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ABSTRACT 

VISUAL PROGRAMMING: 
CONCEPTS AND IMPLEMENTATIONS 

by Elizabeth Vera Howard 

The computing environment has changed dramatically since the advent of the computer. 

Enhanced computer graphics and sheer processing power have ushered in a new age of 

computing. User interfaces have advanced from simple line entry to powerful graphical 

interfaces. With these advances, computer languages are no longer forced to be sequentially 

and textually-based. A new programming paradigm has evolved to harness the power of today's 

computing environment - visual programming. Visual programming provides the user with visible 

models which reflect physical objects. By connecting these visible models to each other, an 

executable program is created. By removing the inherent abstractions of textual languages, 

visual programming could lead computing into a new era. 

This paper will introduce the concepts of visual computing. A set of evaluative criteria for visual 

programming languages has been developed and will be used to compare two visual languages: 

National Instrument's LabVlEW and The Gunakara Sun Systems' ProGraph. 
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1.0 Introduction 

Early programming languages mimicked the needs of von Neumann computer architecture 

hardware and necessarily used sequential, simple, character-based input and output 

statements. Programming languages progressed from machine and assembly code to 

natural language-based textual approaches in an effort to make algorithms more readable. 

Textual languages are inherently one-dimensional and focus on sequential execution of 

algorithms. This forced programmers essentially to restrict their designs to a linear 

organization. The facilities that textual programming languages "provide for describing 

algorithms correspond more closely to how computers operate than to the cognitive or 

perceptual processes of the programmer." [Cox et a/ 19891. 

Computer hardware technology, however, has improved at an impressively high rate since the 

advent of the computer. With the introduction of new processor chips, such as DEC's Alpha, 

Motorola's PowerPC, and Intel's Pentium, the race is afoot to offer even greater capabilities 

and sheer processing power. Computer graphics capabilities and user interface design have 

also kept pace with ever improving processor hardware. At the same time, hardware has also 

become more affordable. The combination of these events has provided the opportunity to 

exploit some of the graphics capabilities and processing power and promote the evolution of 

the new paradigm of visual computing, where concepts can be represented more naturally in 

a pictorial manner. Visual computing has introduced the concept that the "user interface is 

becoming a visual representation of the abstract world of the computer." [Singh and Chignell 

19921. Visual computing provides the user with visible models which can be manipulated, 

thereby reducing the number of unfamiliar abstractions that a user must learn . 



2.0 Visual Computing 

Visual computing encompasses a wide array of approaches and tools. One useful taxonomy 

divides visual computing into three main areas: programming computers, end-user interaction 

with computers, and visualization [Singh and Chignell 19921 (see Figure 1). This taxonomy is 

based upon the viewpoint of the user. The area of programming computers (visual 

programming and program visualization), the first branch of the taxonomy, is the main 

concern of a program designer. The general end user is most concerned with the user 

interface, the second branch of the taxonomy. Users who must interpret and process large 

amounts of data, especially scientists and data analysts, are most interested in the last 

branch of the taxonomy, namely scientific visualization. The main focus of this paper lies 

within the first branch of the taxonomy, specifically visual programming which will be discussed 

at length. The remaining two branches of the taxonomy are both important facets of visual 

computing both in their present use and future research applications. Their importance 

warrants a brief introduction of both topics. 

Visual Computing 

/ \ 
Visual Aids for Programming End User Interaction Scientific Visualization 

/ \  I \  / \ 
Visual Visualization WIMP Virtual Natural Surface-based Volume-based 

Programming Reality Artifacts Visualization Visualization 

Figure 1. Singh and Chignell's [I9921 Classification of visual computing 



2.1 Interfacing .With Computers 

User interfaces have changed dramatically over the last decade. Interfaces have advanced 

from a string of characters input by the user and output back to the screen by the computer 

to an interactive manipulation of graphical symbols and the use of new technologies such as 

head-mounted displays and data gloves. Figure 2 illustrates the taxonomy of end user 

interaction. [Singh and Chignell 19921. The first level is based on the technology, both 

hardware and software, used to implement the interface. 

End User Interaction 

Virtual Reality Natural Artifacts 

I Desktop spatial Physical Abstract I 
Figure 2. Singh and Chignell's [I9921 Taxonomy 

of end user interaction with computers 

The most common technology, by far, is the WlMP (Windows, Icons, Menus, and Pointing) 

interfaces. The taxonomy suggests that WlMP interfaces can be further subdivided into two 

types of information organization: desktop and spatial. In the desktop organization, common 

office objects and operations are recreated on the computer screen, such as filing cabinets, 

drawers, folders, printers, trash, etc. In the spatial organization, interactions involve moving 

and manipulating objects within the physical model, such as in Hypertext. 



In virtual reality, the user is placed within the computer generated environment interfacing 

with input devices such as data gloves and head-mounted displays to enhance the concept 

of being inside the environment. Virtual reality has been subdivided into physical reality, 

where objects are built to behave as their real-world counterparts, and abstract reality, where 

less tangible information such as energy fields, temperature, and seismic data can be 

visualized and manipulated. 

The final category of end user interaction is natural artifacts. This category encompasses 

communication techniques used in real life such as gestures, handwritten text, and spoken 

commands. 

2.2 Scientific Visualization 

The third branch of the taxonomy of visual computing is scientific visualization, which enables 

scientists to map high-volume data into meaningful graphics. "It empowers scientists to 

investigate the global properties of numerical solutions, examine the dynamics of their data 

changing over time, interact with the displays to gain further understanding of the data, spot 

anomalies, or uncover computation errors." [Singh and Chignell 19921. Scientific visualization 

can be further subdivided into two main approaches: surface visualization and volume 

visualization. Figures 3 and 4 illustrate the use of volume visualization in disease diagnosis 

[Watson and Watson 19911. In these examples a multivariate analysis of variance statistical 

model is used to compare a set of populations on the basis of multiple response variables. 

Figure 3 shows four population distributions and Figure 4 superimposes the four distributions 

into one distribution. 



Figure 3. Population Distributions Employed In 
Computer-Aided Medical Diagnosis [Watson and Watson 19911. 

Figure 4. Multiple Population Distributions (of Figure 3) 
Superimposed Into One Distribution [Watson and Watson 19911. 



3.0 Visual Aids for Programming 

Returning to Singh and Chignell's [I9921 classification of visual computing, let us concentrate 

on the first branch, programming computers. The authors have divided this branch into two 

key areas: visual programming and visualization (see Figure 5).  The generally accepted 

definition of visualization is the use of various techniques to aid in the understanding and 

debugging of computer programs [Baecker and Marcus 1990; Myers 1986; Price et a1 1 993; 

Singh and Chignell 19921. Visual programming, on the other hand, "refers to any system that 

allows the user to specify a program in a two (or more) dimensional fashion. Conventional 

textual languages are not considered two dimensional since the compiler or interpreter 

processes it as a long, one-dimensional stream." [Myers 19861. Baecker and Marcus [I9901 

offer an especially insightful description of visualization versus visual programming based 

upon the user's viewpoint. 

"Program visualization focuses on output, on communicating programs, their 

code, their documentation, their structure, and their behavior to a 'reader' or 

'viewer.' Visual programming, on the other hand, focuses on input, on the 

'writer' or 'composer' of programs, but usually provides 'feedback' output in the 

same form as input. Visual programming may appear to subsume program 

visualization; this is not the case, however, since communicating the structure 

and process of a program to the reader may need to take advantage of 

techniques that are not necessarily effective or compatible with those of the 

writer." [Baecker and Marcus 19901. 
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Visual Aids for Programming 

/ 
Visual Programming Visualization 

/ \ 
Graphical Visual Language Program ' Algorithm ' 'Data 

Interaction Visualization Visualization Visualization 
systems /TteyL / \  

Flow Diagrams Icons Tables/ Others Static Dynamic 

/ \  
Static Dynamic 

/ \  Forms 
Control Data 
Flow Flow 

Figure 5. Singh and Chignell's [I9921 Taxonomy of 
visual programming systems 

3.1 Visualization 

In order to more clearly understand what capabilities a system must process to be classified 

as a visual programming language, a more detailed discussion of visualization will ensue. As 

was stated previously, visualization is used to enhance the understanding of computer 

programs. Singh and Chigneil [I9921 have further divided visualization into three main 

branches: program visualization, algorithm visualization, and data visualization. 

In program visualization, graphics are used to illustrate some aspect of the program after it is 

written and can be either static or dynamic program visualization. Static program visualization 

techniques include flow charting and pretty-printing (insertion of blanks and blank lines, 

indentation, and comments to enhance the readability of a program). Execution of the 

program is illustrated either by animation or by highlighting the program code when dynamic 

program visualization is implemented. 
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4.0 Visual Programming 

In essence, visualization provides a means to better understand how a program works after it 

has been coded. This is in direct contrast with visual programming, where a program is 

actually designed by manipulating graphical representations (icons) or by a combination of 

icons and textual information. 

