
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year 

Visual Programming: Concepts and

Implementations

Elizabeth Howard
Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/33

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1994-000

Visual Programming:
Concepts and Implementations

Elizabeth Vera Howard

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

ABSTRACT

VISUAL PROGRAMMING:
CONCEPTS AND IMPLEMENTATIONS

by Elizabeth Vera Howard

The computing environment has changed dramatically since the advent of the computer.

Enhanced computer graphics and sheer processing power have ushered in a new age of

computing. User interfaces have advanced from simple line entry to powerful graphical

interfaces. With these advances, computer languages are no longer forced to be sequentially

and textually-based. A new programming paradigm has evolved to harness the power of today's

computing environment - visual programming. Visual programming provides the user with visible

models which reflect physical objects. By connecting these visible models to each other, an

executable program is created. By removing the inherent abstractions of textual languages,

visual programming could lead computing into a new era.

This paper will introduce the concepts of visual computing. A set of evaluative criteria for visual

programming languages has been developed and will be used to compare two visual languages:

National Instrument's LabVlEW and The Gunakara Sun Systems' ProGraph.

VISUAL PROGRAMMING:
CONCEPTS AND IMPLEMENTATIONS

A Thesis

Submitted to the

Faculty of Miami University

in partial fulfillment of

the requirements for the degree of

Master of Systems Analysis

Department of Systems Analysis

by

Elizabeth Vera Howard

Miami University

Oxford, Ohio

1994

Reader ;P; $?A

Table of Contents

.................................... 1.0 Introduction : ... 1
2.0 Visual Computing .. 2

... 2.1 Interfacing With Computers 3
2.2 Scientific Visualization ... 4

... 3.0 Visual Aids for Programming 6
3.1 Visualization ... 7

4.0 Visual Programming .. 9
... 5.0 Visual Language Evaluation 16

............................... 6.0 Comparison of Two Visual Languages: LabVlEW and ProGraph 22
6.1 LabVIEW .. 26

.. 6.1.1 Overview 26
6.1.2 Scope .. 35

.. 6.1.3 Intended Audience 36
... 6.1.4 Paradigm 36

.. 6.1.4.1 Dataflow Programming 37
6.1.5 Ease of Use ... 39

.. 6.1.6 Visual Representation 40
.. 6.1.7 Compiler 40

... 6.1.8 Reusability 40
6.1.9 Data Structures and Types .. 41

... 6.1 -10 Effective Use of Screen Area 41
... 6.1.1 1 Hardware 42

.. 6.1.1 2 Operating Systems 42
.. 6.1.1 3 Animation (runtime visualization) 42

... 6.1.14 Effective Use of Colors 42
6.1.1 5 Clarity of Graphical Symbols ... 43
6.1.1 6 Interactive Capabilities ... 43

.. 6.1.1 7 Extensibility 43
................................. 6.1.1 8 Interface Capabilities With Other Languages 44

.. 6.1.1 9 Analysis Capabilities 44
.............. 6.2 LabVlEW Implementation of a Spectrum Analyzer Virtual Instrument 45

6.3 ProGraph .. 56
6.3.1 Overview .. 56
6.3.2 Scope .. 60

.. 6.3.3 Intended Audience 60
6.3.4 Paradigm ... 60

... 6.3.4.1 Object-Oriented Programming 61
...................... 6.3.4.2 Classification of Objects and Encapsulation 61

... 6.3.4.3 Inheritance 62
6.3.5 Ease of Use ... 66
6.3.6 Visual Representation .. 67
6.3.7 Compiler .. 67

... 6.3.8 Reusability 68
.. 6.3.9 Data Structures and Types 68

... 6.3.10 Effective Use of Screen Area 68
... 6.3.11 Hardware 69

.. 6.3.1 2 Operating Systems 69
.. 6.3.1 3 Animation (runtime visualization) 69

6.3.1 4 Effective Use of Colors ... 69
6.3.1 5 Clarity of Graphical Symbols ... 70
6.3.1 6 Interactive Capabilities ... 70

.. 6.3.1 7 Extensibility 70
6.3.18 Interface Capabilities with Other Languages 70

.. 6.3.1 9 Analysis Capabilities 71
........ 6.4 ProGraph Implementation of an Object-Oriented Gradebook Application 72

7.0 Conclusion .. 85
7.1 Evaluative Criteria ... 85
7.2 LabVlEW versus ProGraph ... 85
7.3 Usefulness of the Visual Programming Paradigm .. 89

8.0 Reflections .. 91
Appendix A . Student Class Method Diagrams of ProGraph Gradebook Application 92
Bibliography ... 102

iii

1.0 Introduction

Early programming languages mimicked the needs of von Neumann computer architecture

hardware and necessarily used sequential, simple, character-based input and output

statements. Programming languages progressed from machine and assembly code to

natural language-based textual approaches in an effort to make algorithms more readable.

Textual languages are inherently one-dimensional and focus on sequential execution of

algorithms. This forced programmers essentially to restrict their designs to a linear

organization. The facilities that textual programming languages "provide for describing

algorithms correspond more closely to how computers operate than to the cognitive or

perceptual processes of the programmer." [Cox et a/ 19891.

Computer hardware technology, however, has improved at an impressively high rate since the

advent of the computer. With the introduction of new processor chips, such as DEC's Alpha,

Motorola's PowerPC, and Intel's Pentium, the race is afoot to offer even greater capabilities

and sheer processing power. Computer graphics capabilities and user interface design have

also kept pace with ever improving processor hardware. At the same time, hardware has also

become more affordable. The combination of these events has provided the opportunity to

exploit some of the graphics capabilities and processing power and promote the evolution of

the new paradigm of visual computing, where concepts can be represented more naturally in

a pictorial manner. Visual computing has introduced the concept that the "user interface is

becoming a visual representation of the abstract world of the computer." [Singh and Chignell

19921. Visual computing provides the user with visible models which can be manipulated,

thereby reducing the number of unfamiliar abstractions that a user must learn .

2.0 Visual Computing

Visual computing encompasses a wide array of approaches and tools. One useful taxonomy

divides visual computing into three main areas: programming computers, end-user interaction

with computers, and visualization [Singh and Chignell 19921 (see Figure 1). This taxonomy is

based upon the viewpoint of the user. The area of programming computers (visual

programming and program visualization), the first branch of the taxonomy, is the main

concern of a program designer. The general end user is most concerned with the user

interface, the second branch of the taxonomy. Users who must interpret and process large

amounts of data, especially scientists and data analysts, are most interested in the last

branch of the taxonomy, namely scientific visualization. The main focus of this paper lies

within the first branch of the taxonomy, specifically visual programming which will be discussed

at length. The remaining two branches of the taxonomy are both important facets of visual

computing both in their present use and future research applications. Their importance

warrants a brief introduction of both topics.

Visual Computing

/ \
Visual Aids for Programming End User Interaction Scientific Visualization

/ \ I \ / \
Visual Visualization WIMP Virtual Natural Surface-based Volume-based

Programming Reality Artifacts Visualization Visualization

Figure 1. Singh and Chignell's [I9921 Classification of visual computing

2.1 Interfacing .With Computers

User interfaces have changed dramatically over the last decade. Interfaces have advanced

from a string of characters input by the user and output back to the screen by the computer

to an interactive manipulation of graphical symbols and the use of new technologies such as

head-mounted displays and data gloves. Figure 2 illustrates the taxonomy of end user

interaction. [Singh and Chignell 19921. The first level is based on the technology, both

hardware and software, used to implement the interface.

End User Interaction

Virtual Reality Natural Artifacts

I Desktop spatial Physical Abstract I
Figure 2. Singh and Chignell's [I9921 Taxonomy

of end user interaction with computers

The most common technology, by far, is the WlMP (Windows, Icons, Menus, and Pointing)

interfaces. The taxonomy suggests that WlMP interfaces can be further subdivided into two

types of information organization: desktop and spatial. In the desktop organization, common

office objects and operations are recreated on the computer screen, such as filing cabinets,

drawers, folders, printers, trash, etc. In the spatial organization, interactions involve moving

and manipulating objects within the physical model, such as in Hypertext.

In virtual reality, the user is placed within the computer generated environment interfacing

with input devices such as data gloves and head-mounted displays to enhance the concept

of being inside the environment. Virtual reality has been subdivided into physical reality,

where objects are built to behave as their real-world counterparts, and abstract reality, where

less tangible information such as energy fields, temperature, and seismic data can be

visualized and manipulated.

The final category of end user interaction is natural artifacts. This category encompasses

communication techniques used in real life such as gestures, handwritten text, and spoken

commands.

2.2 Scientific Visualization

The third branch of the taxonomy of visual computing is scientific visualization, which enables

scientists to map high-volume data into meaningful graphics. "It empowers scientists to

investigate the global properties of numerical solutions, examine the dynamics of their data

changing over time, interact with the displays to gain further understanding of the data, spot

anomalies, or uncover computation errors." [Singh and Chignell 19921. Scientific visualization

can be further subdivided into two main approaches: surface visualization and volume

visualization. Figures 3 and 4 illustrate the use of volume visualization in disease diagnosis

[Watson and Watson 19911. In these examples a multivariate analysis of variance statistical

model is used to compare a set of populations on the basis of multiple response variables.

Figure 3 shows four population distributions and Figure 4 superimposes the four distributions

into one distribution.

Figure 3. Population Distributions Employed In
Computer-Aided Medical Diagnosis [Watson and Watson 19911.

Figure 4. Multiple Population Distributions (of Figure 3)
Superimposed Into One Distribution [Watson and Watson 19911.

3.0 Visual Aids for Programming

Returning to Singh and Chignell's [I9921 classification of visual computing, let us concentrate

on the first branch, programming computers. The authors have divided this branch into two

key areas: visual programming and visualization (see Figure 5). The generally accepted

definition of visualization is the use of various techniques to aid in the understanding and

debugging of computer programs [Baecker and Marcus 1990; Myers 1986; Price et a1 1 993;

Singh and Chignell 19921. Visual programming, on the other hand, "refers to any system that

allows the user to specify a program in a two (or more) dimensional fashion. Conventional

textual languages are not considered two dimensional since the compiler or interpreter

processes it as a long, one-dimensional stream." [Myers 19861. Baecker and Marcus [I9901

offer an especially insightful description of visualization versus visual programming based

upon the user's viewpoint.

"Program visualization focuses on output, on communicating programs, their

code, their documentation, their structure, and their behavior to a 'reader' or

'viewer.' Visual programming, on the other hand, focuses on input, on the

'writer' or 'composer' of programs, but usually provides 'feedback' output in the

same form as input. Visual programming may appear to subsume program

visualization; this is not the case, however, since communicating the structure

and process of a program to the reader may need to take advantage of

techniques that are not necessarily effective or compatible with those of the

writer." [Baecker and Marcus 19901.

-

Visual Aids for Programming

/
Visual Programming Visualization

/ \
Graphical Visual Language Program ' Algorithm ' 'Data

Interaction Visualization Visualization Visualization
systems /TteyL / \

Flow Diagrams Icons Tables/ Others Static Dynamic

/ \
Static Dynamic

/ \ Forms
Control Data
Flow Flow

Figure 5. Singh and Chignell's [I9921 Taxonomy of
visual programming systems

3.1 Visualization

In order to more clearly understand what capabilities a system must process to be classified

as a visual programming language, a more detailed discussion of visualization will ensue. As

was stated previously, visualization is used to enhance the understanding of computer

programs. Singh and Chigneil [I9921 have further divided visualization into three main

branches: program visualization, algorithm visualization, and data visualization.

In program visualization, graphics are used to illustrate some aspect of the program after it is

written and can be either static or dynamic program visualization. Static program visualization

techniques include flow charting and pretty-printing (insertion of blanks and blank lines,

indentation, and comments to enhance the readability of a program). Execution of the

program is illustrated either by animation or by highlighting the program code when dynamic

program visualization is implemented.

7

4.0 Visual Programming

In essence, visualization provides a means to better understand how a program works after it

has been coded. This is in direct contrast with visual programming, where a program is

actually designed by manipulating graphical representations (icons) or by a combination of

icons and textual information.

Singh and Chignell [I9921 divide visual programming into two key branches: graphical

interaction systems and visual language systems (see Figure 5). This division is based upon

how the graphics are used to build the program. Systems where the user guides or instructs

the system in order to create the program are classified as graphical interaction systems.

Visual language systems consist of systems in which icons, symbols, charts, or forms are

used to specify the program.

