unique words: 34,035. lex is a computer-
generated lexicon of 248,969 unique and randomly-chosen
words [ZOB98]. Our final index, all, combines the three
above with a lexicon of Turkish words based on a database
of newspaper articles. It has 543,002 unique words. This
combined lexicon provides us a large experimentation
environment. Due to the agglutinative nature of Turkish
words the average size of words in all is longer than that of
the other lexicons. These four lexicons were used in all
tests throughout the paper. All tests were based on a set of
500 queries (words) randomly chosen from the text being
tested. The times shown represent the average for 500
queries. Our 3-grams include small- and uppercase letters,
digits, and some special characters such as apostrophe.

We used the following conventions throughout our tests:
3-grams were used because they are generally thought
to give good IR performance [ADA93], and the best
ratio of search time to memory required. 2-grams
require less space but more time; 4-grams require
more space but less time.

All the lexicons are sorted. Although using unsorted
databases might better represent the uses of our
system, the inverted file system we will compare ours
to works best with sorted lexicons.
All 500 test queries are partial queries. This means
that some of the letters are replaced by wildcards. A
query must have at least one 3-gram to be considered
valid.

All tests were done on a dual processor 180MHz Pentium
Pro running Linux 2.0.34.

Bible Ulysses lex all
Size (Kb) 128.9 282.9 2,160.4 4,986.4
Number of 17,594 34,035 248,969 543,002
words
Number of 7,376 11,196 28,585 44,653
3-grams
3-grams per 4.33 5.31 5.68 6.18
word

PARTIALLY EVALUATED BIT-SLICED SIGNATURE
FILES: PBSSF
BSSF in its initial form will eliminate nearly all false
matches. But false drop elimination time is negligible for
small numbers of false matches. Could we, instead of
processing all the relevant bit slices, only process slices
until the time it takes to process another slice is greater than
the time it would take to resolve the expected number of
false matches? The answer is yes. We call this Partially
Evaluated Bit Sliced Signature Files, or PBSSF [KOC96a],
and we formally define it in the following paragraphs.

We are trying to minimize search time Tin a BSSF of size
M bytes.

T = 'slice . i fresolve . FD(i)

where tsli,, is the time it takes to process a single bit slice, i
is the number of bit slices to process, t,,,,,,,, is the time it
takes to resolve a false match (in our case using regex), and
FD(i) is the expected number of false drops after i bit slices
have been processed. tsli,, and t,lVe are experimentally
measured; r,,,,,, is around 4 microseconds while tslice
depends on N .

The program takes as input the set of terms that appear in a
document domain. It separates each term into its n-grams.
Each n-gram is used to generate a unique random number
seed. S random bit positions are set in a bit string of length
F. Then all the bit strings are superimposed (logical OR) to
generate a term signature. The set of term signatures, the
signature file, is bit-wise stored in main memory. When

the user enters a query term, it is hashed to a signature as
above. Then the PBSSF search method is implemented as
described above. We stop searching when

t ,,,, 2 t ,,,,,,, . (FD(i) - FD(i + 1))
i.e., when the time it takes to process an additional slice is
greater than or equal to the amount of time it would take to
resolve the false drops that could be eliminated by
processing another slice.

To estimate FD(i), use fd, the probability of a false drop
after processing i bit slices.

F D (~) = N . fdi =N.opi
where op is defined to be the ratio of on-bits to bits in the
bit matrix. (In the above formula, we are assuming that all
matches are false drops, this is the conventional assumption
of signature analysis [CHR84].) The op value of the
signature file can be estimated as:

This is fairly intuitive: S/F represents the op value of a
single n-gram and D is the average number of n-grams in a
term. Thus op is estimated as the average number of on-
bits in a signature. In this formula we assume that each n-
gram will set different bit locations in the term signature,
i.e., we ignore possible bit overlaps. This is acceptable
since terms usually have a small number of unique n-grams
and F >> S.

The true op value can be measured experimentally by
counting the total number of on-bits in the signature file
and dividing that number by N F . The data structure we
used for bit strings makes this process simple.
-- -- - - - - - - - ---

I

L- - - - I

Figure 2. Effects of F size on search time.

Test with PBSSF
Test results show F and search time to be inversely related.
An initial doubling of F has a large effect on the reduction
of the search time, but repeated doublings of F have less
and less effect. Figure 2 shows the relationship between F

and search time for all the lexicons except all, which is too
large to be stored uncompressed in main memory.

Table 2 shows specific numbers for the Bible. Note that
after F = 4096, search time levels out and is no longer
reduced by increasing F. Size, however, is linearly related
to F and increases by whatever factor F is increased by.