Singh and Chignell [I9921 divide visual programming into two key branches: graphical 

interaction systems and visual language systems (see Figure 5). This division is based upon 

how the graphics are used to build the program. Systems where the user guides or instructs 

the system in order to create the program are classified as graphical interaction systems. 

Visual language systems consist of systems in which icons, symbols, charts, or forms are 

used to specify the program. 

4 . 1  Graphical Interaction Systems 

In graphical interaction systems, the sequence of user actions is of vital importance since the 

system "learns" from the user input. This category is more commonly, and perhaps, more 

aptly coined programming by example. 

In the majority of systems, a user is required to specify everything about the program and the 

system is able to remember the examples for later use. This type of system could be 

described as "Do What I Did" [Myers 19861. Conversely, some systems attempt to infer the 

general program structure after the user has provided a number of examples which work 

through the algorithm. These systems could be characterized by "Do What 1 Mean" [Myers 



19861 and are often referred to as automatic programming, which has generally been an area 

of Artificial Intelligence research. 

4 . 2  Visual Language Systems 

The second branch of visual programming is termed visual language systems. Within this 

classification are systems using icons, symbols, charts, and forms to specify the program. 

The spatial arrangement of the symbols specifies the program. This differentiates visual 

languages from graphical interaction systems (programming by example), since, in graphical 

interaction systems, the user interaction with the system is important, and in visual languages, 

the arrangement of symbols on the screen is important. 

Visual languages are composed of a set of graphical symbols which are constructed into 

"visual sentences with a given syntax and semantics." [Chang 19871. Visual sentences must 

then be spatially parsed to determine the underlying syntactic structure. A semantic analysis 

must then be performed to determine the meaning of the visual sentences (spatial 

interpretation). The syntactic and semantic analyses of a visual language differs little from a 

traditional language approach. Both types of languages must be analyzed to determine 

syntax and meaning, the significant difference being that visual languages employ graphical 

symbols rather than textual expressions of traditional languages. In Figure 5,  Singh and 

Chignell [I9921 suggest a division of visual languages into three main categories based upon 

the graphical abstraction used for creating the program: flow diagrams, icons, and 

forms/tables. 



The category, flow diagrams, includes visual languages which provide various types charts, 

graphs, and diagrams to construct programs. Flow diagrams are primarily composed of 

control flow or data flow diagrams. 

The most common example of control flow diagrams (and probably the earliest visual 

representation for a program) is the flow chart. Typically, the flow chart was used for 

documentation purposes, but visual languages employing flow charts create programs 

automatically. Another type of control flow diagrams used in some visual languages are 

Nassi-Shneiderman diagrams. Data flow diagrams depict the flow of data from one operation 

or object to another and the visual language constructs the program from the flow of data. 

The second category of visual programming languages, icons, consists of visual languages 

using graphical symbols or icons and their interconnections to form iisual sentences. As was 

noted earlier, spatial parsing and interpretation is used to provide syntactic and semantic 

analyses, respectively. There is no accepted standard for the definition of an icon. The main 

criterion for designing an icon is that it clearly represents the abstraction. For example, in 

LabVIEW, the traditional symbol for an operational amplifier is used to represent the functions 

add and subtract (see Figure 6). Another use of icons is in the language Proc-BLOX [Chang 

19901. Figure 7 illustrates a Proc-BLOX implementation of a traditional Pascal program, 

where the Proc-BLOX symbols resemble a three dimensional jigsaw puzzle. 



The final category of visual languages are those languages which employ tables and forms. 

The user constructs the program by using tables or filling in forms. Common uses of this 

category include developing queries on relational databases through the use of tables and 

the development of office-information systems using forms. 

While the taxonomy designed by Singh and Chignell [A9921 offers a strong basis for 

distinguishing aspects of visual computing, it could be enhanced by incorporating Chang's 

[ I  9871 more rigorous approach. 

Chang [I9871 classifies four types of visual languages: languages supporting visual 

interaction, visual programming languages, visual information processing languages, and 

iconic visual information processing languages. This classification is based upon the objects 

which the language processes, the transformation of the object, and how the language 

constructs are represented. In Figure 8, an object icon is represented as a two-part entity, 

written as (Xm, Xi), where Xm represents the meaning or logical part and Xi represents the 

visual image. Languages supporting visual interaction and visual programming languages 

deal with objects that have logical meaning but no visible image: (Xm, e), where e denotes a 

null object. In order for the object to be visualized, we must transform (Xm, e) into (Xm, X'i). 

Similarly, languages dealing with inherently visual objects with no logical meaning must 

transform (e, Xi) into (X'm, Xi). Further classification is based upon whether the language 

constructs are visual or linear. 

Languages which support visual interaction process objects that do not have an inherent 

visual representation, such as data types (arrays, stacks, queues, etc.) and application data 

types (forms, documents, databases, etc.). These languages use iconic representations 

such as entity-relationship diagrams, action diagrams, and Nassi-Shneiderman diagrams, but 

the program statements are still written in a conventional programming language. 
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BEGIN 

U S  

BEGIN 
S1; 
IF NOT I1 THEN 

BEGIN 
S2; 
S 3 ; 

END 
ELSE 

WHILE L1 DO 
BEGIN 

IF I2 THEN S4 ELSE S5; S6; 
END; 

WHILE L2 DO S7; 
S8; 

END; 

Figure 7. Proc-BLOX Representation 
and Pascal Program Equivalent [Chang 19901 



Figure 8. Chang's [I9871 Four Types of Visual Languages 

As with languages supporting visual interaction, visual programming languages also process 

Type of visual 

language 

Languages that 

support visual 

interaction 

Visual programming 

languages 

Visual information 

processing languages 

Iconic visual 

information processing 

languages 

objects which do not have an inherent visual representation but are transformed from (Xm, e) 

Transformation 

of objects 

(Xm, e) --> (Xm, X'i) 

(Xm, e) --> (Xm, X'i) 

(e, Xi) --> (X'm, Xi) 

(e, Xi) --> (X'm, Xi) 

Objects to be dealt 

with 

logical objects with 

visual representation 

logical objects with 

visual representation 

visual objects with 

imposed logical 

representation 

visual objects with 

imposed logical 

representation 

into (Xm, X'i) to be represented visually. Not only are the objects represented visually, but 

Languages' 

visibility 

linearly represented 

constructs 

visually represented 

constructs 

linearly represented 

constructs 

visually represented 

constructs 

the rules for combining these objects are also represented visually. Some applications of 



visual programming languages include computer graphics, user interface design, database 

interface design, form management, and computer-aided design. 

A visual information processing language pFocesses objects with an inherent visual 

representation and are transformed from (e, Xi) into (X'm, Xi) to impose a logical 

interpretation. Typically, these languages are implemented in a linear language with an 

enhanced user interface to accommodate the graphical images. Applications of visual 

information processing languages include image processing, computer vision, robotics, image 

database management, office automation, and image communications. 

Iconic visual information processing languages are differentiated from visual information 

processing languages by the fact that iconic languages also represent language constructs 

visually and not linearly. 



5.0 Visual Language Evaluation 

A thorough evaluation of a visual language is a daunting task. Since the paradigm has just 

been recently introduced, or more aptly, recently discovered by the general populace, scant 

research has been published on the subject of visual language evaluation. One exception is 

Shu's three-dimensional framework to characterize and compare visual languages as 

illustrated in Figure 9 [Shu 19883. Shu's three criteria for comparison are Visual Extent, 

Scope, and Language Level. Visual Extent is a measure of the language's use of graphical 

objects for programming constructs. Scope is an indicator of whether a visual language is 

applicable only in a very limited area or useful in a variety of applications. Finally, Language 

Level displays whether the visual language qualifies as a high or low level language. 

Presently, there is no standard classification scheme for classifying visual programming 

language research papers, however, Burnett and Baker [Burnett and Baker 19931 have 

recommended such a classification (see Figure 10). Although Burnett and Baker 's proposed 

classification of visual programming languages is intended for research paper classification, 

it presents several pertinent attributes of a visual programming language. A programming 

language can be determined as visual based upon the possession of these attributes. 

Furthermore, these attributes can then be extended and used as a basis for comparison of 

visual programming languages. Within the same proposal, Burnett and Baker present an 

overall Visual Computing hierarchy (see Figure 1 A), where their paper classification proposal 

focuses on the branch labeled Visual Programming Languages. 