4 . 1 Graphical Interaction Systems

In graphical interaction systems, the sequence of user actions is of vital importance since the

system "learns" from the user input. This category is more commonly, and perhaps, more

aptly coined programming by example.

In the majority of systems, a user is required to specify everything about the program and the

system is able to remember the examples for later use. This type of system could be

described as "Do What I Did" [Myers 19861. Conversely, some systems attempt to infer the

general program structure after the user has provided a number of examples which work

through the algorithm. These systems could be characterized by "Do What 1 Mean" [Myers

19861 and are often referred to as automatic programming, which has generally been an area

of Artificial Intelligence research.

4 . 2 Visual Language Systems

The second branch of visual programming is termed visual language systems. Within this

classification are systems using icons, symbols, charts, and forms to specify the program.

The spatial arrangement of the symbols specifies the program. This differentiates visual

languages from graphical interaction systems (programming by example), since, in graphical

interaction systems, the user interaction with the system is important, and in visual languages,

the arrangement of symbols on the screen is important.

Visual languages are composed of a set of graphical symbols which are constructed into

"visual sentences with a given syntax and semantics." [Chang 19871. Visual sentences must

then be spatially parsed to determine the underlying syntactic structure. A semantic analysis

must then be performed to determine the meaning of the visual sentences (spatial

interpretation). The syntactic and semantic analyses of a visual language differs little from a

traditional language approach. Both types of languages must be analyzed to determine

syntax and meaning, the significant difference being that visual languages employ graphical

symbols rather than textual expressions of traditional languages. In Figure 5, Singh and

Chignell [I9921 suggest a division of visual languages into three main categories based upon

the graphical abstraction used for creating the program: flow diagrams, icons, and

forms/tables.

The category, flow diagrams, includes visual languages which provide various types charts,

graphs, and diagrams to construct programs. Flow diagrams are primarily composed of

control flow or data flow diagrams.

The most common example of control flow diagrams (and probably the earliest visual

representation for a program) is the flow chart. Typically, the flow chart was used for

documentation purposes, but visual languages employing flow charts create programs

automatically. Another type of control flow diagrams used in some visual languages are

Nassi-Shneiderman diagrams. Data flow diagrams depict the flow of data from one operation

or object to another and the visual language constructs the program from the flow of data.

The second category of visual programming languages, icons, consists of visual languages

using graphical symbols or icons and their interconnections to form iisual sentences. As was

noted earlier, spatial parsing and interpretation is used to provide syntactic and semantic

analyses, respectively. There is no accepted standard for the definition of an icon. The main

criterion for designing an icon is that it clearly represents the abstraction. For example, in

LabVIEW, the traditional symbol for an operational amplifier is used to represent the functions

add and subtract (see Figure 6). Another use of icons is in the language Proc-BLOX [Chang

19901. Figure 7 illustrates a Proc-BLOX implementation of a traditional Pascal program,

where the Proc-BLOX symbols resemble a three dimensional jigsaw puzzle.

The final category of visual languages are those languages which employ tables and forms.

The user constructs the program by using tables or filling in forms. Common uses of this

category include developing queries on relational databases through the use of tables and

the development of office-information systems using forms.

While the taxonomy designed by Singh and Chignell [A9921 offers a strong basis for

distinguishing aspects of visual computing, it could be enhanced by incorporating Chang's

[I 9871 more rigorous approach.

Chang [I9871 classifies four types of visual languages: languages supporting visual

interaction, visual programming languages, visual information processing languages, and

iconic visual information processing languages. This classification is based upon the objects

which the language processes, the transformation of the object, and how the language

constructs are represented. In Figure 8, an object icon is represented as a two-part entity,

written as (Xm, Xi), where Xm represents the meaning or logical part and Xi represents the

visual image. Languages supporting visual interaction and visual programming languages

deal with objects that have logical meaning but no visible image: (Xm, e), where e denotes a

null object. In order for the object to be visualized, we must transform (Xm, e) into (Xm, X'i).

Similarly, languages dealing with inherently visual objects with no logical meaning must

transform (e, Xi) into (X'm, Xi). Further classification is based upon whether the language

constructs are visual or linear.

Languages which support visual interaction process objects that do not have an inherent

visual representation, such as data types (arrays, stacks, queues, etc.) and application data

types (forms, documents, databases, etc.). These languages use iconic representations

such as entity-relationship diagrams, action diagrams, and Nassi-Shneiderman diagrams, but

the program statements are still written in a conventional programming language.

12

BEGIN

U S

BEGIN
S1;
IF NOT I1 THEN

BEGIN
S2;
S 3 ;

END
ELSE

WHILE L1 DO
BEGIN

IF I2 THEN S4 ELSE S5; S6;
END;

WHILE L2 DO S7;
S8;

END;

Figure 7. Proc-BLOX Representation
and Pascal Program Equivalent [Chang 19901

Figure 8. Chang's [I9871 Four Types of Visual Languages

As with languages supporting visual interaction, visual programming languages also process

Type of visual

language

Languages that

support visual

interaction

Visual programming

languages

Visual information

processing languages

Iconic visual

information processing

languages

objects which do not have an inherent visual representation but are transformed from (Xm, e)

Transformation

of objects

(Xm, e) --> (Xm, X'i)

(Xm, e) --> (Xm, X'i)

(e, Xi) --> (X'm, Xi)

(e, Xi) --> (X'm, Xi)

Objects to be dealt

with

logical objects with

visual representation

logical objects with

visual representation

visual objects with

imposed logical

representation

visual objects with

imposed logical

representation

into (Xm, X'i) to be represented visually. Not only are the objects represented visually, but

Languages'

visibility

linearly represented

constructs

visually represented

constructs

linearly represented

constructs

visually represented

constructs

the rules for combining these objects are also represented visually. Some applications of

visual programming languages include computer graphics, user interface design, database

interface design, form management, and computer-aided design.

A visual information processing language pFocesses objects with an inherent visual

representation and are transformed from (e, Xi) into (X'm, Xi) to impose a logical

interpretation. Typically, these languages are implemented in a linear language with an

enhanced user interface to accommodate the graphical images. Applications of visual

information processing languages include image processing, computer vision, robotics, image

database management, office automation, and image communications.

Iconic visual information processing languages are differentiated from visual information

processing languages by the fact that iconic languages also represent language constructs

visually and not linearly.

5.0 Visual Language Evaluation

A thorough evaluation of a visual language is a daunting task. Since the paradigm has just

been recently introduced, or more aptly, recently discovered by the general populace, scant

research has been published on the subject of visual language evaluation. One exception is

Shu's three-dimensional framework to characterize and compare visual languages as

illustrated in Figure 9 [Shu 19883. Shu's three criteria for comparison are Visual Extent,

Scope, and Language Level. Visual Extent is a measure of the language's use of graphical

objects for programming constructs. Scope is an indicator of whether a visual language is

applicable only in a very limited area or useful in a variety of applications. Finally, Language

Level displays whether the visual language qualifies as a high or low level language.

Presently, there is no standard classification scheme for classifying visual programming

language research papers, however, Burnett and Baker [Burnett and Baker 19931 have

recommended such a classification (see Figure 10). Although Burnett and Baker 's proposed

classification of visual programming languages is intended for research paper classification,

it presents several pertinent attributes of a visual programming language. A programming

language can be determined as visual based upon the possession of these attributes.

Furthermore, these attributes can then be extended and used as a basis for comparison of

visual programming languages. Within the same proposal, Burnett and Baker present an

overall Visual Computing hierarchy (see Figure 1 A), where their paper classification proposal

focuses on the branch labeled Visual Programming Languages.

Visual Extent

High

Low
Scope

General

Language Level

Figure 9. A three-dimensional framework to characterize
and compare visual languages [Shu 19881

A critical set of visual programming language evaluation criteria has been developed based

upon concepts from Shu's characterization, Burnett and Baker's proposed visual language

research paper classification, and extensive evaluation of programming languages. This set

of criteria and accompanying explanation can be found in Figure 12. The criteria were

developed specifically for visual programming languages with the intent that visual languages

can be evaluated and reevaluated with the evolution of the paradigm. In general, the

evaluation criteria range of measures will include:

none - attribute not implemented

weak- language provides functionality to accomplish attribute but is poorly

implemented either because the language imposes strict adherence to detailed

requirements or the task cannot be accomplished directly.

fair - attribute is implemented but limited in its ability

strong - attribute fully implemented

Other attributes are more easily characterized by the terms specific and general, both of

which are self-expi-anatory. A list of possible values are provided in the accompanying

definition for attributes which can be assigned certain values.

Many languages touted as 'visual programming' languages, however, do not possess the

attributes to be classified as a visual programming language. For example, Visual Basic and

Visual C++ would be placed within the End User Interaction branch of Singh and Chignell's

classification of Visual Computing. These languages do not'fall within Burnett and Baker's

Classification of Visual Programming Language Research, rather these languages would be

placed within the Visual Environments for Textual Languages in their overall view of Visual

Computing. Although these languages are often termed as 'visual programming' languages,

they are more aptly classified as textual languages with strong graphical user interface

capabilities. In these Windows applications, interactive screens can be easily generated.

This is accomplished through choosing an icon (either a standard icon or a user-generated

icon), placing it in the desired screen position, setting the parameters, then programming

textually what events will occur when that icon is chosen during execution. A limited

amount of graphical animation can also be implemented within these systems, such as the

sequencing of a set of graphical images. These languages do not provide a facility for

algorithm animation. Although these languages greatly simplify the task of building a

Windows application, they are not considered to be visual languages since coding is

accomplished textually.

VPL: Visual Programming Language

VPL - I. Environments and Tools for
VPLs

VPL- II. Language Classifications
A. Paradigms

1. Concurrent
Languages
Constraint-based
languages
Data-flow languages
Form-based and
spreadsheet-based
languages
Functional languages
Imperative languages
Logic languages

8. ~dti-paradigm
languages

9. Object oriented
languages

10. Programming-by-
demonstration
languages
. . .

B. Visual representations
1. Diagrammatic languages
2. Form-based and

spreadsheet-based
languages

3. Iconic languages
4. Languages based on

static pictorial

VPL-IV. Language Implementation Issues
A. Computational models
B. ~fficiency
C. Parsing
D. Translators (interpreters and

compilers)

Special-Purpose Languages
A. Database languages
B. User-interface generation

languages
C. Image-processing

languages
D. VPLs for scientific

visualization

VPL-VI. Theory of VPLs
A. Formal definition of VPLs
8. Icon theory
C. Language design issues

1. Cognitive and
user-interface design
issues
Liveness
Scope
Effective used of screen
real estate
Type checking and type
theory
Visual representation
issues

sequences ...

VPL- Ill. Language Features
A. Abstraction

1. Data Abstraction
2. Procedural abstraction

B. Control flow
C. Data Types and structures
D. Documentation
E. Event handling
F. Exception handling

...
Fiaure 10. Burnett and Baker's [I9931 Proposed Visual "

Programming Research paper crassiffcation.

Visual Computing

Databases for Image Environments Program 8

for Textual Visualization

I Figure 11. Burnett and Baker's El9931 Visual Computing Hierarchy

There are a limited number of commercially available visual programming languages. Two

visual languages which are available commercially are National Instrument's LabVlEW and

The Gunakara Sun Systems' ProGraph. The features, strengths, and weaknesses of these

two application software packages will be explored.

Figure 12. Visual Language Evaluation Criteria and Definitions.

21

Visual Language Attribute

Scope

Intended Audience

Paradigm

Ease of Use

Visual Representation

Compiler

Reusability

Data Types and Structures

Effective Use of Screen Area

Hardware

Operating System

Animation (runtime visualization)

Effective Use of Colors

Clarity of graphical symbols

Interactive Capabilities

Extensibility

Interface Capabilities with Other Languages

Definition

The applicability of the software package to various
applications, ranging from specific to general.

What group of users would most benefit from the incorporation of
the visual language, ranging from specific to general.

What programming paradigm is implemented. Possible values
include: dataflow, object-oriented, object-oriented dataflow,
structured.

How quickly the software package can be adopted to develop
an application, ranging from weak to strong.

How the graphical Ian uage is visually presented. Possible
values include: compyex iconic structure, simple iconic
structure, tables, forms, flow diagrams.

What type of compiler is implemented, ranging from graphical
(direct compilation) to interpreted (compiled to intermediate
code).

How easily can code be reused, ranging from weak to strong.

How extensive are the system defined and user-defined types,
ranging from weak to strong.

