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Abstract: We present a statistical detection test for GPS 

multipath based on the one-way ANOVA method. Given 

an antenna array with a GPS software receiver in tracking 

mode, the signal from each channel is correlated with a 

reference signal in blocks of one CA code period. When the 

relative phase delay for the direct GPS signal is stripped 

off from each channel, the expected values of the correlates 

is the same for all of the channels only if no multipath is 

present. A one-way ANOVA test can then used to 

determine if multipath is present. 

An analysis of this method is presented which shows 

that the parameters affecting its detection performance 

can be grouped into three classes: the array size, the signal 

AOAs, and the processed multipath SNR. Receiver 

operating characteristic curves are given as a function of 

the processed multipath SNR for fixed array sizes. They 

show that good detection performance can be achieved 

under most operating conditions with less than 10 CA code 

periods of data. It is also shown that the detection 

performance of this method improves as the multipath 

time delay decreases. This suggests this method could be a 

useful tool in aiding multipath mitigation techniques whose 

ability to detect multipath typically degrades as the 

multipath time delay decreases. 

 

 

 

 

I. INTRODUCTION 

 

Multipath is one of the major sources of error in precise 

position determination using GPS. A number of methods have 

been developed for multipath mitigation which can be grouped 

into two classes. The first class of techniques attempt to 

modify the receiver tracking loop in such a way that it is not 

affected by multipath. Methods that fall into this class include 

the narrow correlator [1], the strobe correlator [2], and 

Multipath Elimination Technology [3]. The second class of 

methods attempt to jointly estimate the direct and multipath 

signal parameters. They include the Multipath Estimating 

Delay Lock Loop (MEDLL) [4], modified RAKE delay lock 

loop [5], and Multipath Mitigation Technology [6]. 

The performance for both of classes of methods, however, 

is degraded when the relative time delay between the 

multipath and direct line of sight (LOS) GPS signal is short. A 

serious concern is that if the multipath is very close to the 

LOS GPS signal in time, its presence and therefore the error it 

produces, could potentially go undetected. In the case of the 

first class of methods, for example, no detection is performed. 

In the multipath-estimator based methods, detection is 

implicitly incorporated into the method.  This is because the 

number of multipath sources is one of the parameters being 

estimated. The estimation is often performed using the 

maximum likelihood (ML) method. It has been shown that the 

variance of Cramer-Rao lower bound (CRLB) for the ML 

estimated multipath parameters increases as the time-delay 

decreases [7], which could potentially lead to the misdetection 

of a single multipath source. Notwithstanding this problem, 

ML methods for multipath estimation are generally 

computationally expensive. This could be a limitation for 

receivers on a moving platform where prompt reporting on a 

rapidly changing multipath environment is required. Although 

recently improved versions of ML methods that reduce the 

complexity of the optimization process have been reported 

[8][9], a simpler and faster method for the detection of short-

time delay multipath would be desirable. 

In this paper, we present a method that is designed to detect 

the presence of multipath signals by exploiting the spatial 

diversity between the direct GPS signal and its multipath.  We 

shall show that our approach complements the previous 

methods, in that its detection performance is optimized exactly 

under those conditions where their performance is the worst.  

The structure of this paper is as follows: Section II 

describes the mathematical model for the signals.  Section III 

presents the theory and algorithm for multipath detection. The 

performance of this method is analyzed in section IV. Section 

V summarizes the results and highlights future improvements 

and directions. 

 

II. MATHEMATICAL SIGNAL MODEL 

 

Fig. 1 shows an idealized uniform linear array (ULA) 

configuration consisting of K elements spaced at one-half the 

nominal carrier wavelength. For a collection of isotropic array 

elements that are calibrated, the angle of arrival, denoted , 

determines the array’s response. Under these conditions, the 

array’s response, which is often called the steering vector and 

will be denoted by S, is a complex vector with K components 

having the parametric form: 

 



This paper will appear in Proc. 2008 Joint IEEE PLANs and ION Annual Meeting 

 

 

1

exp πcos

exp K 1 πcos

S


i

i

 (1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Simplified Model System 

An ideal ULA of K elements collects the signals from the 

direct GPS and its multipath signals. A key property for each 

signal is the orientation of its wave vector relative to the array 

axis, known as its angle of arrival and denoted by . 