Visual Extent 

High 

Low 
Scope 

General 

Language Level 

Figure 9. A three-dimensional framework to characterize 
and compare visual languages [Shu 19881 

A critical set of visual programming language evaluation criteria has been developed based 

upon concepts from Shu's characterization, Burnett and Baker's proposed visual language 

research paper classification, and extensive evaluation of programming languages. This set 

of criteria and accompanying explanation can be found in Figure 12. The criteria were 

developed specifically for visual programming languages with the intent that visual languages 

can be evaluated and reevaluated with the evolution of the paradigm. In general, the 

evaluation criteria range of measures will include: 

none - attribute not implemented 

weak- language provides functionality to accomplish attribute but is poorly 

implemented either because the language imposes strict adherence to detailed 

requirements or the task cannot be accomplished directly. 

fair - attribute is implemented but limited in its ability 

strong - attribute fully implemented 



Other attributes are more easily characterized by the terms specific and general, both of 

which are self-expi-anatory. A list of possible values are provided in the accompanying 

definition for attributes which can be assigned certain values. 

Many languages touted as 'visual programming' languages, however, do not possess the 

attributes to be classified as a visual programming language. For example, Visual Basic and 

Visual C++ would be placed within the End User Interaction branch of Singh and Chignell's 

classification of Visual Computing. These languages do not'fall within Burnett and Baker's 

Classification of Visual Programming Language Research, rather these languages would be 

placed within the Visual Environments for Textual Languages in their overall view of Visual 

Computing. Although these languages are often termed as 'visual programming' languages, 

they are more aptly classified as textual languages with strong graphical user interface 

capabilities. In these Windows applications, interactive screens can be easily generated. 

This is accomplished through choosing an icon (either a standard icon or a user-generated 

icon), placing it in the desired screen position, setting the parameters, then programming 

textually what events will occur when that icon is chosen during execution. A limited 

amount of graphical animation can also be implemented within these systems, such as the 

sequencing of a set of graphical images. These languages do not provide a facility for 

algorithm animation. Although these languages greatly simplify the task of building a 

Windows application, they are not considered to be visual languages since coding is 

accomplished textually. 



VPL: Visual Programming Language 

VPL - I. Environments and Tools for 
VPLs 

VPL- II. Language Classifications 
A. Paradigms 

1. Concurrent 
Languages 
Constraint-based 
languages 
Data-flow languages 
Form-based and 
spreadsheet-based 
languages 
Functional languages 
Imperative languages 
Logic languages 

8. ~dti-paradigm 
languages 

9. Object oriented 
languages 

10. Programming-by- 
demonstration 
languages 
. . . 

B. Visual representations 
1. Diagrammatic languages 
2. Form-based and 

spreadsheet-based 
languages 

3. Iconic languages 
4. Languages based on 

static pictorial 

VPL-IV. Language Implementation Issues 
A. Computational models 
B. ~fficiency 
C. Parsing 
D. Translators (interpreters and 

compilers) 

Special-Purpose Languages 
A. Database languages 
B. User-interface generation 

languages 
C. Image-processing 

languages 
D. VPLs for scientific 

visualization 

VPL-VI. Theory of VPLs 
A. Formal definition of VPLs 
8. Icon theory 
C. Language design issues 

1. Cognitive and 
user-interface design 
issues 
Liveness 
Scope 
Effective used of screen 
real estate 
Type checking and type 
theory 
Visual representation 
issues 

sequences ... 

VPL- Ill. Language Features 
A. Abstraction 

1. Data Abstraction 
2. Procedural abstraction 

B. Control flow 
C. Data Types and structures 
D. Documentation 
E. Event handling 
F. Exception handling 

........................................................................................................................................... 
Fiaure 10. Burnett and Baker's [I9931 Proposed Visual " 

Programming Research paper crassiffcation. 



Visual Computing 

Databases for Image Environments Program 8 

for Textual Visualization 

I Figure 11. Burnett and Baker's El9931 Visual Computing Hierarchy 

There are a limited number of commercially available visual programming languages. Two 

visual languages which are available commercially are National Instrument's LabVlEW and 

The Gunakara Sun Systems' ProGraph. The features, strengths, and weaknesses of these 

two application software packages will be explored. 



Figure 12. Visual Language Evaluation Criteria and Definitions. 
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Visual Language Attribute 

Scope 

Intended Audience 

Paradigm 

Ease of Use 

Visual Representation 

Compiler 

Reusability 

Data Types and Structures 

Effective Use of Screen Area 

Hardware 

Operating System 

Animation (runtime visualization) 

Effective Use of Colors 

Clarity of graphical symbols 

Interactive Capabilities 

Extensibility 

Interface Capabilities with Other Languages 

Definition 

The applicability of the software package to various 
applications, ranging from specific to general. 

What group of users would most benefit from the incorporation of 
the visual language, ranging from specific to general. 

What programming paradigm is implemented. Possible values 
include: dataflow, object-oriented, object-oriented dataflow, 
structured. 

How quickly the software package can be adopted to develop 
an application, ranging from weak to strong. 

How the graphical Ian uage is visually presented. Possible 
values include: compyex iconic structure, simple iconic 
structure, tables, forms, flow diagrams. 

What type of compiler is implemented, ranging from graphical 
(direct compilation) to interpreted (compiled to intermediate 
code). 

How easily can code be reused, ranging from weak to strong. 

How extensive are the system defined and user-defined types, 
ranging from weak to strong. 

How well can screen space be Conserved, ranging from weak to 
strong. 

For what hardware platform(s) is the software available. 
Possible values include: Macintosh, IBM, Sun. 

Under what operating systems does the software run. Possible 
values include: Macintosh OS, Windows, Sun 0s. 

How extensive is the runtime visualization of algorithm 
execution, ranging from none to strong. 

How well are colors used to depict different graphical 
components, ranging from none to strong. 

How easily recognizable graphical symbols are, ranging from 
weak to strong. 

Measure of ability to modify program settings during execution. 
ranging from none to strong. 

How easily the program can be extended to include upgrades or 
modifications, ranging from weak to strong. 

How extensive are the facilities provided to link with other 
languages or packages, ranging from none to strong. 

How extensive are data analysis capabilities are included in the 



6.0 Comparison of Two Visual Languages: LabVlEW and 

ProGraph 

National Instrument's LabVlEW and The Gunakara Sun Systems' ProGraph are both iconic 

visual programming languages. Their position in Singh and Chignell's taxonomy for Visual 

Languages would be in the Icons category as demonstrated in Figure 13. LabVlEW and 

ProGraph have been classified as iconic languages employing the dataflow paradigm rather 

than as merely dataflow diagram systems. This distinction is made since both languages 

provide an extensive library of icons. These systems were compared using Macintosh II 

hardware and the Macintosh operating system. 

Visual Aids for Programming 

Visual Programming Visualization 

Graphical Visual Language Program 
' ' 'Data Algorithm 

Interaction Visualization Visualization Visualization 

/ \  
Static Dynamic 

/ \  
Static Dynamic 

Control Data 
Flow Flow 

LabVlEW and ProGraph 

Figure 13. LabVlEW and ProGraph Position 
in Singh and Chignell's [I9921 Taxonomy. 



LabVlEW and ProGraph are compared using Shu's three-dimensional characterization 

scheme as shown in Figures 14 and 15.' LabVlEW ranks extremely high in the area of Visual 

Content and fairly high in the Language Level. LabVlEW is software package for 

instrumentation, thereby ranking specific in the Scope area. In contrast, ProGraph's Visual 

Content is not nearly as extensive and ranked low in that area. ProGraph's strengths are 

that it is a high-level object-oriented language useful in general applications and ranks 

extremely high in Language Level and general in Scope. 

In Figure 16, LabVlEW and ProGraph are compared using the previously defined evaluation 

criteria. Following this table of comparisons, each language will be more thoroughly 

introduced. First, a general overview will be presented for LabVIEW, followed by a more 

detailed description of each evaluation criterion. An example LabVlEW application will then 

be described. This same format will be maintained for ProGraph. 
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Figure 15. ProGraph Three-Dimensional Evaluation. 



Figure 16. Comparison of Visual Language Attributes for 
LabVlEW and ProGraph. 
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6.1 LabVlEW 

6.1 .I  Overview 

LabVlEW provides an extensive choice of iconic programming structures, from simple 

mathematical functions to complicated Digital Signal Processing. All icons are chosen 

through a typical point and click Macintosh menuing system The iconic functions are 

classified logically, therefore determining in which menu an iconic function is located is a trivial 

task. However, not all iconic representations are easily interpreted. Figures 17, 18 and 19 

display the menu choices of arithmetic, trigonometric and logarithmic, and comparison icons, 

with most of the icons in each menu being easily recognizable. If an icon in these categories 

is not immediately apparent, the accompanying short description displayed when an icon is 

highlighted is typically sufficient to determine its functionality. 
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Figure 17. LabVlEW 2 Arithmetic function icons. 



Not all icons' functions, however, are immediately recognizable. For example, Figure 20 is a 

snapshot of the structures and constants menu. Many of the constants are self-explanatory, 

but the programming structures themselves are not readily apparent. A brief description of 

the function of the programming structures is presented in Figure 21. Once the icon is 

defined, the general shape of the icon does then seem to accurately reflect the function. As 

the function of the icon becomes more complex, the meaning of the icon becomes more 

obscure, especially in the Analysis menu selection. 
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Figure 19. LabVlEW 2 Comparison function icons. 
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Figure 20. LabVlEW 2 Structures and Constants Icons. 