How well can screen space be Conserved, ranging from weak to
strong.

For what hardware platform(s) is the software available.
Possible values include: Macintosh, IBM, Sun.

Under what operating systems does the software run. Possible
values include: Macintosh OS, Windows, Sun 0s.

How extensive is the runtime visualization of algorithm
execution, ranging from none to strong.

How well are colors used to depict different graphical
components, ranging from none to strong.

How easily recognizable graphical symbols are, ranging from
weak to strong.

Measure of ability to modify program settings during execution.
ranging from none to strong.

How easily the program can be extended to include upgrades or
modifications, ranging from weak to strong.

How extensive are the facilities provided to link with other
languages or packages, ranging from none to strong.

How extensive are data analysis capabilities are included in the

6.0 Comparison of Two Visual Languages: LabVlEW and

ProGraph

National Instrument's LabVlEW and The Gunakara Sun Systems' ProGraph are both iconic

visual programming languages. Their position in Singh and Chignell's taxonomy for Visual

Languages would be in the Icons category as demonstrated in Figure 13. LabVlEW and

ProGraph have been classified as iconic languages employing the dataflow paradigm rather

than as merely dataflow diagram systems. This distinction is made since both languages

provide an extensive library of icons. These systems were compared using Macintosh II

hardware and the Macintosh operating system.

Visual Aids for Programming

Visual Programming Visualization

Graphical Visual Language Program
' ' 'Data Algorithm

Interaction Visualization Visualization Visualization

/ \
Static Dynamic

/ \
Static Dynamic

Control Data
Flow Flow

LabVlEW and ProGraph

Figure 13. LabVlEW and ProGraph Position
in Singh and Chignell's [I9921 Taxonomy.

LabVlEW and ProGraph are compared using Shu's three-dimensional characterization

scheme as shown in Figures 14 and 15.' LabVlEW ranks extremely high in the area of Visual

Content and fairly high in the Language Level. LabVlEW is software package for

instrumentation, thereby ranking specific in the Scope area. In contrast, ProGraph's Visual

Content is not nearly as extensive and ranked low in that area. ProGraph's strengths are

that it is a high-level object-oriented language useful in general applications and ranks

extremely high in Language Level and general in Scope.

In Figure 16, LabVlEW and ProGraph are compared using the previously defined evaluation

criteria. Following this table of comparisons, each language will be more thoroughly

introduced. First, a general overview will be presented for LabVIEW, followed by a more

detailed description of each evaluation criterion. An example LabVlEW application will then

be described. This same format will be maintained for ProGraph.

Visual Extent

High

Scope

Language Level

Figure 15. ProGraph Three-Dimensional Evaluation.

Figure 16. Comparison of Visual Language Attributes for
LabVlEW and ProGraph.

b

Attribute

Scope

Intended Audience

Paradigm

EaaeofUse

Visual Representation

Complier

Reusability

Data Types and Structures

Effective Use of Screen hrea

Hsnkvae

Operating System

Animation (runtime visuaiiration)

Effective Urn of Colors

Clarity of graphical symbols

Interactive Capabilities

Extensibility

lnterfsce Capabilities with Other
Languages

I

Analysis CapaMlitiea

_I

LabVlEW

specific -
instrumentation applications

specific -
engitWmpeMnnel

dataflow

strong -
inhial use very intuaive - more involved
implementations not very intuitive

complex iconic structure

graphical

strong -
developed Virtual Instruments can be r e d u d to an
icon to be used in other applratms

weak-
no capabilii for user defined classes or structures

fair -
any portion of a Vi can be iconized to conserve
screen space but m e standard i m s cannot be
resized

Macintosh, IBM, Sun

Macintosh OS, Windows, Sun OS

strong -
data can be tracked as it flows through diagram

strong -
data types are color-coded as in a physical electrical
schematic

strong -
most of the simple icons are highly intuitive, but
more mmpiiited iwns require extensive probing

fair -
front panel controls can be modlfwd during execution
but dia~ram cannot be rewired during e x e a l t i

fair -
can require extensive rewiring of b M s

weak-
data can be saved in standard format for use in
other software and compiled C code can be
imported, with great diffiiutty

strong -
digital signal processing, numeriil, and statistical
anabsii cmms

ProGraph

general -
general objed-ofknted programming applications

general -
generaJ programming audjence

object-oriented dataflow

fair -
basks obpcl-oriented ooncepts presented well -
building applbcatis not as intui t i

Simple iconic structures- with textual annotations

graphical

% ? A i r e is inheritance, meVlods and attributes
from ancestors can be easily reused an modified

strong
extensive ability to define structures with user
detined dasses and hheritance

strong -
any portion of a method can be reduced to a local
method to conserve screen space

Macintosh

Macintosh OS

strong -
data can be tracked as it flows though methods as
well as the system stack can be monitored

none

fair -
most of the symbols are not intuitive but are
textually annotated

strong -
if an error is encountered during execution, a
correction can be made and execution will resume
from the stop point

strong -
objed-wiented parad i i enables new classes and
methods to be added easily

strong -
mp i l ed C code can be incorporated into the
appiiifim

weak-
software not designed for anaivsis ca~abiiiiies

6.1 LabVlEW

6.1 .I Overview

LabVlEW provides an extensive choice of iconic programming structures, from simple

mathematical functions to complicated Digital Signal Processing. All icons are chosen

through a typical point and click Macintosh menuing system The iconic functions are

classified logically, therefore determining in which menu an iconic function is located is a trivial

task. However, not all iconic representations are easily interpreted. Figures 17, 18 and 19

display the menu choices of arithmetic, trigonometric and logarithmic, and comparison icons,

with most of the icons in each menu being easily recognizable. If an icon in these categories

is not immediately apparent, the accompanying short description displayed when an icon is

highlighted is typically sufficient to determine its functionality.

String b
Array 8 Graph

b 110 @ Dialog
u I ...
Analysis b
Getting Started b
GPlB 8 Serial b
instuments b

Dp$+ j , p i ! l EXP

D D B D B B

In Rl

LabDriuer b b

my ui b
Utilities b
ui's b

Figure 17. LabVlEW 2 Arithmetic function icons.

Not all icons' functions, however, are immediately recognizable. For example, Figure 20 is a

snapshot of the structures and constants menu. Many of the constants are self-explanatory,

but the programming structures themselves are not readily apparent. A brief description of

the function of the programming structures is presented in Figure 21. Once the icon is

defined, the general shape of the icon does then seem to accurately reflect the function. As

the function of the icon becomes more complex, the meaning of the icon becomes more

obscure, especially in the Analysis menu selection.

Array @ Graph b

GettingStarted b
GPlE @ Serial

Structs O Cnsts b
Arithmetic b

String
Array G' Graph
l / O O Dialog ?
U I ... b p p
Analysis b
Getting Started
GPlO B Serial
instuments
LabDriuer
my ui b
Utilities b

-

? ui's

Figure 19. LabVlEW 2 Comparison function icons.

mmQ
::.:.:.:.:.:;:

Comparison b
Conuersion b
String
Array O Graph b
1,'O 8 Dialog
UI...
Analysis
Getting Started
GPlB 8 Serial b
instuments b

mlm~((abcdl

m m I 1 / . I m
m m
l o n o o o m m

.-
LabDriuer b
my ui ?
Utilities ?
ui's ?

Figure 20. LabVlEW 2 Structures and Constants Icons.

The sequence structure (see Figure 21), forces the execution of diagrams in a specific order.

Since LabVlEW is a dataflow language, a block will execute as soon as all of its inputs are

available. The sequence structure provides the method to override this feature. The for

loop, while loop, and case structures function the same as in a traditional language. In the

while loop icon, the structure wired to the circular arrow located within the while loop icon is

the condition statement. The element wired to the question mark in the case structure will

determine which case diagram to execute.

n/ rJ
::: ::. .. .

ISequence Structure1 I ~ o r Loop Structure]

Figure 21. LabVlEW Sample Structures.

LabVlEW has extensive data analysis capabilities. To demonstrate LabVIEW's power, the

Digital Signal Processing (DSP), Numerical, and Statistical menu choices are presented in

Figures 22 through 25. These analysis capabilities cover essentially all test system design

requirements. They can be incorporated into a Virtual lnstrument as real-time analysis

without necessitating porting data to another data analysis application. A Virtual lnstrument

designed to highlight LabVIEW's analysis functions will be presented in detail in a later

section.

The Digital Signal Processing (DSP) selection of the Analysis menu offers a wide variety of

digital signal processing options (see Figure 22). Waveforms, such as impulse, pulse, ramp,

triangle, sine, and square waves, can be generated and placed into an array or displayed on

a graph. Noise signals can be generated and added to another signal. The Fast Fourier

Transform, Hartley Transform, and Hilbert Transform can be used to convert a time domain

waveform into its corresponding frequency domain representation. Other DSP functions

include determining the power spectrum of a waveform, integrating a waveform, and

determining the first derivative of a waveform at a specific point.

Structs 8 Cnsts).
Rrithrnetic b
Trig 6 Log b
Comparison b
Conuersion b
String b
Rrray Gt Graph b

Numerical b
Statistical b

*&

.. -. .-
0; W ; ... W M

Figure 22. LabVlEW 2 Digital Signal Processing Icons.

LabVlEW provides many common signal filtering functions. These filters include removing of

spikes from waveforms, removing high frequencies from a waveform (low pass filters),

removing low frequencies from a waveform (high pass filters), and removing both high and low

frequencies (band pass filters). Figure 23 lists the icons of all available filters.

Array 6 Graph b

Figure 24 lists the numerical functions from the analysis menu selection. The numerical

functions include returning the x- and'y-components of a vector, separating the real and

imaginary components of an array, determining the base-10 log and natural log of each

element in an array, as well as taking the base-10 log of each array element and multiplying

=

Structs @ Cnsts b
flrithmetic b
Trig @ Log b
Comparison b
Conuersian b
String b
flrray @ Graph b
I,'@ Gr Dialog b
u I ...

Figure 24. LabVlEW 2 Numerical Analysis Icons.

The statistical functions of the analysis menu selection (see Figure 25) offers many typical

capabilities. Icons can provide such functions as determining array mean, standard

deviation, RMS (root mean square) of values, fitting waveforms both linearly and polynomial,

dot and cross products of matrices, and solving linear 'equations.

flrithmetic b
Trig Gc Log b
Comparison b
Conuersian b
String b
flrray 8 Graph b
I / O 8 Dialog b
U I ...

6.1.2 Scope

LabVlEW has been designed as a graphical programming system for data acquisition and

control, data analysis, and data presentation. Its scope is specifically designed for

instrumentation of test and measurement applications. Software modules are assembled

graphically and are termed Virtual Instruments (Vls). The Virtual Instrument is built to acquire

data from plug-in data acquisition boards, IEEE-488 and RS-232 programmable instruments,

perform (potentially extensive) data analysis, and present the results through graphical user

interfaces.

Certainly, some general purpose programs can be constructed using LabVIEW. The

available data structures are fairly simple, therefore limiting its scope. It is an especially useful

tool for the introduction of the visual programming paradigm. These uses, however, obscure

its true strength - instrumentation design. After mastering the meaning of the graphical

symbols, the difficulty of interfacing instruments to produce an automated system is

significantly reduced. An engineer no longer needs to remember cryptic IEEE-488 (GPIB)

codes to control an instrument. The library of available Vls for commercial instruments is quite

extensive and includes many of the most common instruments.

A VI is composed of a front panel, a block diagram, and an icon/connector. The front panel

is the user interface, the block diagram is the VI source code, and the iconlconnector is the

calling interface. A block diagram contains inputloutput, computational, and subVI

components, which are represented by icons and interconnected by lines directing the flow of

data. Inputloutput components communicate directly with external physical instruments.

Computational components perform arithmetic and other operations. SubVl components call

other Vls, passing data through their iconlconnectors.

6.1.3 Intended Audience

LabVlEW was designed with instrumentation engineers and technicians as the intended

audience. The terminology and graphical representations used are consistent with the

engineer's vocabulary. Many of the functions, such as adding, subtracting, multiplying,

dividing, and comparison operators, are drawn as an operational amplifier - a symbol familiar

to the engineer. Logic functions are represented by the traditional symbols of logic circuit

design. Program construction is accomplished by connecting icons using a wiring tool, so

programs are designed by wiring elements in a very similar manner to a circuit schematic

diagram.