Table 2: F and search time for the Bible (S= 1)

Bible -.--
F Time (psec) Size (MB)

PARTITIONING
Our previous estimate for the op value does not take all the
information we have into account and thus is not a
sufficient estimator. A better estimate would take into
account the number of terms with d n-grams, from d = 1 to
d = dm,.

This equation can be logically derived. There are D, terms
with 1 n-gram, and the op value of these terms is l'S/F.
There are D2 terms with 2 n-grams, and the op value of
these terms is 2'S/F. Add all these up and divide by N and
the result is the op value of the signature file. This new
estimate proves to be an exact match to nine decimal
places. It is used to derive the new false drop estimation
equation:

It can be shown that with partitioning, S should. always be
chosen to be 1. Search structure size M does not depend at
all on S , so that equation can be ignored. Time T is linearly
related to FD(i), which means that T increases as FD(i)
increases. Therefore we desire FD(i) to be as small as
possible. FD(i) is a function of what we choose S and F to
be. Differentiating FD(i) with respect to S , we get:

It is trivial to show that this is always positive and thus that
FD(i) is strictly increasing with respect to S. Therefore S
should be chosen at its lowest possible value, which is 1 .

The expected effect of implementing partitioning is that
false drops are more accurately estimated. The program
previously may have been underestimating the proper
number of slices to process before switching to false drop
resolution. This problem will be largely eliminated,
resulting in better search times. It is not expected that the
times will be noticeably superior to the system without
partitioning, however, as the op values of our test databases
are so small. The difference would be more noticeable in a
text with a much larger op value.

Tests with Partitioning

While partitioning does provide a more accurate op value
than before, its effects are not enough to significantly
reduce the amount of time needed to perform a search. Its
effects might be noticeable if the op value is high; i.e. for
small values of F. It would be useful, therefore, in systems
where space overhead is severely limited. We continue to
use it because it is slightly more accurate and the extra
calculations are performed outside the search loop so as not
to add to processing time at all.

COMPRESSION
Note in Table 2 the large space requirements for even a
relatively small text such as the Bible. Since the search
structure is stored entirely in main memory, this is a major
problem. We could save memory by compressing the
signature file in memory. We use a run-length encoding
method described by Elias to compress bit slices [ELI75].
Elias' gamma code represents x, the distance between two
on-bits, as log, x + 1 in unary followed by x - 2'"" in
binary. The delta code uses gamma to code log, x + 1 and
follows it with the same suffix (Table 3). For a run length
of less than 15, delta is larger than gamma, but for run
lengths greater than 15, delta is always less than gamma.
Since we expect large run lengths in general, we use delta
encoding. In fact, since the op value is generally quite
small (less than .01), there is quite a bit of space between
on-bits. Delta compression, then, is suited to our purpose.

The fewer on-bits in a bit slice, the shorter the
decompression time. When we evaluate a query, we find
the shortest bit slices to use in bit slice processing to save
as much decompression time as possible. This is done by
separating the query term into its n-grams, then using the n-
gram signatures to determine which slices are shortest.

Table 3: Examples of Codes
Coding method

x Y 6
1 1, 1,
2 01,o 010,o
3 01,l 010,l
4 001,oo 011,oo
5 001,Ol 011,Ol
6 001,lO 01 1,lO
7 001,ll 011,ll

The expected result of implementing compression is to
greatly reduce the search structure size, but increase search
time. With compression enabled, t,,i, will take into
account the amount of time it takes to decompress a bit
slice. As a result, fewer bit slices will be processed and
there will be more false drops.

Test with Compression

It is interesting to note that while search structures are
indeed smaller, search time is not necessarily greater. This
can be explained by the way we choose which bit slices to
process with and without compression. Without
compression, the bit slices to be processed are taken in
sequential order based on on-bit positions in the query
signature. With compression, the bit slices to be processed
are the shortest ones, and thus the ones with the smallest
decompression time. We were forced to implement the
system this way because choosing the shortest bit slices
without compression was inefficient, as was processing bit
slices sequentially with compression. The result of this is
that there are more false matches when compression is not
used, and the time needed to process them offsets the
decompression time of the short slices.

Table 5 illustrates the effects of compression based on
different selections of F. For F = 1024, the uncompressed
database is 110 times bigger than the compressed. For F =
6144, the uncompressed database is a whopping 227 times
bigger!

Table 5: The effect of F on search structure size and
query evaluation time in /ex

F Uncomp. Compressed Eva1 time (psec)
Size (MB) Size (MB) (compressed)

1024 31.9 0.29 13540
2048 63.7 0.48 9400
4096 127.5 0.69 6820
5120 158.9 0.79 6560
6144 190.7 0.84 6140

BLOCKING
In an attempt to save more memory, we can "block" terms
together. Terms are normally stored in memory in an array
in alphabetical order. With blocking implemented, B term
signatures are superimposed to form just one signature. B
is called the blocking factor. The size of the uncompressed
search structure will then decrease from NF/8 byes to
NFI(B 8) bytes. Under compression, the effect of blocking
on the size of the search structure is less clear. There will
be fewer signatures, but on-bits will be closer together and
thus more run lengths will need to be encoded. Blocking
may actually have an adverse effect on the size of a
compressed bit matrix.