The sequence structure (see Figure 21), forces the execution of diagrams in a specific order. 

Since LabVlEW is a dataflow language, a block will execute as soon as all of its inputs are 

available. The sequence structure provides the method to override this feature. The for 

loop, while loop, and case structures function the same as in a traditional language. In the 

while loop icon, the structure wired to the circular arrow located within the while loop icon is 

the condition statement. The element wired to the question mark in the case structure will 

determine which case diagram to execute. 
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Figure 21. LabVlEW Sample Structures. 



LabVlEW has extensive data analysis capabilities. To demonstrate LabVIEW's power, the 

Digital Signal Processing (DSP), Numerical, and Statistical menu choices are presented in 

Figures 22 through 25. These analysis capabilities cover essentially all test system design 

requirements. They can be incorporated into a Virtual lnstrument as real-time analysis 

without necessitating porting data to another data analysis application. A Virtual lnstrument 

designed to highlight LabVIEW's analysis functions will be presented in detail in a later 

section. 

The Digital Signal Processing (DSP) selection of the Analysis menu offers a wide variety of 

digital signal processing options (see Figure 22). Waveforms, such as impulse, pulse, ramp, 

triangle, sine, and square waves, can be generated and placed into an array or displayed on 

a graph. Noise signals can be generated and added to another signal. The Fast Fourier 

Transform, Hartley Transform, and Hilbert Transform can be used to convert a time domain 

waveform into its corresponding frequency domain representation. Other DSP functions 

include determining the power spectrum of a waveform, integrating a waveform, and 

determining the first derivative of a waveform at a specific point. 
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Figure 22. LabVlEW 2 Digital Signal Processing Icons. 



LabVlEW provides many common signal filtering functions. These filters include removing of 

spikes from waveforms, removing high frequencies from a waveform (low pass filters), 

removing low frequencies from a waveform (high pass filters), and removing both high and low 

frequencies (band pass filters). Figure 23 lists the icons of all available filters. 
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Figure 24 lists the numerical functions from the analysis menu selection. The numerical 

functions include returning the x- and'y-components of a vector, separating the real and 

imaginary components of an array, determining the base-10 log and natural log of each 

element in an array, as well as taking the base-10 log of each array element and multiplying 

= 
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Figure 24. LabVlEW 2 Numerical Analysis Icons. 



The statistical functions of the analysis menu selection (see Figure 25) offers many typical 

capabilities. Icons can provide such functions as determining array mean, standard 

deviation, RMS (root mean square) of values, fitting waveforms both linearly and polynomial, 

dot and cross products of matrices, and solving linear 'equations. 
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6.1.2 Scope 

LabVlEW has been designed as a graphical programming system for data acquisition and 

control, data analysis, and data presentation. Its scope is specifically designed for 

instrumentation of test and measurement applications. Software modules are assembled 

graphically and are termed Virtual Instruments (Vls). The Virtual Instrument is built to acquire 

data from plug-in data acquisition boards, IEEE-488 and RS-232 programmable instruments, 

perform (potentially extensive) data analysis, and present the results through graphical user 

interfaces. 

Certainly, some general purpose programs can be constructed using LabVIEW. The 

available data structures are fairly simple, therefore limiting its scope. It is an especially useful 

tool for the introduction of the visual programming paradigm. These uses, however, obscure 

its true strength - instrumentation design. After mastering the meaning of the graphical 

symbols, the difficulty of interfacing instruments to produce an automated system is 

significantly reduced. An engineer no longer needs to remember cryptic IEEE-488 (GPIB) 

codes to control an instrument. The library of available Vls for commercial instruments is quite 

extensive and includes many of the most common instruments. 

A VI is composed of a front panel, a block diagram, and an icon/connector. The front panel 

is the user interface, the block diagram is the VI source code, and the iconlconnector is the 

calling interface. A block diagram contains inputloutput, computational, and subVI 

components, which are represented by icons and interconnected by lines directing the flow of 

data. Inputloutput components communicate directly with external physical instruments. 

Computational components perform arithmetic and other operations. SubVl components call 

other Vls, passing data through their iconlconnectors. 



6.1.3 Intended Audience 

LabVlEW was designed with instrumentation engineers and technicians as the intended 

audience. The terminology and graphical representations used are consistent with the 

engineer's vocabulary. Many of the functions, such as adding, subtracting, multiplying, 

dividing, and comparison operators, are drawn as an operational amplifier - a symbol familiar 

to the engineer. Logic functions are represented by the traditional symbols of logic circuit 

design. Program construction is accomplished by connecting icons using a wiring tool, so 

programs are designed by wiring elements in a very similar manner to a circuit schematic 

diagram. 

The front panel icons are reproductions of physical components engineers would employ in 

the construction of an automated testing or process control systems. A variety of control 

icons and indicator icons are displayed in Figures 26 and 27, respectively. Control icons 

allow the user to change values during execution, whereas indicator icons only display 

relevant information without opportunity for operator input. 

6.1.4 Paradigm 

LabVlEW is based upon dataflow programming, where each node begins execution only 

when data is available at all of its inputs. This paradigm allows for creation of diagrams with 

independent or parallel dataflow paths and simultaneous operation. 



6.1.4.1 Dataflow Programming 

Dataflow programming is based entirely on the concept of data flowing from one function to 

another. In dataflow programming, data flow through the program activating each instruction 

as soon as all the required input data have arrived. In contrast, the traditional von Neumann 

architecture programming language is based upon manipulating the state of a global memory 

using the sequential execution of a set of language commands. Dataflow programming is not 

limited to sequential execution of instructions. "The dataflow paradigm allows for more than 

one instruction to be executed sirnultaneously. The concurrency in dataflow execution 

depends purely on the availability of data at instruction-execution time, the proportion of 

concurrency specified in the application to begin with, and how sufficient the computing 

resources are for handling concurrent executions. Because of this, dataflow programs are 

said to allow for fine-grain concurrency at the instruction level of a program." r h e  Gunakara 

Sun Systems 1992Aj. 

Although LabVlEW is a dataflow programming language, instructions can be forced to 

execute in a specific manner if so desired. The structure to order execution is referred to as a 

sequence structure. 

Some literature has touted LabVlEW as an object-oriented programming language. Although 

LabVlEW focuses the designer's views on physical entities such as instruments and their 

measurements (objects), there is no mechanism for inheritance or polymorphism. By most 

definitions of object-oriented programming languages, LabVlEW would not be classified as 

object-oriented, but perhaps as object-based. 
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Figure 26. LabVlEW Front Panel Control Icons. 
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Figure 27. LabVlEW Front Panel Indicator Icons. 

6.1.5 Ease of Use 

Simple Virtual Instrument applications can be developed in LabVlEW rather quickly. The 

front panel icons are representations of physical entities and are easily recognizable. Many 
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of the block diagram icons are very intuitive and the function of less recognizable icons can 

often be determined by the accompanying name in the pull down menu. The help facility 

also provides information on the required inputs and provided outputs of block diagram icons. 

With the help of the Getting Started Manual [National Instruments 1990A1, more complicated 

applications can be built. 

6.1.6 Visual Representation 

LabVlEW is an iconic visual programming language. Many of the icons provide highly 

complex functions. This built-in complexity eases the task of performing detailed analytical 

computations. In order to use an icon, the proper data must be wired to inputs and wired 

from the outputs. 

6.1.7 Compiler 

LabVlEW VI source code is the block diagram. This block diagram is compiled directly into 

machine code, thus the compiler is termed as graphical. 

6.1.8 Reusability 

Once a Virtual Instrument has been constructed, it can be 'iconized' and used as a subVl in 

any other program. This provides a high degree of reusability. SubVIs can be used in an 

hierarchical fashion. In other words, VI1 can call subVI2, which in turn calls subVls 3 and 4, 



which can then call other subvls. This modular, hierarchical design promotes reusability 

throughout applications. 

6.1.9 Data Structures and Types 

Data structures and types are very limited in LabVIEW. Using the same data structure in 

different parts of a program is difficult. Also, there is no facility for user-defined types or 

structures. For example, there is no inherent method to link components of arrays of different 

types. Multiple dimension arrays can be defined, but all columns must be of the same data 

type. In most engineering applications, the crucial data is invariably numerical, thus LabVIEW 

has concentrated its data typing specifically for engineering applications. 

6.1.10 Effective Use of Screen Area 

Any Virtual Instrument can be iconized and used as a subVI, which can be inspected by 

double-clicking on that icon. Even with the ability to use subvls, it can be difficult to develop 

a complicated application in a limited space. The diagram and front panel can extend 

beyond the size of the screen and scroll bars used to view the additional area. 

Unfortunately, certain standard icons cannot be resized to conserve space, such as the 

analysis icons illustrated in Figures 22 through 25. Also, it is not a simple task to choose a 

portion of a VI to be made into a subVI. 