 

 

In a multipath environment, the signal is typically modeled 

as the sum of a desired GPS signal, M multipath signals, and 

random channel noise. All of the deterministic signals will be 

considered stationary over the time interval of observation. 

The noise from each channel is distributed as CWGN(0,
2
) 

and is uncorrelated both spatially and temporally. The 

mathematical model for the signal used will be its complex, 

digitized form at baseband sampled with frequency fs.  

Neglecting the navigation data bit, it can be expressed in the 

form: 

 
M

n j n j n j n

j 0

t A C t exp t t
j

X S εi       (2) 

 

where n represent the sample index,  j=0 corresponds to the 

direct LOS GPS signal, and  

 

j

j

j

C t GPS CA code for desired signal

A Signal amplitude

Relative time delay to LOS signal

Relative carrier phase to LOS signal

Intermediate frequency with Doppler shift

Steering vector
j

S  (3) 

 

Some additional notation that will be used throughout this 

paper is as follows: vectors will be denoted by boldface type, 

conjugate transposes by superscript H, transposes by 

superscript T, and conjugates by a superscript *. The expected 

value of a random variable will be denoted as E{ }. 

 

 

 

III. METHODOLOGY 

The method we propose is a binary detection method for 

multipath cast in the form of a simple statistical hypothesis 

test. The null hypothesis is chosen to be the condition that 

no multipath is present and the alternative hypothesis is the 

condition that multipath is present. In the first sub-section, 

we quickly review the analysis of variance or ANOVA 

method used in our method to test these two hypotheses. In 

the second section, we motivate and explain the signal 

processing steps necessary to prepare the signal so it can be 

tested with ANOVA. We end this section with a discussion 

on how the operating conditions which will satisfy a given 

level of statistical performance  are determined. 

 

 

A. ANOVA  

 

Analysis of Variance or ANOVA is a standard statistical 

method to test whether the mean of a random variable is the 

same in multiple populations [10]. ANOVA starts with K 

distinct populations each containing random samples of a 

given random variable Z. In our analysis, we will use 

balanced ANOVA, in which all of the populations contain 

the same number of samples.  Letting nK be the number of 

samples in each population and Zh,k denote the h
th

 sample 

from the k
th

 population, if the following conditions are 

satisfied for all h,h'=1, ... , nK  and  k, k'=1, ... , K: 

 

 

i.i.d.
2

h ,k k k

2 2

k

2

h,k h ,k h ,h k ,k

Z ~ N ,

Co var Z Z    

 (4) 

 

then ANOVA can be used to test the following statistical 

hypotheses: 

 

 
0 k j

1 k j

H : for all k, j 1,...,K

H : for some k, j 1,...,K
 (5). 

 

ANOVA is based on a comparison of two sample 

variances. The first variance, called the mean-square error 

within populations and denoted by MSEw, estimates the 

average sample variance taken over all the populations: 
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Because the second condition in (4) requires the variance 

of the random variables to be the same for all of the 

populations, the MSEw is an unbiased estimator for the true 

sample variance. 

The second variance is the variance between the sample 

means. It is known as the mean-square error between groups 

and is given by: 

 

K
2

K k

k 1

b

ˆn

MSE
K 1

 (7) 

 

where  is the average of the K populations means. 

Under H0, it can be shown that MSEb is also an estimate 

for the true sample variance, and by Cochran's theorem, it 

can be shown that MSEb and MSEw are independent chi-

square random variables having degrees of freedom (K-1) 

and K(nK-1), respectively. Hence their ratio follows a 

central F distribution with (K-1) numerator degrees of 

freedom and K(nK-1) denominator degrees of freedom. 