Some modification to our old equations is needed to
explain the effect blocking will have on search time. The
op value will now be expressed in terms of n-grams in a
signature instead of n-grams in a word, and instead of
dividing by the number of words, we will divide by the
number of signatures in the search structure.

d now represents the number of n-grams in a signature,
instead of the number of n-grams in a word. N/B (rounded
up) is the number of signatures in the search structure. The
effect of blocking on op, then, is to increase it. FD(i) is
similarly redefined.

Blocking has the effect of increasing the number of
expected false drops. It becomes necessary to process more
bit slices when blocking is used.

Tests with Blocking

Without compression, the effect of blocking on search
structure size is very predictable: it is divided by a factor
of B. The effect on time is a little less predictable; since
t,,,, now depends on N/B (instead of just N in the model
sans blocking) it will be shorter, but the number of false
drops increases because signatures are merged. Generally
this will cause search time to increase, but in certain cases
search time actually decreases when using blocking.

The effect of blocking on the compressed search structure
is similar. The difference is that database size will not
always decrease; the reason for this is that blocking
increases the op value, which in turn decreases the run
lengths between on-bits, which in turn may (or may not)
increase the size of the compressed bit slice. This effect is
unpredictable, but lessens as F increases.

Table 6 shows the effect of blocking on search structure
size and search time on the sorted and compressed lex
database. When F is chosen to be 6144, size always
decreases for each increase of B and time always increases.
When F is chosen to be 10000, note that there is a slight
size increase from B = 4 to B = 8, and a significant time
decrease from B = 1 to B = 4. This is due to the effects
described above, and tells us that a blocking factor of 4 is
best for this case.

Table 6: Effect of blocking factor on compressed
search structure size and search time

lex
F B Size (MB) Time (psec)
6144 1 0.84 6260

4 0.76 6480
8 0.75 8820
16 0.73 13740
32 0.70 23940

10000 I 1.02 7720
4 0.91 5 200
8 0.92 6780
16 0.89 10200

COMPARISON WITH INVERTED FILES
Previous partially specified term search studies include
methods such as permuted dictionary mechanism
[BRAT82], a variant of the PAT tree-array concept
[GON92] called permuterm lexicons [ZOB93], and an
inverted file-based string search method that uses the
concept of blocking [OWO88]. The blocking method used
in the last study is similar to blocking that we use in this
paper. The performance of these studies are examined in
[ZOB93]. We tested our program against the inverted file
method (IF) that is studied in [ZOB93]. IF incorporates the
blocking principal of the method defined in [OW0881 and
requires considerably less storage than the other methods
mentioned above.

Table 7 shows our system's "best" (the F and B that result
in the best search time) result for each database in terms of
size of the search structure and search time and compares it
to the inverted file result with compression and
thresholding as suggested in [ZOB93]. In IF the concept of
thresholding implies that when the number of candidate
answers falls below a selected percentage of the lexicon
size no further index entries are searched and system is
switched to false drop elimination process (set to 1% of
database size as suggested in [ZOB93]). The thresholding
concept is similar to our partial evaluation strategy.

Table 7: PBSSF times vs. inverted file times and PBSSF
search structure size vs, inverted file search structure

size for each lexicon
Bible Ulysses Lex all

PBSSF time (psec) 240 460 5200 20600
IF time (psec) 240 520 3740 9580
PBSSF size (MB) 0.40 0.50 0.91 1.5 1
IF size (MB) 0.27 0.57 4.15 9.22

While the inverted file method has a significant advantage
in speed, compressed PBSSF has a significant advantage in
size. For the lex database, for instance, PBSSF is

approximately 2.05 times as slow, but its memory
consumption is 4.56 times better. For all, PBSSF is 2.15
times as slow while 5.91 times better on memory
consumption. The implication is that as database size
grows, so does the difference in speed and size between the
two systems.

Note that the best time performance of the IF method
requires substantial memory--twice as much the original
lexicon size (this can be seen by comparing the last row of
Table 7 with the first row of Table 1). To decrease the
memory requirement of IF we may use blocking. Then the
question is by using blocking in IF can we have an IF
search structure smaller than that of the PBSSF method and
with a time requirement comparable to it.