6.1 .I 1 Hardware 

LabVlEW is available to run on the following hardware platforms: Macintosh, IBM, and Sun. 

6.1 .I 2 Operating Systems 

LabVlEW is available to run under the Macintosh operating system, Windows, and the Sun 

operating system. 

6.1 .I 3 Animation (runtime visualization) 

Since LabVlEW is a dataflow language, the runtime visualization tracks the flow of data 

through the block diagram. It is a useful tool to determine which blocks are executing 

concurrently and which are executing sequentially. Also, the program may be placed into a 

step mode and the data tracked step by step. 

6.1.14 Effective Use of Colors 

LabVlEW is very effective at using colors to depict different data types and functions. The 

connections between blocks are color coded just as they might be in a physical electrical 

schematic diagram. This color coding eases the task of 'reading' the program. 



6.1 .I 5 Clarity of Graphical Symbols 

For the intended audience, most of the graphical symbols are highly intuitive. By employing 

standard engineering symbols such as operational amplifiers and logic gates, LabVlEW's 

iconic structures are quite clear. 

6.1.1 6 Interactive Capabilities 

Front panel control settings.can be modified during execution as well as x- and y-axis marker 

values for graphs and strip chart recordings. A block diagram cannot be modified during 

execution, nor will the program resume after correction of a runtime error from the time the 

error occurred (in other words, the program will be completely re-compiled and execution will 

begin at the beginning of the program). 

6.1.17 Extensibility 

Extending the functionality of a Virtual Instrument can be difficult. If a block is deleted from 

the block diagram, then all of its inputs and outputs are no longer valid. This causes the 

wires attaching the deleted block to other blocks to also become invalid. The inputs and 

outputs of the remaining blocks must then be rewired. 



6.1 -18 Interface Capabilities With Other Languages 

Any data generated from a Virtual Instrument can be stored in standard format and ported to 

another software package for further analysis. Compiled C code can be imported into a 

LabVlEW VI, however, the compiled code must adhere to strict LabVIEW calling interface 

requirements resulting in a very cumbersome process. The Windows version does offer 

capabilities to interface to other Windows applications, but no testing was performed 

concerning this interface. 

6.1.1 9 Analysis Capabilities 

LabVIEW's data analysis capabilities are extensive. Some of the analysis available include: 

generating waveforms, determining frequency spectrum, determining power spectrum, 

applying digital windows and filters, separating real and imaginary components of an array, 

array mean, standard deviation, fitting waveforms both linearly and polynomial, dot and cross 

products of matrices, and solving linear equations. Figures 22 thorough 25 showed a 

snapshot of all analysis capabilities. This extensive library of analysis functions could easily 

convince any test system design engineer of the usefulness of LabVlEW applications. The 

following section will describe a VI which utilizes some of the analysis functions. 



6.2 LabVlEW Implementation of a Spectrum Analyzer Virtual 

lnstrument 

LabVlEW was designed as an instrumentation software package taking advantage of the 

enhanced graphics capabilities of modern computer systems. In this area, LabVIEW's 

performance is quite impressive. This advanced performance is illustrated by the 

development of a Virtual lnstrument which simulates a spectrum analyzer. The front panel 

and the diagram of the Spectrum Analyzer VI can be found in Figure 30 and 33, respectively. 

Prior to detailing the development of the Spectrum Analyzer VI, a brief definition of spectrum 

analysis will be presented. "Periodic waveforms, regardless of shape, can be broken down 

mathematically into a series of sine waves." [Witte 19931. Spectrum analysis is the process of 

determining the sine wave frequencies and amplitudes present in a signal, where frequency 

is defined as l/(time for one cycle of a waveform) and amplitude is defined as the maximum 

height of a waveform. (For a mathematical treatment of spectrum analysis, please refer to 

Blackburn 1970.) The original signal is typically represented graphically with the y-axis as 

amplitude and the x-axis as time. A graph of Amplitude versus Time is referred to as a time 

domain graph or representation. Conversely, the representation of the spectrum analysis of 

a time domain signal, known as the spectrum, is a frequency domain graph. Frequency 

domain graphs consist of Amplitude versus Frequency data. 

Figure 28 [Tektronix 19891 is a time domain representation of a square wave. This square 

wave remains at the maximum and minimum amplitudes for the same amount of time (in other 

words, the waveform has a 50% duty cycle). The period, or the time for one repetition of the 

waveform, is labeled as 'T' and the amplitude is labeled as 'AJ2.' The fundamental frequency, 

f1, of the waveform would therefore be calculated as: f l  = 1/T. 



A square wave is composed of multiple sine waves with the frequencies of these sine waves 

being multiples of the fundamental frequency, f l .  A sine wave component whose frequency 

is a multiple of the fundamental frequency is referred to as a harmonic - the second harmonic 

is twice the frequency of the fundamental, the third harmonic is thrice the frequency of the 

fundamental, etc. The amplitude of the components of any rectangular waveform are limited 

Amplitude 

multiplicative function. A square wave is comprised only of the odd harmonics since 
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Figure 29 [Tektronix 19891 is a frequency domain representation of the square wave depicted 

in Figure 28. The odd harmonics occur at the peaks of the dashed sine waves. 

Theoretically, there are an infinite number of frequency components of a square wave. 

With this brief definition of spectrum analysis, the LabVlEW Spectrum Analyzer VI can be 

explored. Figure 30 is a snapshot of the front panel. The Timespan and Frequency Span 
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Figure 29. Frequency domain representation of a 

square wave with fundamental frequency f l  . 
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knobs control the x-axis values of the Input Signal (time domain) and the Spectrum 

(frequency domain), respectively. These knobs allow the user to choose the amount of the 

waveforms to be viewed. The Spectrum Analyzer VI also provides five choices of Windows or 

Filters to be applied to the input signal. The Windows 'clip' the ends of the input signal (see 

Figure 31). The Filters either remove higher frequencies from the input signal (Butterworth 

LowPass and Chebychev LowPass), remove lower frequencies from the input signal 

(Butterworth Highpass), or remove both very low and very high frequencies (Butterworth 

Bandpass). Figure 32 illustrates the signals with the Butterworth LowPass filter chosen. 

When comparing the unfiltered input signal of Figure 30 with the filtered signal of Figure 32, it 

is apparent that the filtered signal has less noise, since the high frequencies have been 

removed (white noise is comprised of high frequency components). 
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I Figure 32. Snapshot of Spectrum Analyzer VI With Butterworth Low Pass Filter Selected. 1 



The Spectrum graph represents the frequency domain of the lnput Signal waveform. The 

fundamental frequency of the lnput Signal is 10000 Hz (11100 psec). At each odd harmonic, 

there are spikes on the Spectrum waveform representing those components. Since the lnput 

Signal is not a perfect square wave, the spectrum is not simply composed of perfect spikes at 

each of the odd harmonics. The induced noise creates additional frequency components. 

Figures 33, 34 and 35 illustrate the LabVlEW program. As can be seen, all of the program is 

enclosed in a while loop, which will continue to execute until the STOP button is chosen on 

the front panel. When reading the while loop from left to right, the first operations to oe 

performed are creating a square wave and an array of white noise. The noise is then filtered 

and added to the square wave and placed in the array labeled SIGNAL. The signal is then 

processed through the case block determining which window is to be used. The resultant 

signal is then processed through a second case structure determining the chosen filter. This 

resultant signal is then routed to be displayed as the input signal and to the block which 

converts the signal to its frequency components and displayed as the spectrum. 

The block which converts the time domain signal into the frequency domain ,y t~) ,  performs 

a Fast Fourier Transform (FFT) on the input array. The FFT is a discrete and efficient 

implementation of the Fourier integral. The FFT is calculated as follows [National Instruments 

where Y[i] is the ith element of the FFT of X and j is sqrt(-1). Direct implementation of this 

equation requires approximately n2 operations, however, if the size of the input array is 



limited to a power of 2, a significant number of operations can be eliminated and a fast 

algorithm can be implemented. The algorithm implemented f o r m H j  in the LabVlEW 

Analysis VI Library is known as the Split-Radix algorithm. This algorithm has a form similar to 

the Radix4 algorithms with the efficiency of the Radix-8 algorithms. The Split-Radix algorithm 

requires the fewest number of multiplications over the Radix-2, Radix-4, and Mixed-Radix 

algorithms [National Instruments 19911. 

The use of t hey t~ )b lock  results in an array with both the positive and negative harmonics 

of the input signal. Only the first half of the array (the positive harmonics) are utilized in the 

VI. m ~ j  also produces both real and imaginary values of the frequency components, but 

only the real components are required for the VI. 

The array of real and positive frequency components of Y{H) are then converted to a graph 

and displayed on the front panel Spectrum display. 