Under H1, even though MSEw and MSEb are still 

independent, the fact that MSEb is a non-central chi-square 

random variable makes their ratio a non-central F 

distribution.  Letting F(  | (K-1),K(nK-1)) denote the critical 

value for the hypothesis test having size , the decision rule 

in ANOVA is: 

 

b

K 0

w
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K 0

w

MSE
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MSE

MSE
F K 1 ,K n 1 Fail to reject H

MSE

 (8) 

 

B. Algorithm for Multipath Detection with ANOVA 

 

In the context of multipath detection, we use ANOVA to 

determine if a signal contains only the direct GPS signal, or 

if it also contains its multipath signals. Based on the signal 

model in (2), the statistical test we wish to perform can be 

stated as: 

 

 
0

0

H : M 0 i.e. no multipath present

H : M 0 i.e. multipath is present
 (9) 

 

To aid in explaining how ANOVA can be used to 

perform this test, we will introduce the two signals for a K 

element ULA, X0 and X1: 
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i
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where n=1,…N (total number of samples) and M>0. We 

will refer to these two signals as test signals because they 

represent the signals under the two hypotheses we wish to 

test. 

No method for GPS signal detection can be applied 

directly to the input signal. This is due to the fact that the 

GPS signal is by construction a weak direct spread-

spectrum signal which is not statistically detectable. 

Assuming that the receiver is already in tracking mode, we 

can correlate the signal from each channel with an estimate 

for the reference signal of the direct GPS signal in order to 

increase its effective signal to noise ratio. Using our 

previous notation, the discrete estimated reference signal at 

time tn can be written in the form: 

 

 
n n n 0

ˆ ˆ ˆr t C t exp i t  (11) 

 

where  is the error of the code phase tracking loop. 

nK correlations will be performed using consecutive 

blocks of data, each having a length of one CA code period 

(TCA=1 msec).  It is not coincidental that nK was also used 

in the last sub-section to denote the number of data points in 

each population for a balanced ANOVA experiment.  As we 

will see later, each CA code period will contribute a single 

data point to the populations in our ANOVA analysis. To 

insure that we have enough data points for reliable 

statistical inference, while also minimizing the computation 

time required for our analysis, the number of CA code 

periods is typically chosen to be between 3 and 10 (i.e. 3  

nK 10).  

The signal is correlated over each successive CA code 

period with the estimated reference signal given in (11). In 

the correlations, the difference between the estimated and 

true carrier frequency will be approximated to be zero. For a 

GPS receiver in tracking mode, the typical error in the 

frequencies is a few Herz, and since the total integration 

time is at most 10 msec, this approximation is valid. Under 

this condition, the correlation for the j
th

 source from each 

time block will be the same, and is given by [11]: 

 

 
j

j j j 0

CA

ˆA exp 1
T

i  (12) 

  

Both test signals in (10) have the same noise, so we can 

evaluate the noise contribution to the correlator output from 

the i
th

 CA code period. If we define: 

 

n

0

1 Sign C t
ˆn ψ

2
 (13) 

 

then the k
th

 component of the post-correlated noise from the 

i
th

 CA code period can be expressed as: 
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where NCA denotes the total number of data points sampled 

in one CA code period. 

Since each component of the random channel noise at 

each time sample is modeled as a zero-mean complex 

normal random variable, multiplication of each element by 

a phase factor changes neither the distribution nor 

covariance properties of the noise. From this fact, it directly 

follows that: 

 

 
2i.i.d.

k

CA

i ~ CWGN 0,
N

 (15) 

 

which holds for all k = 1,...,K and all i=1,...,nK. The 

condition that the post-correlated noise samples are 

independent follows from the third condition in (4). 