The front panel icons are reproductions of physical components engineers would employ in

the construction of an automated testing or process control systems. A variety of control

icons and indicator icons are displayed in Figures 26 and 27, respectively. Control icons

allow the user to change values during execution, whereas indicator icons only display

relevant information without opportunity for operator input.

6.1.4 Paradigm

LabVlEW is based upon dataflow programming, where each node begins execution only

when data is available at all of its inputs. This paradigm allows for creation of diagrams with

independent or parallel dataflow paths and simultaneous operation.

6.1.4.1 Dataflow Programming

Dataflow programming is based entirely on the concept of data flowing from one function to

another. In dataflow programming, data flow through the program activating each instruction

as soon as all the required input data have arrived. In contrast, the traditional von Neumann

architecture programming language is based upon manipulating the state of a global memory

using the sequential execution of a set of language commands. Dataflow programming is not

limited to sequential execution of instructions. "The dataflow paradigm allows for more than

one instruction to be executed sirnultaneously. The concurrency in dataflow execution

depends purely on the availability of data at instruction-execution time, the proportion of

concurrency specified in the application to begin with, and how sufficient the computing

resources are for handling concurrent executions. Because of this, dataflow programs are

said to allow for fine-grain concurrency at the instruction level of a program." r h e Gunakara

Sun Systems 1992Aj.

Although LabVlEW is a dataflow programming language, instructions can be forced to

execute in a specific manner if so desired. The structure to order execution is referred to as a

sequence structure.

Some literature has touted LabVlEW as an object-oriented programming language. Although

LabVlEW focuses the designer's views on physical entities such as instruments and their

measurements (objects), there is no mechanism for inheritance or polymorphism. By most

definitions of object-oriented programming languages, LabVlEW would not be classified as

object-oriented, but perhaps as object-based.

J. ::::.
$iii.
::::::. iiiiiii. i

lKnobl
4.0

I
2.0

8.0
I

0.0 10.9

pJ

2.0fi8.0

0.0 10.0

Figure 26. LabVlEW Front Panel Control Icons.

[Pointer]

10.0 - 10.0 -
8.0 - 8.0 -
6.0 - 6.0 -
4.0 - 4.0 -
2.0 - 2.0 -
0.0 -4 0.0 -

Figure 27. LabVlEW Front Panel Indicator Icons.

6.1.5 Ease of Use

Simple Virtual Instrument applications can be developed in LabVlEW rather quickly. The

front panel icons are representations of physical entities and are easily recognizable. Many

39

of the block diagram icons are very intuitive and the function of less recognizable icons can

often be determined by the accompanying name in the pull down menu. The help facility

also provides information on the required inputs and provided outputs of block diagram icons.

With the help of the Getting Started Manual [National Instruments 1990A1, more complicated

applications can be built.

6.1.6 Visual Representation

LabVlEW is an iconic visual programming language. Many of the icons provide highly

complex functions. This built-in complexity eases the task of performing detailed analytical

computations. In order to use an icon, the proper data must be wired to inputs and wired

from the outputs.

6.1.7 Compiler

LabVlEW VI source code is the block diagram. This block diagram is compiled directly into

machine code, thus the compiler is termed as graphical.

6.1.8 Reusability

Once a Virtual Instrument has been constructed, it can be 'iconized' and used as a subVl in

any other program. This provides a high degree of reusability. SubVIs can be used in an

hierarchical fashion. In other words, VI1 can call subVI2, which in turn calls subVls 3 and 4,

which can then call other subvls. This modular, hierarchical design promotes reusability

throughout applications.

6.1.9 Data Structures and Types

Data structures and types are very limited in LabVIEW. Using the same data structure in

different parts of a program is difficult. Also, there is no facility for user-defined types or

structures. For example, there is no inherent method to link components of arrays of different

types. Multiple dimension arrays can be defined, but all columns must be of the same data

type. In most engineering applications, the crucial data is invariably numerical, thus LabVIEW

has concentrated its data typing specifically for engineering applications.

6.1.10 Effective Use of Screen Area

Any Virtual Instrument can be iconized and used as a subVI, which can be inspected by

double-clicking on that icon. Even with the ability to use subvls, it can be difficult to develop

a complicated application in a limited space. The diagram and front panel can extend

beyond the size of the screen and scroll bars used to view the additional area.

Unfortunately, certain standard icons cannot be resized to conserve space, such as the

analysis icons illustrated in Figures 22 through 25. Also, it is not a simple task to choose a

portion of a VI to be made into a subVI.

6.1 .I 1 Hardware

LabVlEW is available to run on the following hardware platforms: Macintosh, IBM, and Sun.

6.1 .I 2 Operating Systems

LabVlEW is available to run under the Macintosh operating system, Windows, and the Sun

operating system.

6.1 .I 3 Animation (runtime visualization)

Since LabVlEW is a dataflow language, the runtime visualization tracks the flow of data

through the block diagram. It is a useful tool to determine which blocks are executing

concurrently and which are executing sequentially. Also, the program may be placed into a

step mode and the data tracked step by step.

6.1.14 Effective Use of Colors

LabVlEW is very effective at using colors to depict different data types and functions. The

connections between blocks are color coded just as they might be in a physical electrical

schematic diagram. This color coding eases the task of 'reading' the program.

6.1 .I 5 Clarity of Graphical Symbols

For the intended audience, most of the graphical symbols are highly intuitive. By employing

standard engineering symbols such as operational amplifiers and logic gates, LabVlEW's

iconic structures are quite clear.

6.1.1 6 Interactive Capabilities

Front panel control settings.can be modified during execution as well as x- and y-axis marker

values for graphs and strip chart recordings. A block diagram cannot be modified during

execution, nor will the program resume after correction of a runtime error from the time the

error occurred (in other words, the program will be completely re-compiled and execution will

begin at the beginning of the program).

6.1.17 Extensibility

Extending the functionality of a Virtual Instrument can be difficult. If a block is deleted from

the block diagram, then all of its inputs and outputs are no longer valid. This causes the

wires attaching the deleted block to other blocks to also become invalid. The inputs and

outputs of the remaining blocks must then be rewired.

6.1 -18 Interface Capabilities With Other Languages

Any data generated from a Virtual Instrument can be stored in standard format and ported to

another software package for further analysis. Compiled C code can be imported into a

LabVlEW VI, however, the compiled code must adhere to strict LabVIEW calling interface

requirements resulting in a very cumbersome process. The Windows version does offer

capabilities to interface to other Windows applications, but no testing was performed

concerning this interface.

6.1.1 9 Analysis Capabilities

LabVIEW's data analysis capabilities are extensive. Some of the analysis available include:

generating waveforms, determining frequency spectrum, determining power spectrum,

applying digital windows and filters, separating real and imaginary components of an array,

array mean, standard deviation, fitting waveforms both linearly and polynomial, dot and cross

products of matrices, and solving linear equations. Figures 22 thorough 25 showed a

snapshot of all analysis capabilities. This extensive library of analysis functions could easily

convince any test system design engineer of the usefulness of LabVlEW applications. The

following section will describe a VI which utilizes some of the analysis functions.

6.2 LabVlEW Implementation of a Spectrum Analyzer Virtual

lnstrument

LabVlEW was designed as an instrumentation software package taking advantage of the

enhanced graphics capabilities of modern computer systems. In this area, LabVIEW's

performance is quite impressive. This advanced performance is illustrated by the

development of a Virtual lnstrument which simulates a spectrum analyzer. The front panel

and the diagram of the Spectrum Analyzer VI can be found in Figure 30 and 33, respectively.

Prior to detailing the development of the Spectrum Analyzer VI, a brief definition of spectrum

analysis will be presented. "Periodic waveforms, regardless of shape, can be broken down

mathematically into a series of sine waves." [Witte 19931. Spectrum analysis is the process of

determining the sine wave frequencies and amplitudes present in a signal, where frequency

is defined as l/(time for one cycle of a waveform) and amplitude is defined as the maximum

height of a waveform. (For a mathematical treatment of spectrum analysis, please refer to

Blackburn 1970.) The original signal is typically represented graphically with the y-axis as

amplitude and the x-axis as time. A graph of Amplitude versus Time is referred to as a time

domain graph or representation. Conversely, the representation of the spectrum analysis of

a time domain signal, known as the spectrum, is a frequency domain graph. Frequency

domain graphs consist of Amplitude versus Frequency data.

Figure 28 [Tektronix 19891 is a time domain representation of a square wave. This square

wave remains at the maximum and minimum amplitudes for the same amount of time (in other

words, the waveform has a 50% duty cycle). The period, or the time for one repetition of the

waveform, is labeled as 'T' and the amplitude is labeled as 'AJ2.' The fundamental frequency,

f1, of the waveform would therefore be calculated as: f l = 1/T.

A square wave is composed of multiple sine waves with the frequencies of these sine waves

being multiples of the fundamental frequency, f l . A sine wave component whose frequency

is a multiple of the fundamental frequency is referred to as a harmonic - the second harmonic

is twice the frequency of the fundamental, the third harmonic is thrice the frequency of the

fundamental, etc. The amplitude of the components of any rectangular waveform are limited

Amplitude

multiplicative function. A square wave is comprised only of the odd harmonics since

46

A - .
2

A ---
2

Figure 28. Time domain representation of a square wave with

period = T, amplitude = Al2, and duty cycle = 50 %.

I
I I
I 1 I - T=- -

f,

I

c Time

KT
SIN(Tf)

KT = 0 when f = nf,, where n = 2, 4, 6...

(I f)

Figure 29 [Tektronix 19891 is a frequency domain representation of the square wave depicted

in Figure 28. The odd harmonics occur at the peaks of the dashed sine waves.

Theoretically, there are an infinite number of frequency components of a square wave.

With this brief definition of spectrum analysis, the LabVlEW Spectrum Analyzer VI can be

explored. Figure 30 is a snapshot of the front panel. The Timespan and Frequency Span

Amplitude

A

0 1 2 f l y - 3 4 - 5 - 6 - 7 -
T T T T T

Figure 29. Frequency domain representation of a

square wave with fundamental frequency f l .

KT
---. SIN($) . Envelope = -

2 KT
t.. (I f)

.- -. ,'
: '
I ' ..

I
I

I I * . I '
I .
I . I I

..

* . .."T".
8 .*
1 .
I , I .

, Frequency

knobs control the x-axis values of the Input Signal (time domain) and the Spectrum

(frequency domain), respectively. These knobs allow the user to choose the amount of the

waveforms to be viewed. The Spectrum Analyzer VI also provides five choices of Windows or

Filters to be applied to the input signal. The Windows 'clip' the ends of the input signal (see

Figure 31). The Filters either remove higher frequencies from the input signal (Butterworth

LowPass and Chebychev LowPass), remove lower frequencies from the input signal

(Butterworth Highpass), or remove both very low and very high frequencies (Butterworth

Bandpass). Figure 32 illustrates the signals with the Butterworth LowPass filter chosen.

When comparing the unfiltered input signal of Figure 30 with the filtered signal of Figure 32, it

is apparent that the filtered signal has less noise, since the high frequencies have been

removed (white noise is comprised of high frequency components).

PUU

SU SUU

I Figure 32. Snapshot of Spectrum Analyzer VI With Butterworth Low Pass Filter Selected. 1

The Spectrum graph represents the frequency domain of the lnput Signal waveform. The

fundamental frequency of the lnput Signal is 10000 Hz (11100 psec). At each odd harmonic,

there are spikes on the Spectrum waveform representing those components. Since the lnput

Signal is not a perfect square wave, the spectrum is not simply composed of perfect spikes at

each of the odd harmonics. The induced noise creates additional frequency components.

Figures 33, 34 and 35 illustrate the LabVlEW program. As can be seen, all of the program is

enclosed in a while loop, which will continue to execute until the STOP button is chosen on

the front panel. When reading the while loop from left to right, the first operations to oe

performed are creating a square wave and an array of white noise. The noise is then filtered

and added to the square wave and placed in the array labeled SIGNAL. The signal is then

processed through the case block determining which window is to be used. The resultant

signal is then processed through a second case structure determining the chosen filter. This

resultant signal is then routed to be displayed as the input signal and to the block which

converts the signal to its frequency components and displayed as the spectrum.