This VI could easily be modified to incorporate either an IEEE-488 data acquisition instrument 

or a plug-in Analog to Digital Converter board. Rather than generating a square wave from 

the LabVlEW Analysis menu, an actual signal could be captured and then processed 

through t h e ~ ~ ~ ) a n a l ~ s i s  block. It is especially convenient that both the input and resulting 

spectrum signals can be viewed on the same display. The test system designer is then not 

limited to placing the data acquisition in full view of the test system operator. In this way, the 

designer can limit access to instrument control settings by determining settings through the 

LabVlEW front panel only. 



Figure 33. Spectrum Analyzer Virtual Instrument LabVlEW Program. 



Figure 34. Additional choices for Filter Case Structure in Spectrum 
Analyzer LabVlEW program. 

Figure 35. Additional choices for Window Case 
Structure in Spectrum Analyzer LabVlEW program. 



6.3 ProGraph 

6.3.1 Overview 

ProGraph provides a strong environment for Macintosh application development. The ProGraph 

development system is based upon a three tier level as illustrated in Figure 36 [TGS 199281. On 

the first tier is the ProGraph language itself, composed of a visual, object-oriented dataflow 

language. Applications are built using the traditional Macintosh windows and pull-down menu 

structure. The second tier encompasses the manner in which windows and menus are designed 

and how events are handled by utilizing ProGraph system classes. Finally, the third tier is 

composed of the editor, interpreter, and compiler. The editor is designed as a traditional 

Macintosh graphical user interface with 'point and click' features and pull down menus. The editor 

also provides extensive on-line help. ProGraph offers an advanced interpreter which allows for 

stepping, tracing, debugging, and modification of the program during execution. Once the 

program has been completed, it can be compiled as a stand-alone Macintosh application, 

increasing execution speed and reducing memory requirements over interpreted programs 

therefore eliminating the need for an interpreter. 

I Figure 36. Levels of the ProGraph Development System VGS 199281. 1 
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A ProGraph program consists of [TGS 1992A: 

classes (with their associated attributes and methods) 

universal methods 

operations (user-defined and system-supplied, with associated controls) 

data objects (instances of classes and primitive data types) 

persistents (container objects) 

Classes and methods will be discussed in greater detail in the Paradigm criterion below. "An 

operation is the basic executable component of a method. It has a name, zero or more inputs, 

zero or more outputs, and a distinctive icon. It can operate on input data and it can produce 

output data; it may also produce side effects (that is, beyond producing output data it may also 

change the state of an object, such as that of a window on the screen)." [TGS 1992Al. 

Operations can either be user defined operations or ProGraph operations. The Operations pop- 

up menu can be found in Figure 37. Since the meaning of Operations is not immediately obvious, 

a few of the operations will be introduced. A Simple operation can call a primitive (a system- 

supplied compiled operation), a Macintosh Toolbox routine, or a class-based or universal method. 

A snapshot of sample available primitives can be found in Figure 38. A Persistent operation 

accesses the value of a persistent (container object) whose name appears within the operation 

icon. A new instance of a class is created by executing the Instance operation with the name of 

the desired class within the icon. The Get and Set operations access and set the value of the 

attribute listed, respectively. A Local operation is an encapsulation of a body of code into a single 

icon. Using a local operation conserves screen space since a group of operations can be made 

into a single icon (that is, a local operation) by selecting the Opers to Localoperation. 



Data objects flow through the program (i.e. dataflow programming). Data objects are not limited 

to simple predefined data types. Data objects can themselves be instances of a class. The 

ability to create such complicated data objects is an impressive strength of ProGraph. 

As was previously mentioned, persistents are container objects. They are named elements that 

can hold any value. This value is retained between executions of a program and is also saved by 

the ProGraph editor along with its program. Figure 39 illustrates the icon associated with a 

Persistent. 
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Figure 37. ProGraph's Operations Menu. 



Figure 38. Sample ProGraph Primitives and Accompanying Descriotion. 

1 

Persistent 

Figure 39. ProGraph Icon Representing a Persistent (container) Object. ] 



6.3.2 Scope 

ProGraph has been designed as a general purpose object-oriented programming language. This 

does not intimate that ProGraph is a simple language. On the contrary, it is a very high level 

language as was depicted on Shu's three dimensional evaluation presented previously. 

Essentially any system which can be designed as an object-oriented design can be implemented 

using ProGraph. Its limitations are inherent with any visual programming language - the ability to 

convey functionality within the available screen space. 

6.3.3 Intended Audience 

ProGraph is intended for the general programming audience familiar with the concepts of object- 

oriented design and dataflow computing. Although programs can be developed which are not 

object-oriented, significant advantages of ProGraph would be lost. ProGraph was intentionally 

designed to minimize the influence of natural language thereby including a broader audience. 

6.3.4 Paradigm 

ProGraph is based upon object-oriented dataflow programming. As with any dataflow language, 

each node begins execution only when data is available at all of its inputs. This paradigm allows 

for creation of diagrams with independent or parallel dataflow paths and simultaneous operation. 

Although ProGraph is a dataflow programming language, instructions can be forced to execute in 

a specific order if so desired. The structure to order execution is referred to as a synchro. 



6.3.4.1 Object-Oriented Programming 

For a language to be considered as an object-oriented language, it must conform to three 

essential principles: classification of objects, encapsulation, and inheritance [Fichman and 

Kemerer 19921. Stroustrup describes the object-oriented paradigm as: "Decide which classes 

you want; provide a full set of operations for each class; make commonality explicit by using 

inheritance." [Stroustrup 19881. Any language which does not possess these qualities is not 

defined as object-oriented but perhaps as an object-based or a data abstraction language. 

6.3.4.2 Classification of Objects and Encapsulation 

An object is a logical collection of data and associated methods. The inclusion of data and 

methods within one entity is known as encapsulation. Encapsulation also implies that objects 

possess a private data store accessible only from within the object itself and a public interface 

accessible by other objects. Objects are then grouped together in classes. A class is an abstract 

description or template of a particular object type that describes data and methods to be 

associated with objects of that class. The description of the data of a class is comprised of the 

name and type of the attributes. 

The ProGraph icons associated with classes, methods, attributes, and inherited attributes are 

presented in Figure 40. (An explanation of inheritance and inherited attributes will follow). As can 

be seen, a class is comprised of attributes (left side of class icon) and methods (right side of class 

icon). Methods are a sequence of operations connected by data links. Inherited attributes 

include an arrow indicating that the attribute was inherited from a parent class. 



Classes Methods Attributes Inherited 

Attributes 

Figure 40. ProGraph icons For Classes, Methods, Attributes, 
and Inherited Attributes. 
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6.3.4.3 Inheritance 

lnheritance is defined as one class obtaining all the attributes and the full library of methods 

specified in another class. Furthermore, inheritance can be divided into single and multiple 

inheritance. Single inheritance specifies that a class inherits from only one class as opposed to 

multiple inheritance, where a class can inherit from more than one parent class. For example, 

Figure 41 illustrates the single inheritance of ProGraphis system classes. The Window Item class 

is a subclass of the System class, therefore, Window ltem inherits all of System's attributes and 

methods. The subclass, Window Item can add its own unique attributes and methods to those 

inherited from its parent class System. Figure 42 displays the attributes of the System and 

Window ltem classes. The attributes inherited by Window Item from System are denoted by an 

arrow in the icon (the attributes named owner, and FALSE). Attributes added within Window Item 

are then inherited by its subclasses. 

Methods are also inherited from a parent class. A subclass can add methods or it can 

overshadow methods already defined in the parent class. Overshadowing or overloading a 

method is defined as polymorphism, where one syntactic object means more than one thing. 

Figures 43 and 44 list the methods of Window ltem and Scroll List. Scroll List adds two new 

methods, namely Key and Tab To Item. The method Mouse Down is overshadowed by the new 



definition in Scroll List. Figure 45 displays the Mouse Down method of class Scroll List. On the 

right side of the figure, there is a simple operation labeled w f l M o u s e . e o v n a .  The arrow 
7 . .  . . . . ~rC.  . . . . 

in the icon is referred to as a Super annotation. The Super annotation tells ProGraph to look for 

the method Mouse Down, not in the Scroll List class but in the Window Item class. If ProGraph 

does not find the method in the parent class of the current class, it continues up the inheritance 

line until it finds a method by the indicated name. In this manner, a class can exhibit the behavior 

of its predecessor and add special functionality. 

@ Classes 

Scroll Text Pop-up Menu Pict Icon 

Figure 41. ProGraphis System Classes With Single Inheritance. 



Figure 42. System Class Attributes and Window Item Attributes (both inherited 
attributes and new attributes) 





-- 

Figure 45. Mouse Down Method of Scroll List Utilizes Mouse 

Down Method of Parent Class. 