Combining the correlations of the deterministic and noise 

signals, the total output signal for the two test signals from 

the i
th

 CA code period can be written as: 

 

 

0

M

j

j 0

i i

i i

0 0

1 j

Y S ε

Y S ε
 (16) 

 

ANOVA can be used when K populations of normally 

distributed random variables are independent and have the 

same variance. From (15), it follows that our signal model 

under both hypotheses satisfies the assumptions necessary 

to use ANOVA. However, for an ANOVA test to be 

successful, the data must also satisfy the condition that the 

mean of each population will be the same when H0 holds. If 

we consider each of the channels as being a population (so 

our K populations are represented by the K channels), we 

see from (16) that the expected values of our K 

“populations” under H0 are: 

 

0
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0

1
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Equation (17) shows us that under H0 the means for the 

different channels are generally not all equal. To make them 

equal under H0, the k
th

 channel signal needs to be multiplied 

by the weight: 

 

 
k 0

w exp k 1 πcos-i  (18) 

 

which can be constructed, assuming that the direct GPS 

signal’s AOA is known. After the application of the weight, 

the test signals (which we'll denote by Z) for the i
th

 CA code 

period have the form: 
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where j = [cos( j-cos 0)].  Since the weight is a phase 

factor, ″(i) has the same distribution as '(i). 

From (19) it follows that our signal now not only satisfies 

the assumptions necessary to use ANOVA, but that it can be 

used with ANOVA to perform the statistical hypothesis test 

in (9). From the first line of (19), it follows that the 

expected values for the final output signals from each 

channel are the same under H0. Under the alternative 

hypothesis however, the second line of (19) shows that 

expected value of the final output signal will be different for 

each channel due to the contribution of the multipath 

signals. The simplified block diagram shown in Fig. 2 

summarizes the overall algorithm used to detect multipath 

with ANOVA for a K element antenna array. 
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Fig. 2. Flowchart for ANOVA with GPS Software Receiver 

 

C. ANOVA Experimental Design  

 

The algorithm just described omits an important 

preliminary step which is central to all ANOVA 

experiments: sample size determination. In this section, we 

will consider this simple design issue and show how the 

problem of sample size determination is solved for 

multipath detection. 

In signal detection problems, we want to choose our 

system parameters so that our detection method will 

perform according to some pre-determined performance 

conditions. The two measures of detection performance are 

the false alarm rate and the missed detection probability 

. One typically sets predetermined tolerance levels for both 

 and  that we want the detection method to satisfy. 

Sample size is an important parameter that affects both  

and . Although sample size determination for ANOVA is 

in general rather complicated, we can nevertheless illustrate 

the basic underlying concept of how it works. Fig. 3a shows 

a hypothetical probability density for the sampling 

distribution of the mean in a single population under H0 and 

H1 based on some fixed sample size. The predetermined 

condition on  determines the critical value, ZC, upon 

which the decision rule is based: 

 

 
C 0

C 0

Z Z Reject H

Z Z Fail to reject H
 (20) 

 

Based on this decision rule, it follows that  is the 

probability that the mean will be less than ZC when H1 

holds. We see from Fig. 3a that this is the shaded area under 

the probability density for H1 to the left of ZC. Although the 

decision rule insures that the false alarm rate is satisfied, 

what if the area under the curve is greater than the value of 

 desired? The solution to this problem lies in the fact that 

the variance of both distributions in ANOVA is inversely 

proportional to the sample size. Thus, increasing the sample 

size makes both distributions more concentrated about their 

means and reduces the probability density in the tails of the 

distribution. Fig. 3b shows the same distribution after the 

sample size has been increased by a factor of four. We see 

quite clearly that , the probability the mean will fall below 

ZC when H1 is true is substantially decreased. 