The block which converts the time domain signal into the frequency domain ,y t~) , performs

a Fast Fourier Transform (FFT) on the input array. The FFT is a discrete and efficient

implementation of the Fourier integral. The FFT is calculated as follows [National Instruments

where Y[i] is the ith element of the FFT of X and j is sqrt(-1). Direct implementation of this

equation requires approximately n2 operations, however, if the size of the input array is

limited to a power of 2, a significant number of operations can be eliminated and a fast

algorithm can be implemented. The algorithm implemented f o r m H j in the LabVlEW

Analysis VI Library is known as the Split-Radix algorithm. This algorithm has a form similar to

the Radix4 algorithms with the efficiency of the Radix-8 algorithms. The Split-Radix algorithm

requires the fewest number of multiplications over the Radix-2, Radix-4, and Mixed-Radix

algorithms [National Instruments 19911.

The use of t hey t~)b lock results in an array with both the positive and negative harmonics

of the input signal. Only the first half of the array (the positive harmonics) are utilized in the

VI. m ~ j also produces both real and imaginary values of the frequency components, but

only the real components are required for the VI.

The array of real and positive frequency components of Y{H) are then converted to a graph

and displayed on the front panel Spectrum display.

This VI could easily be modified to incorporate either an IEEE-488 data acquisition instrument

or a plug-in Analog to Digital Converter board. Rather than generating a square wave from

the LabVlEW Analysis menu, an actual signal could be captured and then processed

through t h e ~ ~ ~) a n a l ~ s i s block. It is especially convenient that both the input and resulting

spectrum signals can be viewed on the same display. The test system designer is then not

limited to placing the data acquisition in full view of the test system operator. In this way, the

designer can limit access to instrument control settings by determining settings through the

LabVlEW front panel only.

Figure 33. Spectrum Analyzer Virtual Instrument LabVlEW Program.

Figure 34. Additional choices for Filter Case Structure in Spectrum
Analyzer LabVlEW program.

Figure 35. Additional choices for Window Case
Structure in Spectrum Analyzer LabVlEW program.

6.3 ProGraph

6.3.1 Overview

ProGraph provides a strong environment for Macintosh application development. The ProGraph

development system is based upon a three tier level as illustrated in Figure 36 [TGS 199281. On

the first tier is the ProGraph language itself, composed of a visual, object-oriented dataflow

language. Applications are built using the traditional Macintosh windows and pull-down menu

structure. The second tier encompasses the manner in which windows and menus are designed

and how events are handled by utilizing ProGraph system classes. Finally, the third tier is

composed of the editor, interpreter, and compiler. The editor is designed as a traditional

Macintosh graphical user interface with 'point and click' features and pull down menus. The editor

also provides extensive on-line help. ProGraph offers an advanced interpreter which allows for

stepping, tracing, debugging, and modification of the program during execution. Once the

program has been completed, it can be compiled as a stand-alone Macintosh application,

increasing execution speed and reducing memory requirements over interpreted programs

therefore eliminating the need for an interpreter.

I Figure 36. Levels of the ProGraph Development System VGS 199281. 1
56

A ProGraph program consists of [TGS 1992A:

classes (with their associated attributes and methods)

universal methods

operations (user-defined and system-supplied, with associated controls)

data objects (instances of classes and primitive data types)

persistents (container objects)

Classes and methods will be discussed in greater detail in the Paradigm criterion below. "An

operation is the basic executable component of a method. It has a name, zero or more inputs,

zero or more outputs, and a distinctive icon. It can operate on input data and it can produce

output data; it may also produce side effects (that is, beyond producing output data it may also

change the state of an object, such as that of a window on the screen)." [TGS 1992Al.

Operations can either be user defined operations or ProGraph operations. The Operations pop-

up menu can be found in Figure 37. Since the meaning of Operations is not immediately obvious,

a few of the operations will be introduced. A Simple operation can call a primitive (a system-

supplied compiled operation), a Macintosh Toolbox routine, or a class-based or universal method.

A snapshot of sample available primitives can be found in Figure 38. A Persistent operation

accesses the value of a persistent (container object) whose name appears within the operation

icon. A new instance of a class is created by executing the Instance operation with the name of

the desired class within the icon. The Get and Set operations access and set the value of the

attribute listed, respectively. A Local operation is an encapsulation of a body of code into a single

icon. Using a local operation conserves screen space since a group of operations can be made

into a single icon (that is, a local operation) by selecting the Opers to Localoperation.

Data objects flow through the program (i.e. dataflow programming). Data objects are not limited

to simple predefined data types. Data objects can themselves be instances of a class. The

ability to create such complicated data objects is an impressive strength of ProGraph.

As was previously mentioned, persistents are container objects. They are named elements that

can hold any value. This value is retained between executions of a program and is also saved by

the ProGraph editor along with its program. Figure 39 illustrates the icon associated with a

Persistent.

r r l Simple

T- Constant
--Q, Match
@ Persistent
Instance

Get
Q;1 Set
E B Local

Eualuate

=ri= Mac Constant X"l)%C
A Mac Match X"l)%M

Mac Global =S.E)%P
Mac Address XQ%fl
Mac Get Field V 386

a Mac Set Field X G %S

I IlZlI Opers to Local %%O 1

Figure 37. ProGraph's Operations Menu.

Figure 38. Sample ProGraph Primitives and Accompanying Descriotion.

1

Persistent

Figure 39. ProGraph Icon Representing a Persistent (container) Object.]

6.3.2 Scope

ProGraph has been designed as a general purpose object-oriented programming language. This

does not intimate that ProGraph is a simple language. On the contrary, it is a very high level

language as was depicted on Shu's three dimensional evaluation presented previously.

Essentially any system which can be designed as an object-oriented design can be implemented

using ProGraph. Its limitations are inherent with any visual programming language - the ability to

convey functionality within the available screen space.

6.3.3 Intended Audience

ProGraph is intended for the general programming audience familiar with the concepts of object-

oriented design and dataflow computing. Although programs can be developed which are not

object-oriented, significant advantages of ProGraph would be lost. ProGraph was intentionally

designed to minimize the influence of natural language thereby including a broader audience.

6.3.4 Paradigm

ProGraph is based upon object-oriented dataflow programming. As with any dataflow language,

each node begins execution only when data is available at all of its inputs. This paradigm allows

for creation of diagrams with independent or parallel dataflow paths and simultaneous operation.

Although ProGraph is a dataflow programming language, instructions can be forced to execute in

a specific order if so desired. The structure to order execution is referred to as a synchro.

6.3.4.1 Object-Oriented Programming

For a language to be considered as an object-oriented language, it must conform to three

essential principles: classification of objects, encapsulation, and inheritance [Fichman and

Kemerer 19921. Stroustrup describes the object-oriented paradigm as: "Decide which classes

you want; provide a full set of operations for each class; make commonality explicit by using

inheritance." [Stroustrup 19881. Any language which does not possess these qualities is not

defined as object-oriented but perhaps as an object-based or a data abstraction language.

6.3.4.2 Classification of Objects and Encapsulation

An object is a logical collection of data and associated methods. The inclusion of data and

methods within one entity is known as encapsulation. Encapsulation also implies that objects

possess a private data store accessible only from within the object itself and a public interface

accessible by other objects. Objects are then grouped together in classes. A class is an abstract

description or template of a particular object type that describes data and methods to be

associated with objects of that class. The description of the data of a class is comprised of the

name and type of the attributes.

The ProGraph icons associated with classes, methods, attributes, and inherited attributes are

presented in Figure 40. (An explanation of inheritance and inherited attributes will follow). As can

be seen, a class is comprised of attributes (left side of class icon) and methods (right side of class

icon). Methods are a sequence of operations connected by data links. Inherited attributes

include an arrow indicating that the attribute was inherited from a parent class.

Classes Methods Attributes Inherited

Attributes

Figure 40. ProGraph icons For Classes, Methods, Attributes,
and Inherited Attributes.

i

6.3.4.3 Inheritance

lnheritance is defined as one class obtaining all the attributes and the full library of methods

specified in another class. Furthermore, inheritance can be divided into single and multiple

inheritance. Single inheritance specifies that a class inherits from only one class as opposed to

multiple inheritance, where a class can inherit from more than one parent class. For example,

Figure 41 illustrates the single inheritance of ProGraphis system classes. The Window Item class

is a subclass of the System class, therefore, Window ltem inherits all of System's attributes and

methods. The subclass, Window Item can add its own unique attributes and methods to those

inherited from its parent class System. Figure 42 displays the attributes of the System and

Window ltem classes. The attributes inherited by Window Item from System are denoted by an

arrow in the icon (the attributes named owner, and FALSE). Attributes added within Window Item

are then inherited by its subclasses.

Methods are also inherited from a parent class. A subclass can add methods or it can

overshadow methods already defined in the parent class. Overshadowing or overloading a

method is defined as polymorphism, where one syntactic object means more than one thing.

Figures 43 and 44 list the methods of Window ltem and Scroll List. Scroll List adds two new

methods, namely Key and Tab To Item. The method Mouse Down is overshadowed by the new

definition in Scroll List. Figure 45 displays the Mouse Down method of class Scroll List. On the

right side of the figure, there is a simple operation labeled w f l M o u s e . e o v n a . The arrow
7 ~rC.

in the icon is referred to as a Super annotation. The Super annotation tells ProGraph to look for

the method Mouse Down, not in the Scroll List class but in the Window Item class. If ProGraph

does not find the method in the parent class of the current class, it continues up the inheritance

line until it finds a method by the indicated name. In this manner, a class can exhibit the behavior

of its predecessor and add special functionality.

@ Classes

Scroll Text Pop-up Menu Pict Icon

Figure 41. ProGraphis System Classes With Single Inheritance.

Figure 42. System Class Attributes and Window Item Attributes (both inherited
attributes and new attributes)

--

Figure 45. Mouse Down Method of Scroll List Utilizes Mouse

Down Method of Parent Class.

6.3.5 Ease of Use

Object-oriented concepts are presented quite clearly in ProGraph. The inheritance mechanism of

ProGraph is easily understood with the graphical representation of class hierarchy. A full list of

attributes can be obtained by double-clicking on the left side of a class icon with inherited

attributes distinguished from a class' defined attributes. When double-clicking on the right side of

a class icon, only the methods defined (or re-defined) within that class are displayed. To

determine the methods inherited, one must double-click on the ancestors' class icons.

The concept of building methods from operations is self-explanatory, but the functionality of

operations and primitives are not readily explained by the icons or the names of the icons.

Without strong guidance from the Reference and Tutorial Manuals, it would be extremely difficult

to implement a design.

If a programmer is experienced in writing Macintosh applications, then building an application in

ProGraph can be considered a fairly simple task. A novice to the world of Macintosh application

design would initially find the process confusing and tedious. Building an application with even

the most rudimentary menuing schemes can be a daunting task when first introduced to

ProGraph. As experience with ProGraph is gained, application implementation does become less

cumbersome.

ProGraph does have extensive on-line help capabilities which facilitates the ease of use.

6.3.6 Visual Representation

ProGraph is a simple iconic visual language with textual annotation. Most icons are variations of

a rectangular shape. This simplicity can make it difficult to distinguish between different types of

icons. The iconic representation for classes and methods are more complex and are more easily

recognized.

6.3.7 Compiler

While developing the system, the program is graphically interpreted (as opposed to compiled) for

ease of debugging. After final debugging, a program can then be graphically compiled into

machine code for faster execution.

6.3.8 Reusability

Object-oriented designs offer a great range of flexibility through the modification of inherited

attributes and methods. This flexibility lends itself to reusability. If a class can be added to an

existing design with only minor modifications to inherited attributes and methods and the addition

of new attributes and methods, then the case for reusability is strong. Of course, simply because

a language is object-oriented does not guarantee that code will be developed in a reusable

manner.

6.3.9 Data Structures and Types

ProGraph offers a wide range of system defined types. In addition to these system defined types,

classes themselves can be considered data structures. An instance of a class can be passed as

a data object along the data links between operations. With this flexibility, the complexity of data

structures is essentially unlimited.

6.3.10 Effective Use of Screen Area

Within ProGraph, any portion of a method can be reduced to an icon for a local method to

conserve screen space. This new local method can then be opened separately to determine its

function.

6.3.1 1 Hardware

ProGraph is currently available only for the Macintosh hardware platform.

6.3.1 2 Operating Systems

ProGraph is currently available to run only under the Macintosh operating system.

6.3.13 Animation (runtime visualization)

ProGraph's interpreter is highly advanced. Execution of an application can be followed by

tracking the data as it moves from one operation to the next. In addition, the stack can be

dynamically displayed to determine the state of the system at any time.

6.3.14 Effective Use of Colors

ProGraph is limited in its use of color. During execution, data can be tracked by watching the

changing colors of the operations. Also, when an error is encountered, the screen will take on a

new color to indicate that an error has occurred.