6.3.5 Ease of Use 

Object-oriented concepts are presented quite clearly in ProGraph. The inheritance mechanism of 

ProGraph is easily understood with the graphical representation of class hierarchy. A full list of 

attributes can be obtained by double-clicking on the left side of a class icon with inherited 

attributes distinguished from a class' defined attributes. When double-clicking on the right side of 

a class icon, only the methods defined (or re-defined) within that class are displayed. To 

determine the methods inherited, one must double-click on the ancestors' class icons. 

The concept of building methods from operations is self-explanatory, but the functionality of 

operations and primitives are not readily explained by the icons or the names of the icons. 

Without strong guidance from the Reference and Tutorial Manuals, it would be extremely difficult 

to implement a design. 



If a programmer is experienced in writing Macintosh applications, then building an application in 

ProGraph can be considered a fairly simple task. A novice to the world of Macintosh application 

design would initially find the process confusing and tedious. Building an application with even 

the most rudimentary menuing schemes can be a daunting task when first introduced to 

ProGraph. As experience with ProGraph is gained, application implementation does become less 

cumbersome. 

ProGraph does have extensive on-line help capabilities which facilitates the ease of use. 

6.3.6 Visual Representation 

ProGraph is a simple iconic visual language with textual annotation. Most icons are variations of 

a rectangular shape. This simplicity can make it difficult to distinguish between different types of 

icons. The iconic representation for classes and methods are more complex and are more easily 

recognized. 

6.3.7 Compiler 

While developing the system, the program is graphically interpreted (as opposed to compiled) for 

ease of debugging. After final debugging, a program can then be graphically compiled into 

machine code for faster execution. 



6.3.8 Reusability 

Object-oriented designs offer a great range of flexibility through the modification of inherited 

attributes and methods. This flexibility lends itself to reusability. If a class can be added to an 

existing design with only minor modifications to inherited attributes and methods and the addition 

of new attributes and methods, then the case for reusability is strong. Of course, simply because 

a language is object-oriented does not guarantee that code will be developed in a reusable 

manner. 

6.3.9 Data Structures and Types 

ProGraph offers a wide range of system defined types. In addition to these system defined types, 

classes themselves can be considered data structures. An instance of a class can be passed as 

a data object along the data links between operations. With this flexibility, the complexity of data 

structures is essentially unlimited. 

6.3.10 Effective Use of Screen Area 

Within ProGraph, any portion of a method can be reduced to an icon for a local method to 

conserve screen space. This new local method can then be opened separately to determine its 

function. 



6.3.1 1 Hardware 

ProGraph is currently available only for the Macintosh hardware platform. 

6.3.1 2 Operating Systems 

ProGraph is currently available to run only under the Macintosh operating system. 

6.3.13 Animation (runtime visualization) 

ProGraph's interpreter is highly advanced. Execution of an application can be followed by 

tracking the data as it moves from one operation to the next. In addition, the stack can be 

dynamically displayed to determine the state of the system at any time. 

6.3.14 Effective Use of Colors 

ProGraph is limited in its use of color. During execution, data can be tracked by watching the 

changing colors of the operations. Also, when an error is encountered, the screen will take on a 

new color to indicate that an error has occurred. 



6.3.15 Clarity of Graphical Symbols 

Without annotation, most of the graphical symbols would not be easily recognized. After 

experience with ProGraph, the symbols become more familiar. 

6.3.1 6 Interactive Capabilities 

The interactive capabilities of ProGraph are very strong. Since the program is interpreted, parts 

of the application can be developed 'on the fly' as the interpreter realizes that a called method 

does not exist. The program will resume running from the point when the error occurred. This 

interpretive capability greatly speeds development time. 

6.3.1 7 Extensibility 

By virtue of its objected-oriented paradigm, ProGraph applications can be easily extended by 

adding new classes and methods. If an application has been designed in an effective object- 

oriented manner, then adding classes to the hierarchy or independent classes has little effect on 

existing classes. Since ProGraph allows polymorphism, altering inherited methods allows for 

great flexibility and function. 

6.3.18 Interface Capabilities with Other Languages 

Both the ProGraph interpreter and the ProGraph compiler allow C code to be imported. "There 

are two different formats for writing imported C code. One is for writing external primitives, which 



can be included in the ProGraph environment. The other format is used for writing external code 

which is linked by the compiler into the final application." [TGS 199281. 

6.3.1 9 Analysis Capabilities 

ProGraph is very limited in its analysis capabilities. It does provide simple trigonometric functions 

and information on class hierarchy and attributes. It was not designed for data analysis. 



6.4 ProGraph Implementation of an Object-Oriented Gradebook Application 

ProGraph has been designed as an object-oriented, dataflow, visual language. As an object- 

oriented language, class structures, encapsulation, and inheritance are inherent attributes of 

ProGraph. ProGraph is also designed to build Macintosh applications complete with pull-down 

menus, point-and-click features, and pop-up windows. To illustrate the object-oriented paradigm 

and Macintosh application design, the development of a Gradebook Application will be presented. 

The Class Hierarchy of the Gradebook application is displayed in Figure 46. The System Classes 

introduced earlier must be included in the application to develop the Macintosh interface. The two 

classes created for Gradebook are Person and Student. Figure 47 lists the attributes of both 

classes, with the attributes Name and Age containing arrows in the Student Class indicating that 

these attributes were inherited from Person. The Student class adds the attributes Grades, 

Gradel, Grade2. Grade3, Grade4, and Average. Each instance of the class Student will possess 

all of these attributes. The Student class also includes a Class Attribute, NumGrades, denoted by 

the hexagonal shape 0. A Class Attribute is "owned" by the class and is known by and 

accessible by all instances of the class. 

The Gradebook Application contains three Universal Methods (methods not belonging to a class 

but accessible throughout the design). These methods presented in Figure 48 are: Initial, used in 

the creation of windows; Sort Names, which returns a sorted list; and Average, which returns an 

average of a list. The Gradebook application also includes one container object or persistent, 

Gradebook, as shown in Figure 48. This persistent contains a list of Student instances (see 

Figure 49). The attributes of the individual instances can be examined by double-clicking on the 

instance icon. Figure 50 lists the attributes of Student instance 4. By double-clicking on the 

attribute icons of the Student instance, a dialog box is produced allowing the user to modify that 

attribute. 



The methods contained in the class Student are presented in Figure 51. All of these methods are 

accessible from any instance of class Student. The combination of attributes and methods within 

class Student is an illustration of encapsulation. For brevity, only a few of the methods in the 

Student class will be presented in detail. A complete listing of all the Student methods can be 

found in Appendix A. 

The method StudenffAdd first calls a local method which creates an instance of student with the 

Name attribute set (see Figure 52). This new instance is then added to the persistent Gradebook 

by invoking the attach-r primitive. The scroll list located in the User window is then updated w~th 

the new Gradebook persistent. An example of the User window is illustrated in Figure 53. The 

user enters the last and first names of the new student. When the button labeled 'Add Student' is 

clicked, the method StudenffAdd is invoked, causing the student to be added to the Gradebook 

persistent and updating the scroll list of students located in the center of-Figure 53. 

Figure 54 is the diagram of method StudenffClassAverage which is invoked when the 'Class 

Average' button in the User window is clicked. The Gradel, Grade2, Grade3, and Grade4 

attributes of all the instances contained in the Gradebook persistent are accessed (the ellipses 

denotes that a list has been processed). The Universal Method, Average, is then invoked to 

determine the class average. Finally, the show primitive is used to display a dialog box indicating 

the class average (see Figure 55). 

When a new student is added to the Gradebook, the values for the attributes Grade1 through 

Grade4 are NULL. A user enters the student's grades by first highlighting the student's name in 

the User window scroll list and then clicking the button labeled 'Enter Student's Grades.' The 

method StudenffEnterGrade is used to set the Grade1 through Grade4 attributes of the Student 

instance (see Figure 56). The user is forced to enter each grade in order. This forced sequence 

is accomplished through the use of synchros (represented as rows of semicircles in Figure 56). 
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As the diagram shows, Grade1 is entered before Grade2, as with Grade2 before Grade3 and 

Grade3 before Grade4. The grades are entered through a dialog box as is illustrated in Figure 

57. 
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Figure 47. Attributes of Person and Student Classes. 
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Figure 48. Universal Methods and Persistents of ProGraph Gradebook Application. 

Figure 49. Values Contained In the Persistent Gradebook 
(container object). 