 

 
 

Fig. 3 

 

If we continue to increase the sample size, the probability 

of both  and would go to zero. While that may seem 

very desirable, in practice it is often more useful to try to 

collect as few samples as possible. In the case of multipath 

detection for example, collecting more samples requires 

longer times. In an environment with a rapidly changing 

multipath environment, prompt reporting of the multipath 

conditions is an important consideration. The goal then is to 

find the minimum sample size that will satisfy both  and . 

There are a variety of statistical methods designed for 

determining the sample size with ANOVA [12]. To 

implement such methods however, one needs an estimate of 

how close the mean values of the statistic under H0 and H1 

are. Referring to Fig. 3, one could imagine that as the means 

of the two distributions approached one another (while the 

variance of the distributions remained the same), the 

number of samples required to make the distributions 

sufficiently well separated would have to increase.  

Therefore, to determine the sample size for a given 

performance specification, an estimate of the minimum 

difference between 0 and 1 one wishes to detect, must be 

known a priori. 

For the problem of multipath detection, an estimate of the 

minimum difference in the sample means is difficult to 

determine. For that reason, we instead use Monte-Carlo 

simulations to estimate the sample size required to meet a 

specified performance criteria. The parameters in our 

simulations are those which affect detection performance: 

the number of array elements K, the data length, the direct 

signal AOA, and the multipath signal parameters including 

the AOA, relative time delay, and signal strength.   Based 

on our analysis, we can define a parameter  which 

essentially represents the effective multipath signal strength 

at the output of our correlation and weighting algorithm: 

 

1
SNR

120

10 CA K

CA

10Log N n 10 1
T

 (21) 
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To obtain a quantitative understanding of the dependence 

 has on its parameters, Fig. 4 shows a contour plot of  as 

a function of the  multipath input SNR and time delay. The 

third parameter on which  depends, total number of data 

points (N=nKNCA) was kept fixed at 25,000 (5 CA code 

periods sampled  at a rate of 5 MHz).   

 

 
 

Fig.4  Effect of Multipath Parameters on Net Multipath SNR 

Using (21) with N = 25,000,  is plotted as a function of the 

multipath parameters. Contour plot values are in units of dB. 

 

For multipath whose AOA is well separated from that of 

its direct signal,  principally determines the detection 

algorithm’s performance for a fixed array size.  This can be 

demonstrated by the simulation results shown in Fig. 5 

where both  and the mean F statistic values are plotted as 

contours functions of the number of CA code periods nK, 

and the multipath SNR.  The simulation is performed with a 

signal model containing a direct signal, a single multipath, 

and noise received by a three element ULA with 1 fixed at 

0.2*TCA.  The sampling frequency is again 5MHz and the 

multipath and direct signal AOAs are 45
o
 and 86

o
 

respectively.  For each pair of multipath SNR and number 

of CA codes sampled, 2,500 Monte-Carlo simulations were 

performed and the average F-statistic value computed.  

 

 
 

Fig. 5 Correlation between  and the Detection Statistic 

The F-statistic values estimated from 2,500 Monte Carlo 

simulations show the same functional trend as the  values. 

We see that the contours of  and the F-statistic correlate 

very well, indicating that the detection performance can be 

completely accounted for by .  This agreement is 

intuitively sound because the net multipath SNR efectively 

specifies the smallest significant signal that can be detected. 

Based on this result, it is possible to determine the 

sample size for a given pair of ( , ). Fig. 6 is a contour 

plot of  for a three element ULA using simulation. The  

values are estimated from 5000 Monte-Carlo simulations 

for given pairs of  and  values, by determining the 

percentage of F statistic values that fell below the critical 

value for .  We see from the plot for example, that for the 

multipath detection to have a false alarm rate of no more 

than 0.05 and a missed detection probability of no greater 

than 0.05, a minimum value of  = 3.266 dB would be 

required. If the minimum multipath SNR to be detected is 

specified along with the maximum time delay and sampling 

rate, it is possible, using equation (21) to compute the 

minimum number of samples required. For example, 

substituting the values  =3.3 dB, along with a multipath 

SNR of -34 dB, a sampling rate of 5 MHz, and the 

maximum time delay of 0.5 TCA into equation (21), we find 

that a sample size of 9, or 9 CA code periods, would be 

required.  