6.3.15 Clarity of Graphical Symbols

Without annotation, most of the graphical symbols would not be easily recognized. After

experience with ProGraph, the symbols become more familiar.

6.3.1 6 Interactive Capabilities

The interactive capabilities of ProGraph are very strong. Since the program is interpreted, parts

of the application can be developed 'on the fly' as the interpreter realizes that a called method

does not exist. The program will resume running from the point when the error occurred. This

interpretive capability greatly speeds development time.

6.3.1 7 Extensibility

By virtue of its objected-oriented paradigm, ProGraph applications can be easily extended by

adding new classes and methods. If an application has been designed in an effective object-

oriented manner, then adding classes to the hierarchy or independent classes has little effect on

existing classes. Since ProGraph allows polymorphism, altering inherited methods allows for

great flexibility and function.

6.3.18 Interface Capabilities with Other Languages

Both the ProGraph interpreter and the ProGraph compiler allow C code to be imported. "There

are two different formats for writing imported C code. One is for writing external primitives, which

can be included in the ProGraph environment. The other format is used for writing external code

which is linked by the compiler into the final application." [TGS 199281.

6.3.1 9 Analysis Capabilities

ProGraph is very limited in its analysis capabilities. It does provide simple trigonometric functions

and information on class hierarchy and attributes. It was not designed for data analysis.

6.4 ProGraph Implementation of an Object-Oriented Gradebook Application

ProGraph has been designed as an object-oriented, dataflow, visual language. As an object-

oriented language, class structures, encapsulation, and inheritance are inherent attributes of

ProGraph. ProGraph is also designed to build Macintosh applications complete with pull-down

menus, point-and-click features, and pop-up windows. To illustrate the object-oriented paradigm

and Macintosh application design, the development of a Gradebook Application will be presented.

The Class Hierarchy of the Gradebook application is displayed in Figure 46. The System Classes

introduced earlier must be included in the application to develop the Macintosh interface. The two

classes created for Gradebook are Person and Student. Figure 47 lists the attributes of both

classes, with the attributes Name and Age containing arrows in the Student Class indicating that

these attributes were inherited from Person. The Student class adds the attributes Grades,

Gradel, Grade2. Grade3, Grade4, and Average. Each instance of the class Student will possess

all of these attributes. The Student class also includes a Class Attribute, NumGrades, denoted by

the hexagonal shape 0. A Class Attribute is "owned" by the class and is known by and

accessible by all instances of the class.

The Gradebook Application contains three Universal Methods (methods not belonging to a class

but accessible throughout the design). These methods presented in Figure 48 are: Initial, used in

the creation of windows; Sort Names, which returns a sorted list; and Average, which returns an

average of a list. The Gradebook application also includes one container object or persistent,

Gradebook, as shown in Figure 48. This persistent contains a list of Student instances (see

Figure 49). The attributes of the individual instances can be examined by double-clicking on the

instance icon. Figure 50 lists the attributes of Student instance 4. By double-clicking on the

attribute icons of the Student instance, a dialog box is produced allowing the user to modify that

attribute.

The methods contained in the class Student are presented in Figure 51. All of these methods are

accessible from any instance of class Student. The combination of attributes and methods within

class Student is an illustration of encapsulation. For brevity, only a few of the methods in the

Student class will be presented in detail. A complete listing of all the Student methods can be

found in Appendix A.

The method StudenffAdd first calls a local method which creates an instance of student with the

Name attribute set (see Figure 52). This new instance is then added to the persistent Gradebook

by invoking the attach-r primitive. The scroll list located in the User window is then updated w~th

the new Gradebook persistent. An example of the User window is illustrated in Figure 53. The

user enters the last and first names of the new student. When the button labeled 'Add Student' is

clicked, the method StudenffAdd is invoked, causing the student to be added to the Gradebook

persistent and updating the scroll list of students located in the center of-Figure 53.

Figure 54 is the diagram of method StudenffClassAverage which is invoked when the 'Class

Average' button in the User window is clicked. The Gradel, Grade2, Grade3, and Grade4

attributes of all the instances contained in the Gradebook persistent are accessed (the ellipses

denotes that a list has been processed). The Universal Method, Average, is then invoked to

determine the class average. Finally, the show primitive is used to display a dialog box indicating

the class average (see Figure 55).

When a new student is added to the Gradebook, the values for the attributes Grade1 through

Grade4 are NULL. A user enters the student's grades by first highlighting the student's name in

the User window scroll list and then clicking the button labeled 'Enter Student's Grades.' The

method StudenffEnterGrade is used to set the Grade1 through Grade4 attributes of the Student

instance (see Figure 56). The user is forced to enter each grade in order. This forced sequence

is accomplished through the use of synchros (represented as rows of semicircles in Figure 56).

73

i

As the diagram shows, Grade1 is entered before Grade2, as with Grade2 before Grade3 and

Grade3 before Grade4. The grades are entered through a dialog box as is illustrated in Figure

57.

- - - - - - -
g m m 'F;r student

&
- - - -

NULL

name

grades

gradel

NULL

grade2

NULL

grade3

- - SF- 'F;r person g i g

grade4

NULL

average

................................ :::::::::::::::::::
0

+liiiijiii.iiiiiiiiiiiiiiiijjiiiil W"""""' 1111 fiiiiiiiiiiiiiiiiij 9 liJ
--

Figure 47. Attributes of Person and Student Classes.

g e
NULL

V
name

NULL

V
age

....................................... +lii$iiiiiiiiii$iiiiiiiGjiiiiiiiil 1111 [iiiiiiiiiiiiiiiiiiw -"
-
0
liJ

Zmg - @ Persistents - gI-1 - @ Universal p jg
.

&
53 - - - -

Init ial sort names average

+
($ """"'~""""":ii~iiigiigi:~i~i~i~:~:~:~i~i~:~i~:~:~:g~~~~~:~:~:~:g~:~i~:: ' I : : i : * . E5 ... el 1111 l:iii;riiiririi:riiii;;:i:iii:iiI:i:i:I:i:i:::;:;i ::dO--E

Figure 48. Universal Methods and Persistents of ProGraph Gradebook Application.

Figure 49. Values Contained In the Persistent Gradebook
(container object).

The scroll list located in the upper left corner indicates the possible data
types for the values contained in the Persistent Gradebook. The values
in Persistent Gradebook are of type list.

,.. . .
Ualue of Persistent gradebook

, . , . , _lisip.k .-- :.:.:. c <student >> .I)
Menu gi;
Menu Item i:gii

V
ii!j$ 1

macintosh :::::: :;:;:; :.:.:. <<student >>
:p::

none - - - - - V
nu1 1 2

Pict t cstudent >>

Pop-up Menu V
person 3

professor <<student>> v
EEI
[Cancel]

Graphic

i

4

<<student >>

V
5

< cstudent >>
r-?

OI lo
-
0.

Figure 50. Values of Student Instance 4 Located in
Persistent Gradebook

Ualue o f List .I tern 4 pz

Menu Item -
macintosh
none

Scroll L is t
Scroll Text

undefined

average
CZj li;ra<rj;atslr :::::::::::::::

if.
oli;iiiii;iiii-;iiI 1111 [li;i'i'i'ii)il 0 Q

im - @ student mz
&
- - - -

add addgrade birth Class Average

listfromclick remlrve Studenthverage

g~iiii:ii;i~iiiiI~igii~iii;iii~iii~iiiiiiiii~igiiiiii~~iiii~iiiii;i;;iigiig~i;iii~~ii~ig~i~i~;~i~:; -9 01 1111 J l i l i l ~ i l i l i l i l i l i I i I i I i I i I i ~ i I ~ l i I i I I I i ~ ~ i ~ i i i i i i i i i i i i i i i i .. 0 p~
Figure 51. Methods from Class Student of '

ProGraph Gradebook Application.

- - - gf7-m studentiadd 1:1 m/3:Zi!mEDi

5

& - = -
7!m ii
iifiii
;iiiii
iiiiii
jiiiii :::::: $iiii
ifpi
;iiiii

iiii$:::::: iii$i
$jiii
::::::
iiiiii
iiiiii iiii$
fii$i ifi]ii
iiiili
:::::: ::::::
ii
iii$i
L-L

Figure 52. Method Add of Class Student.

En - student database

Last Name
Lewis

Adams David &
First Name
Joe

[RddStudentt]

Bakeman Sheila - - List Student's Grades
- -

Collins Mark
Howard Lizz
James Robert
Jones Shirley
Jonson Sven

i i u
Kiper James
Schindler Deb i)

Enter Student's Grades

6-e)

[~emoue]

Figure 53. Sample User Window of ProGraph Gradebook Application.

The Class Average i s 86.375

[o.]
Figure 55. Pop-up Dialog Box Displayed When Class Average Button Is Clicked.

ZIJ - B student/Cl~ssAuerage 1:l I~J~JDEE~J~

:
Window > <Window Event

&
- - - -
.m ::::::

Item> Record

~

:::::: :;:;:;
:.:.:. .:.:.: :.:.:.
;ti;$; :.:.:. iiiiii :::::: iii;;;
2 i . i :.:.:.
:::::: ;;i;$
$iiii
$iiii
iiifii :.:.: ..:.:.
iiiiii
:::::: .:.:.:
i;i;i;:.:.: :.:.:.
i;;;;; .:.:.: :.:.:. .:.:.: :.:.:.:.:.: :.:.:. ::::::

$;it;
iiiiii
iiiiii
:::::: .:.:.: :.:.:.
;;;i;;,. $;ii
;:;:;:
::::::
;;;;;i ii
LLY

;:;:;:;:;:i:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:i:;:;:;:;:i:;:;:;:;:;:i:;:;:;:;:;:;:;:i:;:i:;:;:;:
i).

01 llll ~;;;;i;;;i;i;i;;;i;i;~~;ii;;;ii;;;i;;ii~;;i;i;;;i;;;i;;;;;;~;;i;i;~~;;i;;;i;i;i~;i;i;i;i;~;i;~;;;i;iii;;;;;i;i;;;~;i;i;i;i;;;;;i

Figure 54. Method ClassAverage of Class Student.
>

The User window also includes a button labeled 'List Student's Grades,' located in the upper, right

corner of Figure 53. This button, when clicked, will list the student's Grade1 through Grade4

attributes in the scroll block located below the button. The list of grades will also be displayed in

the scroll box if the user double-clicks on the student's name. The method used to send the list of

grades to the scroll box is Student/GradesToScrol1 (see Figure 58). In this method, the Grade1

through Grade4 attributes are converted from numbers into strings and packed into an array. The

Bakeman Sheila's grade 1 i s

87

[] [F]

Window System Class attribute 'value list' is then set to this array. By setting the 'value list'

attribute, the scroll list is updated to the list of student's grades.

.

Two additional buttons, 'Remove Student' and 'Student Average,' are included in the User window

as is shown in Figure 53. 'Remove Student,' when clicked, deletes the highlighted student's

name from the Gradebook persistent. 'Student Average,' when clicked, produces a dialog box

with the student's name and average of grades. Figure 59 is an example of this dialog box.

Figure 57. First of Four Pop-up Dialog Boxes Displayed
When Enter Student's Grades Button Is Clicked.

Howard L izz 's average is : 97.25

[OK]
Figure 59. Pop-up Dialoq Box Displayed When Student Average Button Is Clicked.

As has been illustrated, the development of a ProGraph Macintosh application is an involved

process. The ProGraph environment does provide access to the necessary attributes to build an

application, but the development time can still be lengthy.

7.0 Conclusion

7.1 Evaluative Criteria

The introduction of the visual programming paradigm necessitates a method of evaluation in

order to provide a useful perspective. To provide a perspective, an extensive set of evaluative

criteria has been developed and presented in Figure 12. As technological advances emerge,

previously introduced visual languages will require reevaluation. When introduced, assembly

code languages were heralded as significant advancements in language level when compared to

machine code. As languages continued to grow in complexity and ability, assembly code

languages were re-classified as low-level languages. Any method of evaluation of visual

languages must therefore provide the flexibility to incorporate the inevitable technological leaps.

The evaluative criteria and their ranges developed in this paper provides that flexibility.

The developed criteria were utilized to compare two commercially available visual languages.

The evaluative criteria proved extremely useful when comparing the two languages. Since both

languages provide many features, comparing them without a defined set of attributes would have

been essentially impossible.