The scroll list located in the upper left corner indicates the possible data 
types for the values contained in the Persistent Gradebook. The values 
in Persistent Gradebook are of type list. 
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Figure 50. Values of Student Instance 4 Located in 
Persistent Gradebook 

Ualue o f  List  .I tern 4 pz 

Menu Item - 
macintosh 
none 

Scroll L is t  
Scroll Text 

undefined 

average 
CZj li;ra<rj;atslr ........... ...................... ::::::::::::::: 

if. 
oli;iiiii;iiii-;iiI 1111 [li;i'i'i'ii)il 0 Q 



im - @ student mz 
& 
- - - - 

add addgrade birth Class Average 

listfromclick remlrve Studenthverage 

g~iiii:ii;i~iiiiI~igii~iii;iii~iii~iiiiiiiii~igiiiiii~~iiii~iiiii;i;;iigiig~i;iii~~ii~ig~i~i~;~i~:; -9 01 1111 J l i l i l ~ i l i l i l i l i l i I i I i I i I i I i ~ i I ~ l i I i I I I i ~ ~ i ~ i i i i i i i i i i i i i i i i  ........................................................................................................ 0 p~ 
Figure 51. Methods from Class Student of ' 

ProGraph Gradebook Application. 
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Figure 52. Method Add of Class Student. 
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Figure 53. Sample User Window of ProGraph Gradebook Application. 
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Figure 54. Method ClassAverage of Class Student. 
> 





The User window also includes a button labeled 'List Student's Grades,' located in the upper, right 

corner of Figure 53. This button, when clicked, will list the student's Grade1 through Grade4 

attributes in the scroll block located below the button. The list of grades will also be displayed in 

the scroll box if the user double-clicks on the student's name. The method used to send the list of 

grades to the scroll box is Student/GradesToScrol1 (see Figure 58). In this method, the Grade1 

through Grade4 attributes are converted from numbers into strings and packed into an array. The 

Bakeman Sheila's grade 1 i s  
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Window System Class attribute 'value list' is then set to this array. By setting the 'value list' 

attribute, the scroll list is updated to the list of student's grades. 

. 

Two additional buttons, 'Remove Student' and 'Student Average,' are included in the User window 

as is shown in Figure 53. 'Remove Student,' when clicked, deletes the highlighted student's 

name from the Gradebook persistent. 'Student Average,' when clicked, produces a dialog box 

with the student's name and average of grades. Figure 59 is an example of this dialog box. 

Figure 57. First of Four Pop-up Dialog Boxes Displayed 
When Enter Student's Grades Button Is Clicked. 





Howard  L izz 's  average is :  97.25 

[OK] 
Figure 59. Pop-up Dialoq Box Displayed When Student Average Button Is Clicked. 

As has been illustrated, the development of a ProGraph Macintosh application is an involved 

process. The ProGraph environment does provide access to the necessary attributes to build an 

application, but the development time can still be lengthy. 



7.0 Conclusion 

7.1 Evaluative Criteria 

The introduction of the visual programming paradigm necessitates a method of evaluation in 

order to provide a useful perspective. To provide a perspective, an extensive set of evaluative 

criteria has been developed and presented in Figure 12. As technological advances emerge, 

previously introduced visual languages will require reevaluation. When introduced, assembly 

code languages were heralded as significant advancements in language level when compared to 

machine code. As languages continued to grow in complexity and ability, assembly code 

languages were re-classified as low-level languages. Any method of evaluation of visual 

languages must therefore provide the flexibility to incorporate the inevitable technological leaps. 

The evaluative criteria and their ranges developed in this paper provides that flexibility. 

The developed criteria were utilized to compare two commercially available visual languages. 

The evaluative criteria proved extremely useful when comparing the two languages. Since both 

languages provide many features, comparing them without a defined set of attributes would have 

been essentially impossible. 

7.2 LabVlEW versus ProGraph 

The concepts, capabilities, and example implementations of both LabVlEW and ProGraph have 

been presented. In some areas, such as in visual presentation, ease of use, and analysis 

performance, LabVlEW is clearly the preferred language. However, general applications in 

LabVlEW are very difficult to implement. For instance, a small portion of the Gradebook 



application was developed in LabVIEW. The front panel of the Gradebook Virtual Instrument and 

the corresponding diagram are presented in Figures 60 and 61, respectively. 

The front panel, although functional, makes data entry very difficult. The user is not prompted for 

grades and is not prevented from entering grades in unacceptable positions in the array. All 

arrays used within the VI are visible on the front panel. These arrays could have been placed 

outside the normal viewing area of the screen, but scrolling the screen would have revealed the 

interim arrays. In comparison to the ProGraph version with pull-down menus and dialog boxes, 

the LabVlEW implementation is cumbersome at best. 

The diagram of the Gradebook VI presented in Figure 61 reveals a significant deficiency in 

LabVIEW. The Name array and corresponding Grade array are not linked implicitly. An array 

cannot have elements of mixed type, therefore, separate arrays must be-maintained. The inability 

to define complicated data structures would force the designer to maintain the link between Name 

and Grade explicitly. In this implementation, no link has been established. If the Name array 

were to be sorted into alphabetical order, the Grade array would no longer be valid. A sort VI 

would have to be developed to maintain the link as the arrays are sorted. This would be a difficult 

task, especially for the intended audience (test system design engineers, not computer 

scientists). In short, general applications in LabVlEW are complicated and difficult to implement. 

Conversely, while ProGraph is the preferred language for general applications, there is no 

corresponding ProGraph application which can be practically designed to compare with the 

LabVlEW Spectrum Analyzer Virtual lnstrument. ProGraph has no built-in analysis or data 

presentation features. All of these functions would have to be developed explicitly using 

ProGraph. 
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Figure 60. LabVlEW Front Panel of Gradebook VI. 

The most applicable areas for LabVlEW would include: 

data acquisition 

process control 

* automated test systems 

presentation of visual programming concepts 





The most applicable areas for ProGraph would include: 

general programming applications 

object-oriented design 

editors 

presentation of object-oriented concepts 

Both languages offer strong insight into the visual programming paradigm concepts and 

implementation issues. Useful applications can be developed in both LabVlEW and ProGraph. 

These are not toy languages, but languages which can produce complicated applications. 

7.3 Usefulness of the Visual Programming Paradigm 

In conclusion, a well-designed visual programming language reduces the complexity of the 

programming task and increase programmer productivity [Ames et al 1993; Faconti and Paterno 

1992; Glinert and Tanimoto 1984; Myers 1986; Singh and Chignell 1992; Glinert 1990A; Glinert 

1990Bl. Visual programming enables the programmer to transfer concepts directly from his or 

her mind to the computer since the programming abstractions have been replaced by visual 

images. As Miller [ I  9571 points out, the human mind is able to store 7 +I- 2 blocks of information 

concurrently, therefore, it is easy to conclude that by encapsulating several syntactic and 

semantic textual rules into one image, a programmer will be able to retain more information. This 

is especially true if that information coincides with the programmer's mental image. Furthermore, 

"images are easily learned, retained, and recalled as single units, often serving as the entire 



means of communication." [Glinert and Tanimoto 19841. Therefore, visual programming may 

"provide a high bandwidth for human-machine communication." [Glinert and Tanimoto 19841. 

Traditional textual languages have been based on. heavily on the conventions of Indo-European 

languages, where abstract symbols are combined according to some linear syntax to form linear 

strings [Cox and Pietrzykowski 19881. These abstract symbols are a severe restriction to people 

whose natural language is based upon graphical representations, such as Chinese. Visual 

programming offers an alternative which can span different cultures. 

Additionally, visual programming is also well-suited to the object-oriented paradigm. Although 

visual programming is not inherently object-oriented [Winblad 19901, it is a logical step to provide 

object-oriented functionality to the user, as ProGraph clearly demonstrates. 

The profile of the typical computer user has changed significantly in the last decade. Application 

development is no longer the sole domain of the computer scientist. Novice users are beginning 

to develop their own applications. There is a strong need to ease the process of software design. 

Visual programming may offer a solution to this problem. In addition, as computer graphics 

capabilities continue to improve, it is a logical step to take advantage of this advanced 

technology. Visual programming has the potential to be the partner to the growing hardware 

capabilities. 



8.0 Reflections 

The focus of my thesis evolved during the last two semesters. Initially, my interest in visual 

programming lay with developing instrumentation applications using LabVIEW. Having designed 

numerous automated test and process control systems during my career, I was especially 

intrigued by a software package claiming to make that design process an easier endeavor. I had 

previously evaluated a sample of test system software introduced in the late 1980s and had found 

them lacking in either functionality or ease-of-use. I was pleased to discover that LabVlEW 

offered both strong functionality and was fairly easy to use. 

After evaluating LabVlEW and having read extensively about visual programming, I was anxious 

to determine how a more general programming language might be implemented. This lead me to 

ProGraph, not only because it was a visual language, but also because of the object-oriented 

paradigm. Working with ProGraph was more challenging for me. My understanding of object- 

orientation has increased significantly by evaluating ProGraph. Object-oriented concepts were 

easier to comprehend when presented visually. 

Upon reflection, I discover that I have learned a number of things. Among the most important is 

learning the object-oriented paradigm. Beyond that, I have learned how to systematically 

compare one software package with another. Also, t have learned how to organize my research, 

applications, and results in an understandable (hopefully) manner. Writing the thesis reinforced 

my belief that simply knowing a subject is not sufficient - I must be able to effectively 

communicate that knowledge. And, finally, I have learned that time-management is a crucial part 

of the thesis experience. 
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