 

 
Fig. 6  Determination of sample size for 3 element ULA 

The contour for the desired value of  is found. The point 

where this contour intersects the desired value of  is then 

found. The value of  at which they intersect can then be used 

with (21) to determine the sample size. 

 

 

IV. RESULTS 

 

We will present results fromMat LAB simulations to 

evaluate the detection performance of ANOVA. The 

relevant parameters on which the performance depends are 

 (which contains the total number of CA codes used along 

with the multipath SNR and time delay), the number of 

array elements, and the AOAs of multipath and direct GPS 

signal.   

Fig. 7 illustrates how the detection performance is 

affected by  and K, the number of array elements. Two sets 

of levels curves for  are plotted as a function of the false 
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alarm rate and missed detection rate.  The first group 

corresponds to an array with 3 elements, while the second 

group is for an array with 7 elements.   

 

 
Fig. 7. Performance Curves for Single Multipath Signal 

The relationship between , , and  for a 3 and 7 element 

array is shown. Given any 2 of these 3 quantities, the third 

can be estimated from the plot. 

 

 

 Fig. 7 shows that for a fixed array dimension, a larger 

 value corresponds to lower miss detection rate and false 

alarm rate.  This is intuitively expected since a larger  

value represents stronger processed multipath signals.  For 

the same  value, a larger array also reduces the false alarm 

and miss detection rate.  For example, if acceptable false 

alarm and miss detection rates of 5% and 7.5% respectively 

are chosen, then the multipath that can meet this criterion 

should have a minimum  value of 2.97 if the array has 3 

elements.  For a 7 element array, the corresponding  value 

is around 2.5.   

 What are the multipath signal parameters for the 

above mentioned  values?  Similar to Fig. 4,  is plotted as 

a function of the multipath parameters, but now two sets of 

contours for  are shown. The first set of contours are the  

values which would be obtained using the lower bound for 

the number of samples, nK=3. The second set of contours 

are the  values obtained using the upper bound, nK=10. 

Fig. 8 provides a quantitative description of the  value’s 

dependency on the basic multipath signal parameters, 1 and 

SNR.  Two sets of curves are plotted in Fig. 8.  The solid 

lines are generated for nk=10 CA code periods and the 

dashed lines are for 3 CA code periods.  Based on this 

figure, we see that for =2.97, the multipath SNR has to be 

larger than -41 dB in order to meet the detection criteria, if 

nk=10.  For nk=3, the minimum multipath SNR is -35.7 dB.  

For a given multipath SNR, the  value sets the upper limit 

of the multipath delay time that can meet the previously 

stated detection criteria.  For example, if the multipath SNR 

is -35dB, then the maximum multipath delays are 0.5TCA 

and 0.1TCA for nk=10 and 3 respectively. 

 

 
Fig. 8 Dependence of G on multipath time delay, the input 

multipath SNR and number of samples collected 

 

Fig. 8 shows that if all of the system parameters are fixed 

except the multipath time delay,  increases as the time 

delay decreases. From Fig. 7, it was seen that both detection 

errors decrease as  increases, hence we can conclude that 

there is a uniform improvement in detection performance as 

the multipath time delay decreases. This is an interesting 

result because it is the exact opposite of typical MLE 

methods such as the MEDLL, whose performance becomes 

worse as the time delay decreases.  The basis for this result 

lies in the fact that the ANOVA method makes use of 

differences in the AOAs between the direct and multipath 

signal.  By using the signal's spatial, rather than its temporal 

diversity, ANOVA does not encounter this limitation due to 

the time delay.  