7.2 LabVlEW versus ProGraph

The concepts, capabilities, and example implementations of both LabVlEW and ProGraph have

been presented. In some areas, such as in visual presentation, ease of use, and analysis

performance, LabVlEW is clearly the preferred language. However, general applications in

LabVlEW are very difficult to implement. For instance, a small portion of the Gradebook

application was developed in LabVIEW. The front panel of the Gradebook Virtual Instrument and

the corresponding diagram are presented in Figures 60 and 61, respectively.

The front panel, although functional, makes data entry very difficult. The user is not prompted for

grades and is not prevented from entering grades in unacceptable positions in the array. All

arrays used within the VI are visible on the front panel. These arrays could have been placed

outside the normal viewing area of the screen, but scrolling the screen would have revealed the

interim arrays. In comparison to the ProGraph version with pull-down menus and dialog boxes,

the LabVlEW implementation is cumbersome at best.

The diagram of the Gradebook VI presented in Figure 61 reveals a significant deficiency in

LabVIEW. The Name array and corresponding Grade array are not linked implicitly. An array

cannot have elements of mixed type, therefore, separate arrays must be-maintained. The inability

to define complicated data structures would force the designer to maintain the link between Name

and Grade explicitly. In this implementation, no link has been established. If the Name array

were to be sorted into alphabetical order, the Grade array would no longer be valid. A sort VI

would have to be developed to maintain the link as the arrays are sorted. This would be a difficult

task, especially for the intended audience (test system design engineers, not computer

scientists). In short, general applications in LabVlEW are complicated and difficult to implement.

Conversely, while ProGraph is the preferred language for general applications, there is no

corresponding ProGraph application which can be practically designed to compare with the

LabVlEW Spectrum Analyzer Virtual lnstrument. ProGraph has no built-in analysis or data

presentation features. All of these functions would have to be developed explicitly using

ProGraph.

[GI enter names herel

[l ist d test 1 grades I

interim arrays used in program/ 1-1
/size o f grades array

/-I

Figure 60. LabVlEW Front Panel of Gradebook VI.

The most applicable areas for LabVlEW would include:

data acquisition

process control

* automated test systems

presentation of visual programming concepts

The most applicable areas for ProGraph would include:

general programming applications

object-oriented design

editors

presentation of object-oriented concepts

Both languages offer strong insight into the visual programming paradigm concepts and

implementation issues. Useful applications can be developed in both LabVlEW and ProGraph.

These are not toy languages, but languages which can produce complicated applications.

7.3 Usefulness of the Visual Programming Paradigm

In conclusion, a well-designed visual programming language reduces the complexity of the

programming task and increase programmer productivity [Ames et al 1993; Faconti and Paterno

1992; Glinert and Tanimoto 1984; Myers 1986; Singh and Chignell 1992; Glinert 1990A; Glinert

1990Bl. Visual programming enables the programmer to transfer concepts directly from his or

her mind to the computer since the programming abstractions have been replaced by visual

images. As Miller [I 9571 points out, the human mind is able to store 7 +I- 2 blocks of information

concurrently, therefore, it is easy to conclude that by encapsulating several syntactic and

semantic textual rules into one image, a programmer will be able to retain more information. This

is especially true if that information coincides with the programmer's mental image. Furthermore,

"images are easily learned, retained, and recalled as single units, often serving as the entire

means of communication." [Glinert and Tanimoto 19841. Therefore, visual programming may

"provide a high bandwidth for human-machine communication." [Glinert and Tanimoto 19841.

Traditional textual languages have been based on. heavily on the conventions of Indo-European

languages, where abstract symbols are combined according to some linear syntax to form linear

strings [Cox and Pietrzykowski 19881. These abstract symbols are a severe restriction to people

whose natural language is based upon graphical representations, such as Chinese. Visual

programming offers an alternative which can span different cultures.

Additionally, visual programming is also well-suited to the object-oriented paradigm. Although

visual programming is not inherently object-oriented [Winblad 19901, it is a logical step to provide

object-oriented functionality to the user, as ProGraph clearly demonstrates.

The profile of the typical computer user has changed significantly in the last decade. Application

development is no longer the sole domain of the computer scientist. Novice users are beginning

to develop their own applications. There is a strong need to ease the process of software design.

Visual programming may offer a solution to this problem. In addition, as computer graphics

capabilities continue to improve, it is a logical step to take advantage of this advanced

technology. Visual programming has the potential to be the partner to the growing hardware

capabilities.

8.0 Reflections

The focus of my thesis evolved during the last two semesters. Initially, my interest in visual

programming lay with developing instrumentation applications using LabVIEW. Having designed

numerous automated test and process control systems during my career, I was especially

intrigued by a software package claiming to make that design process an easier endeavor. I had

previously evaluated a sample of test system software introduced in the late 1980s and had found

them lacking in either functionality or ease-of-use. I was pleased to discover that LabVlEW

offered both strong functionality and was fairly easy to use.

After evaluating LabVlEW and having read extensively about visual programming, I was anxious

to determine how a more general programming language might be implemented. This lead me to

ProGraph, not only because it was a visual language, but also because of the object-oriented

paradigm. Working with ProGraph was more challenging for me. My understanding of object-

orientation has increased significantly by evaluating ProGraph. Object-oriented concepts were

easier to comprehend when presented visually.

Upon reflection, I discover that I have learned a number of things. Among the most important is

learning the object-oriented paradigm. Beyond that, I have learned how to systematically

compare one software package with another. Also, t have learned how to organize my research,

applications, and results in an understandable (hopefully) manner. Writing the thesis reinforced

my belief that simply knowing a subject is not sufficient - I must be able to effectively

communicate that knowledge. And, finally, I have learned that time-management is a crucial part

of the thesis experience.

Appendix A. Student Class Method Diagrams of ProGraph
Gradebook Application

@ student mz
&
- - - -

add addgrade birth class Arerage

...
+ I 1111 .. ;i;i;i;;-i;i;i;i; j;i;i;i;i;$iii;iii;i;i;i;;ii;~;~;;;;;;;i;;;~;;;~;~;;;;;;;ii~;i;$~~;;i;;;;; Ei

.3

117% student/addgrade 1 : I ~ l 3 $ ~ @ E i i ~ ~
p
- - - -

Item) Record

P,,ffJ,J,ff,ffJJfJ,,,,J,,,,,,fa

.. -@I 1111 l i ~ l i r i r i r i l i r ~ r i r i i i i ~ I i I i I i I i I i ~ ~ i ~ i i i ~ I i I j i ~ i ~ i i i i I ~ i i i i i i i i I i 1 ~ ~ i i i i i ; I ; I ~ i i I ; i i ~ i I : I ~ ~ ~ ~ ~ ~ : ~ ~ ~ : ; : ; ~ ; ~ i ...
c.

.:::f:::::::::::::~:::.~~::I:1:1:]o..m

- imEm student/birth 1:1 ~ ~ H ~ H E j Z S (= I I ~
&
- - - -

Name String .m :;;;;;;
tudent :::::: i:;;;;

;;;;j;
i;;:i:
$!$$;;;;;;
:::::: ::::::
;i;i;i

.i:;:i: -
;;;;i;I;IIi;;i;i;;;~;I;;;;:I:I:;;;;:I;i:I;:: ... c.
.................................... I.I..:.: ...

Zm - student/ClassAuerage 1 : I lgp~@jz~i~~

E 2
- - - -

Window ><Window Event
Item> Record

...3
1111 iiiiiii~i~iigiiiigi~;iIii;IiiiIiIiiiiiiiiiiiiiiii~iigi~i~i~i;;~I~i~i~i~;~IiIiIii~;ii~i~gI~iii~iii~iiiiiiiiiii:;i;iiiiiiiIiIiI~i~;ii~i~iiiiiiiii~iig;~~:g;ii~;iiiiiiii~ii~iii;iiiii~~ I ~.;:;:;:;:;:~:;:;:;:;:;:;:;:;:;:;:;:;:~:;:~:;:;:;:;:~!;!;:;:;:;:;:;:~:;:;:~:;:~&::;:~:;:;:;:~:~:~:;:;:;:;:;:;:;:~~;~;:;:;:;:;:;:;:;:~:;:;:;:~:;:;:;:~:;:;:;:;:;:;:;:;:;:;~~ P i

- -
ID- studentt'remoue 1 : I 1 3 j ; m ; ~ ~ ~ i ~ g

& - - - -
,<Window Event

Item> Record

....................... ... :.: z.:.:.: :.: :...:;.:.. ...
9

~ ~ ~ ~] : ~ : ~ i ~ i ~ : ~ ; : ~ i ~ ; ~ : ~ : ~ : ~ ; ~ ; ~ ; ~ ; ~ ; ~ ; ~ ; ~ ; ~ ; ~ ; i ; ~ ; ~ ; ~ ; ~ ; ~ ; ~ ; ~ ; : ; ~ ; ~ ; ; : ~ : ~ ~ ~ ~ ~ ; ~ ~ ~ ; ~ ; ~ : ~ i ~ : ~ ~ ; ~ ; ~ ; ~ ; ~ ; ~ ; ~ ; ~ : ~ : ~ ; ~ ; ~ ~ ; ~ : ~ ; ~ ; ~ ; ~ ; ~ i ~ : ~ ;] Q _ _._ : Clj

- q3 - student/StudentAuerage 1 : I I ~ ; ~ @ J s E ~ ~ E
&
- - -

Item> Record

- * ::;:I;
::.:.: :...
.:::i:
i;iifi :.:... .:.::: :.:.:. :::::;
:::::: :.:.:. ,.:.:.
iiiiii ;i;i:;
:.:.:.
.::::: :.:.:. :::::: .:.:.: . . ':.:. ::::::
iiiiii
i:i:i;
;;i;ii
:.:.:. :::::: ::::::
iii:;: i;;;;;
::::::
iiiiii
::.:.: .::::: :...:. .::::: ::::.:
iiiiii
.:.:.: . . . i::;i;
:::::: iiiiii ...-.. :;:i:: . ' . :;:;.: . . :. ::::::::::: i:;:::
...a :. iiiiii iirili
i:::;: iiiii;
:::::: :::.:.

Bibliography

[Ames et a1 19931 Ames, Chuck, Kiper, James D., Auernheimer, Brent, and Burnett,
Margaret. "V - A Visual Syntax for C," Jet Propulsion Laboratory, Proposal to the
Director's Discretionary Fund FY94, August 1993.

This document proposes the development of a visual programming language V. V will have the
equivalent visual syntax as the C programming language and a tool, C2V, would be developed
to produce equivalent visual displays of existing C programs. The tentative benefits of V, as
well as a suggested agenda for V's development, are presented.

[Baecker and Marcus 19901 Baecker, Ronald M. and Marcus, Aaron. Human Factors and
Typography for More Readable Programs. Reading: Addison-Wesley Publishing
Company, 1990.

This text introduces the concept of using tools to make a computer program easier to read. It
covers the evolution of human factors in programming from pretty printing (using indentation
and spacing to delineate different programming structures and embedding of structures) to
graphical representations.

[Blackburn 19701 Blackburn, James A., ed. Spectral Analysis: Methods and
Techniques. New York: Marcel Dekker, Inc., 1970.

This book presents the concepts of spectral analysis and the underlying mathematical
principles. Detailed mathematical proofs are not presented, but the basic mathematical
principles are well presented.

[Burnett and Baker 19931 Burnett, Margaret M. and Baker, Marla J., "A Classification
System for Visual Programming Languages," Technical Report 93-60-14, Oregon State
University, June 1993.

This paper presents a detailed classification scheme for classifying visual programming
language research papers. This classification fills a void in the current ACM classification
scheme for computing reviews. An overall hierarchy for visual computing is also included. This
classification is a strong aid in clarifying the classification of systems labeled as 'visual
programming.'

[Chang 19871 Chang, Shi-Kuo, "Visual Languages: A Tutorial and Survey," IEEE
Software, Volume 4, Number 1, January 1987, pp. 29-39.

Chang introduces the concept of visual languages and subdivides them into four types: (a)
languages that support visual interaction, (b) visual programming languages, (c) visual
information processing languages, and (d) iconic visual information processing languages.
Example languages are then introduced for the four categories.

[Chang 19901 Chang, Shi-Kuo, ed. Visual Languages and Visual Programming. New
York: Plenum Press, 1990.