Our experiments show that IF cannot beat the memory
performance of our approach with blocking. We provide
the experimental results of lex in Figure 3. This figure
provides the blocking experiments for B size of 32 (left
most IF observation), 16, 8, 4, 2, and 1 (right most IF
observation). As the figure shows IF cannot beat the
memory performance of PBSSF, i.e., by using IF one
cannot achieve the memory efficiency of PBSSF with a
comparable execution time efficiency. The observations
with the other lexicons is the same as this one.

Figure 3. Effects of blocking on performance (lex).

The creation of search structures for all is approximately 60
and 600 seconds, for IF and signature-based approaches,
respectively. The creation time is proportional to the
lexicon size. Since the index structures will be created off-
line and used many times both methods can be used in
similar environments and the decision will depend on the
time-space efficiency concerns of the environment.

CONCLUSIONS
We use the signature file method to search for terms in
large lexicons. To optimize efficiency, we use the concepts
of the partially evaluated bit-sliced signature file method
and memory resident data structures.

Our system uses partitioning, compression, and term
bloclung in connection with bit-sliced signatures. Index
creation using signatures takes more time than that of the
inverted file approach; however, the resulting approach
provides good response time and is storage-efficient. In the
experiments we use partially specified queries, four
different lexicons. The experiments show that the signature
file and inverted file approaches beat each other in different
efficiency aspects. For example, as shown in Table 7, in all
(our largest lexicon of 543,002 unique words), the IF
approach uses 5.91 times more memory but is 2.15 times
faster.

ACKNOWLEDGMENTS
We thank Prof. Justin Zobel and his co-workers for making
their inverted file programs and the lex database publicly
available. We also thank Prof. Kemal Oflazer for providing
the Turkish text.

REFERENCES
[ADA931 Adams, E. S., Meltzer, A. C. Trigrams as index

elements in full text retrieval observations and
experimental results. . In Proceedings of 21" ACM
Comp. Science Conference. (Indianapolis, Indiana,
USA). 433-439.

[BRAT82]Bradley, P., Choueka, Y., 1982. Processing
truncated terms in document retrieval systems.
Information Processing & Management. 18, 5, 257-
266.

[CHR84] Christodoulakis, S., Faloutsos, C. 1984. Signature
files: an access method for documents and its
analytical performance evaluation. ACM Transactions
on Information Systems. 3 , 4 (Oct.). 267-288.

[ELI751 Elias, P., 1984. Universal codeword sets and
representatives of the integers. IEEE Trans. on
Information Theory, IT-2 1. 194-203.

[CON921 Gonnet, G. H., Baeza-Yates, R. A., Snider, T.,
1992. New indices for text: PAT trees and PAT
arrays. In W. B. Frakes, R. Baeza-Yates, editors,
Information Retrieval Data Structures & Algorithms.
Prentice Hall, Englewood Cliffs, NJ.

[KOC96a] Kocberber, S., 1996. Partial query evaluation
for vertically partitioned signature files in very large
unformatted databases. Ph.D. dissertation, Dept. of
Computer Eng. and Information Science, Bilkent
University, Ankara, Turkey
(http:Nwww.cs.bilkent.edu.tr/theses.html).

[KOC96b] Kocberber, S., Can, F. 1996. Partial evaluation
of queries for bit-sliced signature files. Information
Processing Letters 60. 305-31 1.

[KOC97] Kocberber, S., Can, F. 1997. Vertical framing of
superimposed signature files using partial evaluation
of queries. Information Processing & Management.
33,3,353-376.

[KOC99] Kocberber, S., Can, F., Patton, J. M., 1999.
Optimization of signature file parameters for
databases with varying record lengths. The Computer
Journal (accepted for publication).

[OW0881 Owolabi, O., McGregor D. R. Fast approximate
string matching. Soware-Practice and Experience.
18,4,387-393.

[ROB791 Roberts, C. S. 1979. Partial-match retrieval via
the method of superimposed codes. In Proceedings of
the IEEE. 67, 12 (Dec.). 1624-1642.

[SAL89] Salton, G. Automatic Text Processing. 1989.
Addison-Wesley, Reading, MA.

[WIT941 Witten, I. H. Moffat, A., and Bell, T. C. 1994.
Managing Gigabytes: Compression and Indexing
Documents and Images. Van Nostrand Reinhold, N.Y.

[ZOB93] Zobel, J., Moffat, A., and Sacks-Davis, R. 1993.
Searching large lexicons for partially specified terms
using compressed inverted files. In Proceedings of
19th VLDB Conference. (Dublin, Ireland). 290-301.

[ZOB98] Zobel, J., Moffat A., Ramamohanarao, K.
Inverted files versus signature files for text indexing.
ACM Transaction on Database Systems (to appear).

Compressed Bit-sliced Signature Files
An Index Structure for Large Lexicons

by
Fazli Can and Ben Carterette
Systems Analysis Department

Miami University
Oxford, Ohio 45056

Working Paper #99-001