Fig. 9 shows how significant the improvement in 

detection is as the multipath time delay decreases. Using a 

desired direct GPS signal with an input SNR of -18 dB and 

a multipath signal with an input SNR of -28 dB, the time 

delay is changed in increments of 0.1*TCA. For each time 

delay, 5,000 Monte-Carlo simulations are run and the 

critical value is chosen at which  = . We see that at a time 

delay of 0.7* TCA, a probability of false alarm and missed 

detection of 0.2 can be achieved, but at a 0.3* TCA, the 

probability of false alarm and missed detection drop 

dramatically to less than 0.01. 

 

 
Fig. 9   Effect of multipath time delay on detection 
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In Fig. 10, we demonstrate the sensitivity of the multipath 

detection algorithm to the spatial separation between the 

multipath and direct signal AOAs. Fig. 10 was generated 

from a Monte-Carlo simulation involving two signals: one 

with the direct GPS and a single multipath signal and the 

other with just the direct GPS signal. These two signals 

represent the two signals under our two competing 

hypothesis. A grid search is performed over the plot in Fig. 

10: the direct signal’s AOA is varied from zero to ninety 

degrees in five degree increments and at direct signal AOA, 

the multipath AOA is varied from the direct signal AOA by 

zero to 15 degrees (in 1 degree increments). For each 

effective ( 0, 1) pair, 2,500 Monte-Carlo simulations are run. 

The empirical distribution functions for both signals are 

computed and the critical value at which the estimated type 

I and type II errors are the same is found. This approach 

gives us an estimate for the detection errors without 

weighting a specific detection error over the other. The 

value of  (or equivalently ), is then chosen as our 

detection performance metric and are the contour values 

plotted in Fig. 10.  

Fig. 10 shows that the spatial proximity of the multipath 

signal has a great effect on the detection performance when 

direct signal AOA is relatively small.  For example, when 

0<20°, the multipath AOA has to be at least 12° greater 

than the direct signal’s to ensure that both  and  are less 

than 20%. As the desired LOS AOA increases however, the 

two signals can get relatively close to each other before 

performance is significantly degraded. When 0=60°, the 

multipath signal AOA can be about 5
o
 away from the direct 

signal AOA and still be detected with less than 5% false 

alarm and miss detection rate. 

 

 

 
 

Fig. 10 Effect of relative multipath and direct signal AOA 

on detection. 

 

 

 

 

 

 

 

V. CONCLUSIONS 

 

Multipath is one of the major error sources in high 

accuracy GPS applications. The most difficult type of 

multipath are those whose time delay relative to the direct 

GPS signal, is short. For these types of multipath, existing 

methods to may not be able to detect the presence of 

multipath and therefore not recognize the error produced by 

the multipath. The ANOVA algorithm presented in paper 

takes advantage of the spatial diversity between the 

multipath and the direct GPS signal to detect the presence of  

such multipath. 

We have shown that the ANOVA-based algorithm can 

detect the presence of multipath using 3-10 CA code periods 

with modest computational cost.  The algorithm requires the 

construction of a single weight vector based on known 

direct signal AOA and multiplication of the weight vector to 

the correlator outputs. The ANOVA-based algorithm 

compliments previous methods, in that its performance 

improves as the multipath time delay decreases. As the 

angle of arrival for the multipath and the direct signal 

becomes close to each other, the detection performance is 

degraded as expected. Simulations suggest however that this 

reduction in performance is limited to a relatively small 

region and that by increasing the number of array elements, 

performance can be improved to the desired level. 

The goal of this paper was to show that multipath signal 

detection for short time delay multipath can be performed 

using the spatial diversity between the desired and 

undesired signal in a way that was generally applicable, 

simple to implement, and yet had good performance. 

Improvements of this method are planned considering the 

optimization of the detection method by comparing the 

performance of the ANOVA method with various 

eigenstructure techniques. The incorporation of the temporal 

and spatial diversity should help also improve detection and 

make the method more robust. 
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