This book is divided into three parts: theory of visual languages, working examples of visual
programming systems, and applications of visual languages and visual programming systems.
Part I (Chapters 1 5) is devoted to the theory of visual languages. The five chapters cover iconic
visual languages, diagramming languages, and formal semantics of a specialized visual
language to specify operating system security. Part II (Chapters 6-12) covers several
operational visual programming systems. The six chapters describe visual programming
systems for parallel programming, program animation, construction of programmed learning
software, experimental systems design, matrix-oriented programming, and open-ended
graphical programming. The last five chapters in Part Ill (Chapters 12-16) present various
applications of visual languages, visual programming, and visualization. In their design of a
visual language for browsing, undoing, and redoing graphical interface commands, Kurlander
and Feiner introduced the notion of an editable graphical history. An editable graphical history
allows the user to review and modify the actions pre-formed with a graphical user interface.
Using a pictorial metaphor borrowed from comic strips, an editable graphical history consists of
a series of panels that depict in chronological order the important events in the history of 2
user's session. The user may scroll through the sequence of panels, reviewing actions at
different levels of detail, and selectively undoing, modifying, and redoing previous actions. The
graphical editor Chimera is described. By combining the notions of editable graphical history
and dynamic icons, we can predict that such visual programming systems will be extremely
useful for adaptable system simulation.

[Cox and Pietrzykowski 19881 Cox, P.T. and Pietrzykowski. "Using a Pictorial
Representation to Combine Dataflow and Object-Orientation in a Language Independent
Programming Mechanism." Proceedings International Computer Science Conference,
1988, pp. 695-704.

The standard textual representation of programming languages has many shortcomings, such
as the abstract syntax inherited from Indo-European languages, enforced sequentiality, the
necessity for variables, and the confusion between logical and mnemonic information. The Al
languages Lisp and Prolog are improvements over the standard Algol-like languages, but still
suffer from some of their drawbacks. The use of a pictorial representation for programming is
proposed as a means for overcoming all of these shortcomings, incorporating the powerful
features of Al languages and removing the bias towards Indo-European languages, making
programming equally accessible to users whose natural language relies on ideograms, such as
Chinese. The language ProGraph 2 is described using extensive examples, and the
environment provided by the present implementation is briefly discussed.

[Cox et a1 19891 Cox, P.T., Giles, F.R., Pietrzykowski, T. "ProGraph: A Step Towards
Liberating Programming From Textual Conditioning." 1989 1EEE Workshop on Visual
Languages. Washington: IEEE Computer Society Press, 1989.

A critique of textual programming languages and software development environments, linking
them to the development of hardware and discussing their connection with natural languages
and mathematical formalisms. Criteria are outlined for modern integrated programming
languages and environments based on the use of graphics. These principles are then
illustrated by a description of the pictorial, dataflow, object-oriented language ProGraph and its
implementation.

[Faconti and Paterno 19921 Faconti, G. P. and Paterno, F., "A Visual Environment to
Define Composition of Interacting Graphical Objects," The Visual Computer, Volume 9,
Number 2, September 1992, pp. 73-83.

This work presents the FP visual language that specifies the components of a user interface
and their relationship. Each component is an instance of an interactor that is a general
description of a basic graphical interaction. By a visual language, it is possible to specify in a
flexible way the logical structure of a user interface defined as a composition of interacting
graphical objects. The graphical tool allows the designer to investigate the correctness of user
interfaces and their properties.

[Fichman and Kemerer 19921 Fichman, Robert and Kemerer, Chris. "Object-Oriented
and Conventional Analysis and Design Methodologies: Comparison and Critique." IEEE
Computer, Volume 25, Number 10, October 1992, pp. 22-39.

In this paper, several conventional analysis and design methodologies are briefly introducec!
and compared to each other. Object-oriented analysis and design methodologies are then
introduced and compared to each other. Finally, conventional methodologies are compared to
the object-oriented methodologies, illustrating where each paradigm has its strengths.

[Glinert 1990Al Glinert, Ephraim P., ed. Visual Programming Environments :
Applications and Issues. Los Alamitos: IEEE Computer Society Press, 1990.

The second volume of the tutorial of visual programming environments focuses on
implementations of various visual systems in chapters 1-4. Chapters 5-9 introduces the major
issues of visual system design, such as: effective icon design, when graphics should be used
over text, effects on the physically challenged, and the lack of formal definitions. Potential
future applications are also presented.

[Glinert 1990Bl Glinert, Ephraim P., ed. Visual Programming Environments : Paradigms
and Systems. Los Alamitos: IEEE Computer Society Press, 1990.

The first volume of the tutorial of visual programming environments introduces the concepts and
definitions of visual programming. Some of the traditional and non-traditional graphical
representations are explored. Examples of iconic and visual extensions to mainline textual
languages systems are presented as well as visual parallel and distributed computing
environments.

[Glinert and Tanimoto 19841 Glinert, Ephraim P. and Tanimoto, Steven L. "Pict: An
Interactive Graphical Programming Environment," IEEE Computer, Volume 17, Number
1 1, November 1984, pp. 7-25.

In this paper, The authors propose that Pict, an interactive, graphically oriented programming
environment is a more natural way for novices to learn programming than conventional, text-
based programming languages. Pict's capabilities, design, and acceptance by novice users are
presented.

[Miller 19571 Miller, G.A. "The Magic Number Seven Plus or Minus Two: Some Limits on
Our Capacity for Information Processing." Psychological Review, Volume 63, Number 2,
February 1957, pp. 81-96.

This paper reports the results of studies performed on short-term memory retention. It indicates
that if information can be grouped into blocks, more information can be retained. Short-term
memory is capable of handling 7 +I- 2 blocks of information.

[Myers 19861 Myers, B. A. "Visual Programming, Programming by Example and Program
Visualization: A Taxonomy." In Conference Proceedings, CH1'86: Human Factors in
Computing Systems, Boston, Mass. New York: ACM Press, April 13-17, 1986, pages 59-
66.

This paper attempts to provide more meaning to the terms "Visual Programming," "Program
Visualization," and "Programming by Example" by giving precise definitions, and then usin$
these definitions to classify existing systems into a taxonomy. A number of common unsolved
problems with most of these systems are also listed.

[National lnstruments 19901 National lnstruments Corporation. LabVlEW 2 Analysis VI
Library Reference Manual. Austin: National lnstruments Corporation, 1990.

This manual is divided into the following chapters:

Chapter 1: Introduction to Analysis in LabVlEW containing an overview of the LabVlEW
Analysis library of virtual instruments, a description of how it is organized, instructions for
accessing the Analysis Vls and obtaining on-line help, and a description of LabVlEW
Analysis error-reporting.

@ Chapter 2: Numerical Analysis Vls describes the three groups of Numerical Analysis Vls -
Array Operations, Complex Arithmetic, and Miscellaneous.
Chapter 3: DSP Vls describes the two groups of Digital Signal Processing (DSP) Vls-
Pattern Generation, and DSP.
Chapter 4: Digital Filter Vls describes the two groups Digital Filter Vls-Smoothing Windows,
and Infinite Impulse Response Filters.
Chapter 5: Statistical Analysis Vls describes the three groups of Statistical Analysis Vls-
Descriptive Statistics, Curve Fitting, and Linear Algebra.
Index: alphabetically lists each VI and important concept described in this manual and its
page number.

This manual does assume significant prior knowledge of the concepts. Very little detailed
description of the function is given other than inputs required and outputs provided.

[Price et a1 19931 Price, Blaine A.; Baecker, Ronald M.; Small, Ian S., "A Principled
Taxonomy of Software Visualization," Journal of Visual Languages, Volume 4, Number 3,
September 1993, pp. 21 1-266.

In the early 1980's researchers began building systems to visualize computer programs and
algorithms using newly emerging graphical workstation technology. After more than a decade of
advances in interface technology, a large variety of systems has been built and many different
aspects of the visualization process have been investigated. As in any new branch of a science,
a taxonomy is required so that researchers can use a common language to discuss the merits
of existing systems, classify new ones (to see if they really are new), and identify gaps which
suggest promising areas for further development. Several authors have suggested taxonomies
for these visualization systems, but they have been ad hoc and have relied on only a handful of
characteristics to describe a large and diverse area of work. Another major drawback of these
taxonomies is their inability to accommodate expansion: there is no clear way to add new
categories when the need arises.

This paper presents a detailed taxonomy of systems for the visualization of computer software.
This taxonomy was derived from an established black-box model of software and is composed
of a hierarchy with six broad categories at the top and over thirty leaf-level nodes at four
hierarchical levels. Twelve systems are described in detail and the taxonomy is applied to them
in order to illustrate its features. A research agenda for future work in the area is presented.

[Shu 19881 Shu, Nan C. Visual Programming. New York: Van Nostrand Reinhold
Company, 1988.

Nan Shu has written this book as a tutorial and survey of visual programming. She begins by
explaining why a new programming paradigm is needed and how visual programming might fill
that need. She then categorizes different branches of visual programming. An individual
chapter is devoted to each of the branches of her visual programming hierarchy. A framework
for assessing visual languages (branch of her hierarchy) is introduced. This three-dimensional
framework is often referenced in other documents on the subject. She then devotes a chapter
as to how she envisions the future of visual programming.

[Singh and Chignell 19921 Singh, Gurminder and Chignell, Mark H.. "Components of the
Visual Computer," The Visual Computer, Volume 9, Number 3, September 1992, pp. 115-
142.

This paper reviews three major technologies that provide a platform for visual computing. These
technologies reflect the needs of various people who use visual computers: programmers, end
users, and scientists. A taxonomy of visual computing based on these three types of users is
presented. We begin with a discussion of important developments in visual programming and
follow with discussions of visual interfaces and visualization. We conclude with a summary of
visual computing's current status and identify critical areas of research that should be
emphasized in future work.

[Stroustrup 19881 Stroustrup, Bjarne. "What Is Object-Oriented Programming?" IEEE
Software, Volume 5, Number 5, May 1988, pp. 10-20.

Stroustrup presents the fundamentals of object-oriented programming by first defining
procedural programming followed by the definition of data abstraction. Stroustrup indicates that
a programming language must provide class structures encapsulating data and methods and
class inheritance to be considered object-oriented.

[Tektronix 19891 Tektronix, Inc. Spectrum Analyzer Fundamentals. Beaverton:
Tektronix, Inc., 1989.

The underlying concepts of spectrum analysis and spectrum analyzers are presented.
Following an introduction of spectrum analysis, examples of typical control settings for a
spectrum analyzer are presented. Finally, potential applications for spectrum analyzers are
detailed.

[TGS 1990Al The Gunakara Sun Systems. ProGraph: Reference. Halifax: The
Gunakara Sun Systems, Limited. 1992.

The Reference manual consists of two parts. The reference chapters provide an organized
source of information about the ProGraph language, editor, interpreter, compiler, Application
Builder, System classes, and the Macintosh Toolbox interface. The appendices provide
information on adding code written in the C language to a ProGraph application, as well as a
thorough specification of the syntax and semantics of ProGraph.

[TGS 199061 The Gunakara Sun Systems. ProGraph: Tutorial. Halifax: The Gunakara
Sun Systems, Limited. 1992.

This manual is divided into two parts: Part 1 : Preliminaries and Part 2: Tutorials. Part 1 shows
how to set up the ProGraph programming environment, presents a grand tour of the ProGraph
environment, explores the conceptual foundations of ProGraph, and surveys the ProGraph
language. Part 2 is a progressive, example-based presentation of the features of both the
ProGraph language and its development environment.

[Watson and Watson 19911 Watson, Collin J. and Watson, R. Douglas. "Computer
Graphics Representation of A Statistical Model Used with Computer-Aided Diagnosis,"
Computers and Biomedical Research, October 1991, pp. 576-583.

A description of computer graphics of a multidimensional model that is used with computer-
aided diagnosis or prognosis is presented. The model is discussed and computer graphics of
the model are developed. The computer graphics are suitable as visual supplements for
presenting the computer-aided diagnostic model to individuals who may be inexperienced in
multivariate statistics.

[Winblad 19901 Winblad, Ann et al. Object-Oriented Software. Reading: Addison-Wesley
Publishing Company, 1990.

This book covers all aspects of object-oriented design and engineering: from definition of
relevant terms to examples of applications and their implementations.

[Witte 19931 Witte, Robert A. Electronic Test Instruments: Theory and Applications,
Englewood Cliffs: Prentice Hall, 1993.

This book covers basic measurement theory of electronic signals. Instruments covered include
DVMs, signal sources, oscilloscopes, frequency counters, spectrum analyzers, wavemeters,
network analyzers, and logic analyzers.

